Improved Radiation Resistance of Er-Yb Co-Doped Silica Fiber by Pretreating Fibers
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Xia, H.Y.; Shangguan, M.J.; Wu, Y.B.; Wang, L.; Zhao, L.J.; Qiu, J.W.; Zhang, R.J. 1.5 μm polarization coherent lidar incorporating time-division multiplexing. Opt. Express 2017, 25, 20663–20674. [Google Scholar] [CrossRef] [PubMed]
- Zha, S.Q.; Chen, Y.J.; Li, B.X.; Lin, Y.F.; Liao, W.B.; Zou, Y.Q.; Huang, C.H.; Lin, Z.L.; Zhang, G. High-repetition-rate 1.5 μm passively Q-switched Er:Yb:YAl3(BO3)4 microchip laser. Chin. Opt. Lett. 2021, 19, 6. [Google Scholar] [CrossRef]
- Yao, G.; Zhao, Z.G.; Liu, Z.J.; Gao, X.B.; Cong, Z.H. High repetition rate actively mode-locked Er:fiber laser with tunable pulse duration. Chin. Opt. Lett. 2022, 20, 6. [Google Scholar] [CrossRef]
- Yu, A.W.; Abshire, J.B.; Storm, M.; Betin, A. Laser Amplifier Development for IPDA Lidar measurements of CO2 from Space. In Proceedings of the Conference on Solid State Lasers XXIV—Technology and Devices, San Francisco, CA, USA, 8–10 February 2015. [Google Scholar]
- Yu, W.L.; Yan, P.; Qi, T.C.; Wu, Y.L.; Li, D.; Xiao, Q.R.; Gong, M.L. High-power and high-brightness Er:Yb codoped fiber MOPA operating at 1535 nm. Opt. Express 2022, 30, 16837–16846. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Han, B.; Wang, Z.N.; Liang, H.K. Statistical properties of Er/Yb co-doped random Rayleigh feedback fiber laser. Chin. Opt. Lett. 2021, 19, 5. [Google Scholar] [CrossRef]
- Sergeyev, S.; Kolpakov, S.; Loika, Y. Vector harmonic mode-locking by acoustic resonance. Photonics Res. 2021, 9, 1432–1438. [Google Scholar] [CrossRef]
- Yang, Q.B.; Jiao, Y.; Yu, C.L.; Shao, C.Y.; Lou, F.G.; Wang, S.K.; Zhang, L.; Yang, Q.H.; Hu, L.L. Gain and laser performance of heavily Er-doped silica fiber fabricated by MCVD combined with the sol-gel method. Chin. Opt. Lett. 2021, 19, 5. [Google Scholar] [CrossRef]
- Song, D.Y.; Hurh, Y.S.; Cho, J.W.; Lim, J.H.; Lee, D.W.; Lee, J.S.; Chung, Y.C.; Chung, Y. 4 × 10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing. Opt. Express 2000, 7, 280–284. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.X.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Lin, Q.M.; Yan, L.; Song, Y.Q.; Jia, X.Z.; Feng, X.Q.; Hou, L.; Bai, J.T. Switchable single- and dual-wavelength femtosecond mode-locked Er-doped fiber laser based on carboxyl- functionalized graphene oxide saturable absorber. Chin. Opt. Lett. 2021, 19, 6. [Google Scholar] [CrossRef]
- Gupta, S.; Engin, D.; Pachowicz, D.; Fouron, J.L.; Lander, J.; Dang, X.; Litvinovitch, S.; Chuang, T.; Puffenberger, K.; Kimpel, F.; et al. Development, testing, and initial space qualification of 1.5-μm, high-power (6 W), pulse-position-modulated fiber laser transmitter for deep-space laser communication. Opt. Eng. 2016, 55, 9. [Google Scholar] [CrossRef]
- Aubry, M.; Morana, A.; Mescia, L.; Mekki, J.; Ranger, C.; Laurent, A.; Robin, T.; Marin, E.; Ouerdane, Y.; Boukenter, A.; et al. Combined Temperature and Radiation Effects on the Gain of Er- and Er–Yb-Doped Fiber Amplifiers. IEEE Trans. Nucl. Sci. 2021, 68, 793–800. [Google Scholar] [CrossRef]
- Chi, J.; Jiang, S.; Zhang, L.; Yu, M.; Wang, J. Experimental Study on Radiation Performance of Fiber Lasers. Laser Optoelectron. Prog. 2018, 55, 061406. [Google Scholar] [CrossRef]
- Jiao, Y.; Guo, M.T.; Wang, R.L.; Shao, C.Y.; Hu, L.L. Influence of Al/Er ratio on the optical properties and structures of Er3+/Al3+ co-doped silica glasses. J. Appl. Phys. 2021, 129, 9. [Google Scholar] [CrossRef]
