Intra-Cavity Raman Laser Operating at 1193 nm Based on Graded-Index Fiber
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fermann, M.E.; Hartl, I. Ultrafast fiber laser technology. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 191–206. [Google Scholar] [CrossRef]
- Jeong, Y.E.; Sahu, J.K.; Payne, D.A.; Nilsson, J. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express 2004, 12, 6088–6092. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.J.; Zhou, P.; Ma, Y.X.; Xu, X.J.; Liu, Z.J. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers. Opt. Express 2011, 19, 18645–18654. [Google Scholar] [CrossRef] [PubMed]
- Bednyakova, A.E.; Gorbunov, O.A.; Politko, M.O.; Kablukov, S.I.; Smirnov, S.V.; Churkin, D.V.; Fedoruk, M.P.; Babin, S.A. Generation dynamics of the narrowband Yb-doped fiber laser. Opt. Express 2013, 21, 8177–8182. [Google Scholar] [CrossRef] [PubMed]
- Cabasse, A.; Ortaç, B.; Martel, G.; Hideur, A.; Limpert, J. Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion. Opt. Express 2008, 16, 19322–19329. [Google Scholar] [CrossRef]
- Kuhn, V.; Kracht, D.; Neumann, J.; Weßels, P. 67 W of output power from an Yb-free Er-doped fiber amplifier cladding pumped at 976 nm. IEEE Photon. Technol. Lett. 2011, 23, 432–434. [Google Scholar] [CrossRef]
- Moulton, P.F.; Rines, G.A.; Slobodtchikov, E.V.; Wall, K.F.; Frith, G.; Samson, B.; Carter, A.L. Tm-doped fiber lasers: Fundamentals and power scaling. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 85–92. [Google Scholar] [CrossRef]
- Ast, S.; Nia, R.M.; Schönbeck, A.; Lastzka, N.; Steinlechner, J.; Eberle, T.; Mehmet, M.; Steinlechner, S.; Schnabel, R. High-efficiency frequency doubling of continuous-wave laser light. Opt. Lett. 2011, 36, 3467–3469. [Google Scholar] [CrossRef] [Green Version]
- Negel, J.P.; Loescher, A.; Voss, A.; Bauer, D.; Sutter, D.; Killi, A.; Ahmed, M.A.; Graf, T. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Opt. Express 2015, 23, 21064–21077. [Google Scholar] [CrossRef]
- Leindecker, N.; Marandi, A.; Byer, R.L.; Vodopyanov, K.L.; Jiang, J.; Hartl, I.; Fermann, M.; Schunemann, P.G. Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express 2012, 20, 7046–7053. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.F.; Lai, K.S.; Wong, H.F.; Xie, W.J.; Lim, Y.L.; Lau, E. Multiwatt mid-IR output from a Nd: YALO laser pumped intracavity KTA OPO. Opt. Express 2001, 8, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Supradeepa, V.R.; Feng, Y.; Nicholson, J.W. Raman fiber lasers. J. Opt. 2017, 19, 023001. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Yan, M.F.; Wisk, P.; Fleming, J.; DiMarcello, F.; Monberg, E.; Taunay, T.; Headley, C.; DiGiovanni, D.J. Raman fiber laser with 81 W output power at 1480 nm. Opt. Lett. 2010, 35, 3069–3071. [Google Scholar] [CrossRef] [PubMed]
- Supradeepa, V.R.; Nicholson, J.W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers. Opt. Lett. 2013, 38, 2538–2541. [Google Scholar] [CrossRef] [Green Version]
- Churin, D.; Olson, J.; Norwood, R.A.; Peyghambarian, N.; Kieu, K. High-power synchronously pumped femtosecond Raman fiber laser. Opt. Lett. 2015, 40, 2529–2532. [Google Scholar] [CrossRef]
- Baek, S.H.; Roh, W.B. Single-mode Raman fiber laser based on a multimode fiber. Opt. Lett. 2004, 29, 153–155. [Google Scholar] [CrossRef]
- Xiao, Q.; Yan, P.; Li, D.; Sun, J.; Wang, X.; Huang, Y.; Gong, M. Bidirectional pumped high power Raman fiber laser. Opt. Express 2016, 24, 6758–6768. [Google Scholar] [CrossRef]
- Glick, Y.; Fromzel, V.; Zhang, J.; Ter-Gabrielyan, N.; Dubinskii, M. High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement. Appl. Opt. 2017, 56, B97–B102. [Google Scholar] [CrossRef]
- Kuznetsov, A.G.; Kablukov, S.I.; Wolf, A.A.; Nemov, I.N.; Tyrtyshnyy, V.A.; Myasnikov, D.V.; Babin, S.A. 976 nm all-fiber Raman laser with high beam quality at multimode laser diode pumping. Laser Phys. Lett. 2019, 16, 105102. [Google Scholar] [CrossRef]
- Kuznetsov, A.G.; Evmenova, E.A.; Dontsova, E.I.; Kablukov, S.I.; Babin, S.A. Frequency doubling of multimode diode-pumped GRIN-fiber Raman lasers. Opt. Express 2019, 27, 34760–34768. [Google Scholar] [CrossRef]
- Chen, Y.A.; Yao, T.F.; Huang, L.J.; Xiao, H.; Leng, J.Y.; Zhou, P. 2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation. Opt. Express 2020, 28, 3495–3504. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.C.; Xiao, H.; Yao, T.F.; Xu, J.M.; Chen, Y.Z.; Leng, J.Y.; Zhou, P. Kilowatt level Raman amplifier based on 100 µm core diameter multimode GRIN fiber with M2 = 1.6. Opt. Lett. 2021, 46, 3432–3435. [Google Scholar] [CrossRef] [PubMed]
