Impact of Sugarcane Cultivation on Benthic Macroinvertebrate Communities in Tropical Streams
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Physical and Chemical Characteristics of Stream Water Draining Sugarcane Cultivation and Native Vegetation
3.2. Taxonomic and Functional Characteristics of the Benthic Macroinvertebrate Community in Streams Draining Sugarcane and Native Vegetation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allan, J.D. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Woodward, G.; Gessner, M.O.; Giller, P.S.; Gulis, V.; Hladyz, S.; Lecerf, A.; Malmqvist, B.; Mckie, B.G.; Tiegs, S.D.; Cariss, H.; et al. Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning. Science 2012, 336, 1438–1440. [Google Scholar] [CrossRef] [PubMed]
- Lammert, M.; Allan, J.D. Environmental Auditing: Assessing Biotic Integrity of Streams: Effects of Scale in Measuring the Influence of Land Use/Cover and Habitat Structure on Fish and Macroinvertebrates. Environ. Manag. 1999, 23, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Grashof-Bokdam, C.J.; Van Langevelde, F. Green Veining: Landscape Determinants of Biodiversity in European Agricultural Landscapes. Landsc. Ecol. 2005, 20, 417–439. [Google Scholar] [CrossRef]
- Bruno, D.; Belmar, O.; Sánchez-Fernández, D.; Guareschi, S.; Millán, A.; Velasco, J. Responses of Mediterranean aquatic and riparian communities to human pressures at different spatial scales. Ecol. Indic. 2014, 45, 456–464. [Google Scholar] [CrossRef]
- Fierro, P.; Bertrán, C.; Tapia, J.; Hauenstein, E.; Peña-Cortés, F.; Vergara, C.; Cerna, C.; Vargas-Chacoff, L. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Sci. Total Environ. 2017, 609, 724–734. [Google Scholar] [CrossRef]
- Stewart, J.S.; Wang, L.; Lyons, J.; Horwatich, J.A.; Bannerman, R. Influences of watershed, riparian-corridor, and reach-scale characteristics on aquatic biota in agricultural watersheds. J. Am. Water Resour. Assoc. 2001, 37, 1475–1487. [Google Scholar] [CrossRef]
- Tanaka, M.O.; Souza, A.L.T.D.; Moschini, L.E.; Oliveira, A.K.D. Influence of watershed land use and riparian characteristics on biological indicators of stream water quality in southeastern Brazil. Agric. Ecosyst. Environ. 2016, 216, 333–339. [Google Scholar] [CrossRef]
- Tran, C.P.; Bode, R.W.; Smith, A.J.; Kleppel, G.S. Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecol. Indic. 2010, 10, 727–733. [Google Scholar] [CrossRef]
- Filoso, S.; Carmo, J.B.D.; Mardegan, S.F.; Lins, S.R.M.; Gomes, T.F.; Martinelli, L.A. Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals. Renew. Sustain. Energy Rev. 2015, 52, 1847–1856. [Google Scholar] [CrossRef]
- Taniwaki, R.H.; Cassiano, C.C.; Filoso, S.; Ferraz, S.F.D.B.; Camargo, P.B.D.; Martinelli, L.A. Impacts of converting low-intensity pastureland to high-intensity bioenergy cropland on the water quality of tropical streams in Brazil. Sci. Total Environ. 2017, 584, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Callisto, M.; Solar, R.; Silveira, F.A.O.; Saito, V.S.; Hughes, R.M.; Fernandes, G.W.; Gonçalves-Júnior, J.F.; Leitão, R.P.; Massara, R.L.; Macedo, D.R.; et al. A Humboldtian approach to mountain conservation and freshwater ecosystem services. Front. Environ. Sci. 2019, 7, 195. [Google Scholar] [CrossRef]
- Chen, K.; Olden, J.D. Threshold responses of riverine fish communities to land use conversion across regions of the world. Glob. Change Biol. 2020, 26, 4952–4965. [Google Scholar] [CrossRef] [PubMed]
- Dala-Corte, R.B.; Melo, A.S.; Siqueira, T.; Bini, L.M.; Martins, R.T.; Cunico, A.M.; Pes, A.M.; Magalhães, A.L.B.; Godoy, B.S.; Leal, C.G.; et al. Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. J. Appl. Ecol. 2020, 57, 1391–1402. [Google Scholar] [CrossRef]