- Girard, S.; Ouerdane, Y.; Tortech, B.; Marcandella, C.; Robin, T.; Cadier, B.; Baggio, J.; Paillet, P.; Ferlet-Cavrois, V.; Boukenter, A.; et al. Radiation Effects on Ytterbium- and Ytterbium/Erbium-Doped Double-Clad Optical Fibers. IEEE Trans. Nucl. Sci. 2009, 56, 3293–3299. [Google Scholar] [CrossRef]
- Shao, C.Y.; Ren, J.J.; Wang, F.; Ollier, N.; Xie, F.H.; Zhang, X.Y.; Zhang, L.; Yu, C.L.; Hu, L.L. Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio. J. Phys. Chem. B 2018, 122, 2809–2820. [Google Scholar] [CrossRef]
- She, S.; Mei, L.; Zhou, Z.; Hou, C.; Guo, H. Progress in Radiation-Resistant Erbium-Doped and Erbium-Ytterbium Co-doped Fibers for Space Optical Communication. J. Appl. Sci. 2020, 38, 579–594. [Google Scholar] [CrossRef]
- Girard, S.; Vivona, M.; Laurent, A.; Cadier, B.; Marcandella, C.; Robin, T.; Pinsard, E.; Boukenter, A.; Ouerdane, Y. Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application. Opt. Express 2012, 20, 8457–8465. [Google Scholar] [CrossRef] [PubMed]
- Ladaci, A.; Girard, S.; Mescia, L.; Laurent, A.; Ranger, C.; Kermen, D.; Robin, T.; Cadier, B.; Boutillier, M.; Sane, B.; et al. Radiation hardened high-power Er3+/Yb3+-codoped fiber amplifiers for free-space optics communications. Opt. Lett. 2018, 43, 3049–3052. [Google Scholar] [CrossRef] [PubMed]
- Haddad, E.; Gonthier, F.; Peng, Q.Y.; Poenariu, V.; Tagziria, K.; Lavoie, J.; Murzionak, P.; Schinn, G.; Karafolas, N.; Bringer, C. 10W single-mode PM optical amplifiers in the 1.5 μm region for space applications. In Proceedings of the International Conference on Space Optics (ICSO), Chania, Greece, 9–12 October 2018. [Google Scholar]
- Zotov, K.V.; Likhachev, M.E.; Tomashuk, A.L.; Bubnov, M.M.; Yashkov, M.V.; Guryanov, A.N. Radiation-resistant erbium-doped silica fibre. Quantum Electron. 2007, 37, 946–949. [Google Scholar] [CrossRef]
- Zotov, K.V.; Likhachev, M.E.; Tomashuk, A.L.; Bubnov, M.M.; Yashkov, M.V.; Guryanov, A.N.; Klyamkin, S.N. Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications. IEEE Trans. Nucl. Sci. 2008, 55, 2213–2215. [Google Scholar] [CrossRef]
- Girard, S.; Laurent, A.; Pinsard, E.; Robin, T.; Cadier, B.; Boutillier, M.; Marcandella, C.; Boukenter, A.; Ouerdane, Y. Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions. Opt. Lett. 2014, 39, 2541–2544. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, S.P.; Yang, K.; Chen, D.P. Radiation-induced change of OH content in Yb-doped silica glass. Chin. Opt. Lett. 2015, 13, 4. [Google Scholar] [CrossRef]
- Girard, S.; Laurent, A.; Pinsard, E.; Raine, M.; Robin, T.; Cadier, B.; Di Francesca, D.; Paillet, P.; Gaillardin, M.; Duhamel, O.; et al. Proton Irradiation Response of Hole-Assisted Carbon Coated Erbium-Doped Fiber Amplifiers. IEEE Trans. Nucl. Sci. 2014, 61, 3309–3314. [Google Scholar] [CrossRef]
- Faile, S.P.; Schmidt, J.J.; Roy, D.M. Irradiation Effects in Glasses: Suppression by Synthesis under High-Pressure Hydrogen. Science 1967, 156, 1593–1595. [Google Scholar] [CrossRef] [PubMed]
- Lyons, P.B.; Looney, L.D. Enhanced radiation resistance of high-OH silica optical fibers. In Proceedings of the Optical Materials Reliability and Testing: Benign and Adverse Environments, Boston, MA, USA, 8–9 September 1992; pp. 286–296. [Google Scholar]
- Ito, C.; Naito, H.; Nishimura, A.; Ohba, H.; Wakaida, I.; Sugiyama, A.; Chatani, K. Development of radiation-resistant optical fiber for application to observation and laser spectroscopy under high radiation dose. J. Nucl. Sci. Technol. 2014, 51, 944–950. [Google Scholar] [CrossRef]