- Zlobina, E.A.; Kablukov, S.I.; Wolf, A.A.; Nemov, I.N.; Dostovalov, A.V.; Tyrtyshnyy, V.A.; Myasnikov, D.V.; Babin, S.A. Generating high-quality beam in a multimode LD-pumped all-fiber Raman laser. Opt. Express 2017, 25, 12581–12587. [Google Scholar] [CrossRef]
- Lombard, L.; Brignon, A.; Huignard, J.P.; Lallier, E.; Georges, P. Beam cleanup in a self-aligned gradient-index Brillouin cavity for high-power multimode fiber amplifiers. Opt. Lett. 2006, 31, 158–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podivilov, E.V.; Kharenko, D.S.; Gonta, V.A.; Krupa, K.; Sidelnikov, O.S.; Turitsyn, S.; Fedoruk, M.P.; Babin, S.A.; Wabnitz, S. Hydrodynamic 2D turbulence and spatial beam condensation in multimode optical fibers. Phys. Rev. Lett. 2019, 122, 103902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flusche, B.M.; Alley, T.G.; Russell, T.H.; Roh, W.B. Multi-port beam combination and cleanup in large multimode fiber using stimulated Raman scattering. Opt. Express 2006, 14, 11748–11755. [Google Scholar] [CrossRef] [PubMed]
- Chiang, K.S. Stimulated Raman scattering in a multimode optical fiber: Evolution of modes in Stokes waves. Opt. Lett. 1992, 17, 352–354. [Google Scholar] [CrossRef]
- Bruesselbach, H. Beam cleanup using stimulated Brillouin scattering in multimode fibers. In Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 2–7 May 1993; Optical Society of America: Washington, DC, USA, 1993; p. CThJ2. [Google Scholar]
- Niang, A.; Modotto, D.; Tonello, A.; Mangini, F.; Minoni, U.; Zitelli, M.; Fabert, M.; Jima, M.A.; Egorova, O.N.; Levchenko, A.E.; et al. Spatial beam self-cleaning in tapered Yb-doped GRIN multimode fiber with decelerating nonlinearity. arXiv 2019, arXiv:2001.00105. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Z.N.; He, Q.H.; Sun, W.; Rao, Y.J. Common-cavity ytterbium/Raman random distributed feedback fiber laser. Laser Phys. Lett. 2017, 14, 065101. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.J.; Song, R.; Lei, C.M.; Yang, W.Q.; Hou, J. Random fiber laser directly generates visible to near-infrared supercontinuum. Opt. Express 2019, 27, 29781–29788. [Google Scholar] [CrossRef]
- Song, J.X.; Ren, S.; Liu, W.; Li, W.; Wu, H.; Ma, P.F.; Zhang, H.W.; Zhou, P. Temporally stable fiber amplifier pumped random distributed feedback Raman fiber laser with record output power. Opt. Lett. 2021, 46, 5031–5034. [Google Scholar] [CrossRef] [PubMed]
- Turitsyn, S.K.; Babin, S.A.; El-Taher, A.E.; Harper, P.; Churkin, D.V.; Kablukov, S.I.; Ania-Castañón, J.D.; Karalekas, V.; Podivilov, E.V. Random distributed feedback fibre laser. Nat. Photonics 2010, 4, 231–235. [Google Scholar] [CrossRef]
- Babin, S.A.; Vatnik, I.D.; Laptev, A.Y.; Bubnov, M.M.; Dianov, E.M. High-efficiency cascaded Raman fiber laser with random distributed feedback. Opt. Express 2014, 22, 24929–24934. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.W.; Huang, L.; Song, J.X.; Wu, H.; Zhou, P.; Wang, X.L.; Wu, J.; Xu, J.M.; Wang, Z.N.; Xu, X.J.; et al. Quasi-kilowatt random fiber laser. Opt. Lett. 2019, 44, 2613–2616. [Google Scholar] [CrossRef]
- Zhang, H.X.; Fan, Y.; Pei, P.; Sun, C.X.; Lu, L.F.; Zhang, F. Tm3+-Sensitized NIR-II Fluorescent Nanocrystals for In Vivo Information Storage and Decoding. Angew. Chem. Int. Ed. 2019, 58, 10153–10157. [Google Scholar] [CrossRef] [PubMed]
- Dou, K.; Feng, W.Q.; Fan, C.; Cao, Y.; Xiang, Y.H.; Liu, Z.H. Flexible designing strategy to construct activatable NIR-II fluorescent probes with emission maxima beyond 1200 nm. Anal. Chem. 2021, 93, 4006–4014. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Sun, P. Intra-Cavity Raman Laser Operating at 1193 nm Based on Graded-Index Fiber. Photonics 2023, 10, 33. https://doi.org/10.3390/photonics10010033
Hu C, Sun P. Intra-Cavity Raman Laser Operating at 1193 nm Based on Graded-Index Fiber. Photonics. 2023; 10(1):33. https://doi.org/10.3390/photonics10010033
Chicago/Turabian StyleHu, Chunhua, and Ping Sun. 2023. "Intra-Cavity Raman Laser Operating at 1193 nm Based on Graded-Index Fiber" Photonics 10, no. 1: 33. https://doi.org/10.3390/photonics10010033
APA StyleHu, C., & Sun, P. (2023). Intra-Cavity Raman Laser Operating at 1193 nm Based on Graded-Index Fiber. Photonics, 10(1), 33. https://doi.org/10.3390/photonics10010033