- Mello, K.D.; Taniwaki, R.H.; Paula, F.R.D.; Valente, R.A.; Randhir, T.O.; Macedo, D.R.; Leal, C.G.; Rodrigues, C.B.; Hughes, R.M. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. J. Environ. Manag. 2020, 270, 110879. [Google Scholar] [CrossRef]
- Riis, T.; Kelly-Quinn, M.; Aguiar, F.C.; Manolaki, P.; Bruno, D.; Bejarano, M.D.; Clerici, N.; Fernandes, M.R.; Franco, J.C.; Pettit, N.; et al. Global overview of ecosystem services provided by riparian vegetation. BioScience 2020, 70, 501–514. [Google Scholar] [CrossRef]
- Dudgeon, D. Riparian wetlands of tropical streams. In Tropical Stream Ecology, 1st ed.; Wantzen, K.M., Yule, C.M., Tockner, K., Junk, W.J., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2008; pp. 199–217. [Google Scholar]
- Pusey, B.J.; Arthington, A.H. Importance of the riparian zone to the conservation and management of freshwater fish: A review. Mar. Freshw. Res. 2003, 54, 1–16. [Google Scholar] [CrossRef]
- Dosskey, M.G.; Vidon, P.; Gurwick, N.P.; Allan, C.J.; Duval, T.P.; Lowrance, R. The role of riparian vegetation in protecting and improving chemical water quality in streams. J. Am. Water Resour. Assoc. 2010, 46, 261–277. [Google Scholar] [CrossRef]
- Rabeni, C.F.; Smale, M.A. Effects of siltation on stream fishes and the potential mitigating role of the buffering riparian zone. Hydrobiologia 1995, 303, 211–219. [Google Scholar] [CrossRef]
- Buss, D.F.; Baptista, D.F.; Nessimian, J.L.; Egler, M. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 2004, 518, 179–188. [Google Scholar] [CrossRef]
- Sagova-Mareckova, M.; Boenigk, J.; Bouchez, A.; Cermakova, K.; Chonova, T.; Cordier, T.; Eisendle, U.; Elersek, T.; Fazi, S.; Fleituch, T.; et al. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Res. 2021, 191, 116767. [Google Scholar] [CrossRef]
- Van Rees, C.B.; Waylen, K.A.; Schmidt-Kloiber, A.; Thackeray, S.J.; Kalinkat, G.; Martens, K.; Domisch, S.; Lillebø, A.I.; Hermoso, V.; Grossart, H.-P.; et al. Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience. Conserv. Lett. 2021, 14, 12771. [Google Scholar] [CrossRef]
- Resh, V.H. Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ. Monit. Assess. 2008, 138, 131–138. [Google Scholar] [PubMed]
- Veríssimo, H.; Neto, J.M.; Teixeira, H.; Franco, J.N.; Fath, B.D.; Marques, J.C.; Patrício, J. Ability of benthic indicators to assess ecological quality in estuaries following management. Ecol. Indic. 2012, 19, 130–143. [Google Scholar] [CrossRef]
- Fellows, C.S.; Clapcott, J.E.; Udy, J.W.; Bunn, S.E.; Harch, B.D.; Smith, M.J.; Davies, P.M. Benthic metabolism as an indicator of stream ecosystem health. Hydrobioloia 2006, 572, 71–87. [Google Scholar] [CrossRef]
- Orozco-González, C.E.; Ocasio-Torres, M.E. Aquatic macroinvertebrates as bioindicators of water quality: A study of an ecosystem regulation service in a tropical river. Ecologies 2023, 4, 209–228. [Google Scholar] [CrossRef]
- Cummins, K.W.; Merritt, R.W.; Andrade, P.C. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Stud. Neotrop. Fauna Environ. 2005, 40, 69–89. [Google Scholar] [CrossRef]
- Fu, L.; Jiang, Y.; Ding, J.; Liu, Q.; Peng, Q.Z.; Kang, M.Y. Impacts of land use and environmental factors on macroinvertebrate functional feeding groups in the Dongjiang River basin, southeast China. J. Freshw. Ecol. 2016, 31, 21–35.31. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- De Pauw, N.; Vanhooren, G. Method for biological quality assessment of watercourses in Belgium. Hydrobiologia 1983, 100, 153–168. [Google Scholar] [CrossRef]
- Hamada, N.; Nessimian, J.L.; Querino, R.B. Insetos Aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia; INPA: Manaus, Brasil, 2014; pp. 173–723. [Google Scholar]
- Hamada, N.; Thorp, J.H.; Rogers, C.D. Thorp and Covich’s Freshwater Invertebrates: Volume 3: Keys to Neotropical Hexapoda, 4th ed.; Academic Press: Cambridge, MA, USA; Elsevier: Cambridge, MA, USA, 2018; pp. 61–793. [Google Scholar]