- Vienne, G.G.; Caplen, J.E.; Dong, L.; Minelly, J.D.; Nilsson, J.; Payne, D.N. Fabrication and characterization of Yb3+: Er3+ phosphosilicate fibers for lasers. J. Light. Technol. 1998, 16, 1990–2001. [Google Scholar] [CrossRef]
- Shao, C.Y.; Jiao, Y.; Lou, F.G.; Wang, M.; Zhang, L.; Feng, S.Y.; Wang, S.K.; Chen, D.P.; Yu, C.L.; Hu, L.L. Enhanced radiation resistance of ytterbium-doped silica fiber by pretreating on a fiber preform. Opt. Mater. Express 2020, 10, 408–420. [Google Scholar] [CrossRef]
- Jiao, Y.; Yang, Q.; Zhu, Y.; Wang, F.; Zhang, L.; Wang, M.; Wang, S.; Shao, C.; Yu, C.; Hu, L. Improved radiation resistance of an Er-doped silica fiber by a preform pretreatment method. Opt. Express 2022, 30, 6236–6247. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Yang, Q.B.; Guo, M.T.; Ma, X.B.; Shao, C.Y.; Yu, C.L.; Hu, L.L. Effect of the GeO2 content on the radiation resistance of Er3+-doped silica glasses and fibers. Opt. Mater. Express 2021, 11, 1885–1897. [Google Scholar] [CrossRef]
- Likhachev, M.E.; Bubnov, M.M.; Zotov, K.V.; Tomashuk, A.L.; Lipatov, D.S.; Yashkov, M.V.; Guryanov, A.N. Radiation Resistance of Er-Doped Silica Fibers: Effect of Host Glass Composition. J. Light. Technol. 2013, 31, 749–755. [Google Scholar] [CrossRef]
- Stone, J. Reduction of OH Absorption in Optical Fibers by OH → OD Isotope Exchange. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 609–621. [Google Scholar] [CrossRef]
- Stone, J. Interactions of Hydrogen and Deuterium with Silica Optical Fibers: A Review. J. Light. Technol. 1987, 5, 712–733. [Google Scholar] [CrossRef]
- Kumar, B.; Fernelius, N.; Detrio, J.A. Deuterium Treatment and Infrared Transmission Spectra of Fused Silica. J. Am. Ceram. Soc. 1981, 64, C178–C180. [Google Scholar] [CrossRef]
- Skuja, L.; Kajihara, K.; Hirano, M.; Hosono, H. Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2. Phys. Rev. B 2011, 84, 9. [Google Scholar] [CrossRef]
- Xing, Y.B.; Liu, Y.Z.; Zhao, N.; Cao, R.T.; Wang, Y.B.; Yang, Y.; Peng, J.G.; Li, H.Q.; Yang, L.Y.; Dai, N.L.; et al. Radical passive bleaching of Tm-doped silica fiber with deuterium. Opt. Lett. 2018, 43, 1075–1078. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Core diameter | 12 μm |
Clad diameter | 125 μm |
Coating diameter | 215 μm |
Core NA | 0.19 |
Cladding NA | 0.46 |
Clad absorption @ 915 nm | 1.9 dB/m |
Core absorption @ 1536 nm | 40 dB/m |
Sample | D2-Loading | Pre-Irradiation | Vacuum Treatment |
---|---|---|---|
Pristine | × | × | × |
R0 | √ | × | √ |
R50 | √ | 50 krad | √ |
R160 | √ | 160 krad | √ |
R240 | √ | 240 krad | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Shao, C.; Wang, F.; Wang, M.; Zhang, L.; Dai, Y.; Yu, C.; Hu, L. Improved Radiation Resistance of Er-Yb Co-Doped Silica Fiber by Pretreating Fibers. Photonics 2023, 10, 414. https://doi.org/10.3390/photonics10040414
Zhu Y, Shao C, Wang F, Wang M, Zhang L, Dai Y, Yu C, Hu L. Improved Radiation Resistance of Er-Yb Co-Doped Silica Fiber by Pretreating Fibers. Photonics. 2023; 10(4):414. https://doi.org/10.3390/photonics10040414
Chicago/Turabian StyleZhu, Yiming, Chongyun Shao, Fan Wang, Meng Wang, Lei Zhang, Ye Dai, Chunlei Yu, and Lili Hu. 2023. "Improved Radiation Resistance of Er-Yb Co-Doped Silica Fiber by Pretreating Fibers" Photonics 10, no. 4: 414. https://doi.org/10.3390/photonics10040414
APA StyleZhu, Y., Shao, C., Wang, F., Wang, M., Zhang, L., Dai, Y., Yu, C., & Hu, L. (2023). Improved Radiation Resistance of Er-Yb Co-Doped Silica Fiber by Pretreating Fibers. Photonics, 10(4), 414. https://doi.org/10.3390/photonics10040414