- Hauer, F.R.; Resh, V.H. Methods in Stream Ecology, Volume 1: Ecosystem Structure, 3rd ed.; Academic Press: Cambridge, MA, USA; Elsevier: Cambridge, MA, USA, 2017; pp. 297–319. [Google Scholar]
- Merritt, R.W.; Cummins, K.W.; Berg, M.B. An Introduction to the Aquatic Insects of North America, 4th ed.; Kendall Hunt Publishing: Dubuque, IA, USA, 2008; p. 1214. [Google Scholar]
- Correa-González, J.C.; Chávez-Parga, M.a.D.C.; Cortés, J.A.; Pérez-Munguía, R.M. Photosynthesis, respiration and reaeration in a stream with complex dissolved oxygen pattern and temperature dependence. Ecol. Model. 2014, 273, 220–227. [Google Scholar] [CrossRef]
- Villéger, S.; Miranda, J.R.; Hernández, D.F.; Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol. Appl. 2010, 20, 1512–1522. [Google Scholar] [CrossRef]
- Corbi, J.J.; Trivinho-Strixino, S. Relationship between sugar cane cultivation and stream macroinvertebrate communities. Braz. Arch. Biol. Technol. 2008, 51, 569–579. [Google Scholar] [CrossRef]
- Hepp, L.U.; Santos, S. Benthic communities of streams related to different land uses in a hydrographic basin in southern Brazil. Environ. Monit. Assess. 2009, 157, 305–318. [Google Scholar] [CrossRef]
- Iñiguez-Armijos, C.; Hampel, H.; Breuer, L. Land-use effects on structural and functional composition of benthic and leaf-associated macroinvertebrates in four Andean streams. Aquat. Ecol. 2018, 52, 77–92. [Google Scholar] [CrossRef]
- Nessimian, J.L.; Venticinque, E.M.; Zuanon, J.; De Marco, P.; Gordo, M.; Fidelis, L.; Batista, J.D.; Juen, L. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 2008, 614, 117–131. [Google Scholar] [CrossRef]
- Roque, F.O.; Trivinho-Strixino, S.; Strixino, G.; Agostinho, R.C.; Fogo, J.C. Benthic Macroinvertebrates in Streams of the Jaragua State Park (Southeast of Brazil) Considering Multiple Spatial Scales. J. Insect Conserv. 2003, 7, 63–72. [Google Scholar] [CrossRef]
- Moraes, A.B.; Wilhelm, A.E.; Boelter, T.; Stenert, C.; Schulz, U.H.; Maltchik, L. Reduced riparian zone width compromises aquatic macroinvertebrate communities in streams of southern Brazil. Environ. Monit. Assess. 2014, 186, 7063–7074. [Google Scholar] [CrossRef]
- França, M.V.; Shimabukuro, E.M.; Fushita, Â.T.; Smith, W.S.; Benassi, R.F.; Cunha, D.G.F.; Taniwaki, R.H. Structural characteristics of tropical headwater streams draining native vegetation and sugarcane cultivation. Limnologica 2023, 101, 126099. [Google Scholar] [CrossRef]
- Corbi, J.J.; Trivinho-Strixino, S. Chironomid species are sensitive to sugarcane cultivation. Hydrobiologia 2017, 785, 91–99. [Google Scholar] [CrossRef]
- Entrekin, S.A.; Wallace, J.B.; Eggert, S.L. The response of Chironomidae (Diptera) to a long-term exclusion of terrestrial organic matter. Hydrobiologia 2007, 575, 401–413. [Google Scholar] [CrossRef]
- Corbi, J.J.; Kleine, P.; Trivinho-Strixino, S. Are aquatic insect species sensitive to banana plant cultivation? Ecol. Indic. 2013, 25, 156–161. [Google Scholar] [CrossRef]
- Quinn, J.M.; Cooper, A.B.; Davies-Colley, R.J.; Rutherford, J.C.; Williamson, R.B. Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. N. Z. J. Mar. Fresh. 1997, 31, 579–597. [Google Scholar] [CrossRef]
- Cunha, E.J.; Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect. Conserv. 2017, 21, 111–119. [Google Scholar] [CrossRef]
- Juen, L.; Cunha, E.J.; Carvalho, F.G.; Ferreira, M.C.; Begot, T.O.; Andrade, A.L.; Shimano, Y.; Leão, H.; Pompeu, O.S.; Montag, L.F.A. Effects of Oil Palm Plantations on the Habitat Structure and Biota of Streams in Eastern Amazon: Effect of Oil Palm on the Structure of Stream. River Res. Appl. 2016, 32, 2081–2094. [Google Scholar] [CrossRef]
- Phillips, H.R.P.; Newbold, T.; Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodivers. Conserv. 2017, 26, 2251–2270. [Google Scholar] [CrossRef]
- Lisboa, L.K.; Lemes-Silva, A.L.; Siegloch, A.E.; Gonçalvez-Junior, J.F.; Petrucio, M.M. Temporal dynamics of allochthonous coarse particulate organic matter in a subtropical Atlantic rainforest Brazilian stream. Mar. Freshw. Res. 2015, 66, 674–680. [Google Scholar] [CrossRef]
- Piggott, J.J.; Lange, K.; Townsend, C.R.; Matthaei, C.D. Multiple Stressors in Agricultural Streams: A Mesocosm Study of Interactions among Raised Water Temperature, Sediment Addition and Nutrient Enrichment. Solan M, organizador. PLoS ONE. 2012, 7, 49873. [Google Scholar] [CrossRef]
- Schmitt, R.; Siegloch, A.E.; Lemes Da Silva, A.L.; Lisboa, L.K.; Petrucio, M.M. Temporal variation in the Ephemeroptera, Plecoptera and Trichoptera community in response to environmental drivers in a subtropical stream. J. Insect Biodivers. 2016, 4, 1–12. [Google Scholar] [CrossRef]
- Akamagwuna, F.C.; Mensah, P.K.; Nnadozie, C.F.; Odume, O.N. Evaluating the responses of taxa in the orders Ephemeroptera, Plecoptera and Trichoptera (EPT) to sediment stress in the Tsitsa River and its tributaries, Eastern Cape, South Africa. Environ. Monit. Assess. 2019, 191, 664. [Google Scholar] [CrossRef] [PubMed]
- Luiza-Andrade, A.; Brasil, L.S.; Benone, N.L.; Shimano, Y.; Farias, A.P.J.; Montag, L.F.; Dolédec, S.; Juen, L. Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecol. Indic. 2017, 82, 478–483. [Google Scholar] [CrossRef]
- Monteiro Do Amaral, P.H.; De Almeida Gonçalves, E.; Da Silveira, L.S.; Da Gama Alves, R. Richness and distribution of Ephemeroptera, Plecoptera and Trichoptera in Atlantic forest streams. Acta Oecol. 2019, 99, 103441. [Google Scholar] [CrossRef]
- Bispo, P.C.; Oliveira, L.G. Diversity and structure of Ephemeroptera, Plecoptera and Trichoptera (Insecta) assemblages from riffles in mountain streams of Central Brazil. Rev. Bras. Zool. 2007, 24, 283–293. [Google Scholar] [CrossRef]
- Bueno, A.A.P.; Bond-Buckup, G.; Ferreira, B.D.P. Estrutura da comunidade de invertebrados bentônicos em dois cursos d’água do Rio Grande do Sul, Brasil. Rev. Bras. Zool. 2003, 20, 115–125. [Google Scholar] [CrossRef]
- Júnior, A.P.; Conceição, C.S.; Lobo, R.R.; Santos, C.O.R.; Sardinha, A.S. Association between ephemeroter, plecoptera and trichoptera and the limnimetric parameters of the water quality index. Braz. Appl. Sci. Rev. 2019, 3, 839–863. [Google Scholar]
- Pardo, I.; García, L. Water abstraction in small lowland streams: Unforeseen hypoxia and anoxia effects. Sci. Total Environ. 2016, 568, 226–235. [Google Scholar] [CrossRef]
- Calapez, A.R.; Branco, P.; Santos, J.M.; Ferreira, T.; Hein, T.; Brito, A.G.; Feio, M.J. Macroinvertebrate short-term responses to flow variation and oxygen depletion: A mesocosm approach. Sci. Total Environ. 2017, 599, 1202–1212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
França, M.V.; Shimabukuro, E.M.; Smith, W.S.; Morilla, M.; Taniwaki, R.H. Impact of Sugarcane Cultivation on Benthic Macroinvertebrate Communities in Tropical Streams. Limnol. Rev. 2025, 25, 13. https://doi.org/10.3390/limnolrev25020013
França MV, Shimabukuro EM, Smith WS, Morilla M, Taniwaki RH. Impact of Sugarcane Cultivation on Benthic Macroinvertebrate Communities in Tropical Streams. Limnological Review. 2025; 25(2):13. https://doi.org/10.3390/limnolrev25020013
Chicago/Turabian StyleFrança, Marcus Vinícius, Erika Mayumi Shimabukuro, Welber Senteio Smith, Mariana Morilla, and Ricardo Hideo Taniwaki. 2025. "Impact of Sugarcane Cultivation on Benthic Macroinvertebrate Communities in Tropical Streams" Limnological Review 25, no. 2: 13. https://doi.org/10.3390/limnolrev25020013
APA StyleFrança, M. V., Shimabukuro, E. M., Smith, W. S., Morilla, M., & Taniwaki, R. H. (2025). Impact of Sugarcane Cultivation on Benthic Macroinvertebrate Communities in Tropical Streams. Limnological Review, 25(2), 13. https://doi.org/10.3390/limnolrev25020013