Risk of Chemical Pollution in Olifants River Basin, South Africa: Human Health Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Quantitative Health Risk Assessment
3. Results and Discussion
3.1. Potentially Toxic Elements
3.2. Chronic Daily Intake (CDI)
3.3. Human Health Risk Assessment
3.3.1. Non-Carcinogenic Risk
3.3.2. Carcinogenic Risk (CR)
3.3.3. Limitations of This Study
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strehmel, A.; Schmalz, B.; Fohrer, N. Evaluation of land use. Land management and soil conservation strategies to reduce non-point source pollution loads in the three gorges region, China. Environ. Manag. 2016, 58, 906–921. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Gao, L.; Gao, J.; Xu, D.; Wang, Q.; Sun, K. Simultaneous evaluations of occurrence and probabilistic human health risk associated with trace elements in typical drinking water sources from major river basins in China. Sci. Total Environ. 2019, 666, 139–146. [Google Scholar] [CrossRef]
- Aydin, H.; Ustaoğlu, F.; Tepe, Y.; Soylu, E.N. Assessment of water quality of streams in northeast Turkey by water quality index and multiple statistical methods. Environ. Forensics 2021, 22, 270–287. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Liu, L.; Wang, Y.; Song, Z.; Wang, X.; Liu, C.; Li, Y.; Meng, W.; Zhou, Y.; et al. Occurrence and risk assessment of heavy metals in an urban river supplied by reclaimed wastewater. Water Environ. Res. 2020, 92, 1888–1898. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef]
- Kumar, V.; Pandita, S.; Sharma, A.; Sharma, V.; Sharma, M.; Cerda, A. Combination of contamination indices and ecological risk assessment index for evaluation of pollution level in sediments. In Heavy Metals in the Environment; Kumar, V., Sharma, A., Cerda, A., Eds.; Elsevier: Oxford, UK, 2021; pp. 99–117. [Google Scholar]
- Haghnazar, H.; Hudson-Edwards, K.A.; Kumar, V.; Pourakbar, M.; Mahdavianpour, M.; Aghayani, E. Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere 2021, 285, 131446. [Google Scholar] [CrossRef]
- Bhat, R.A.; Singh, D.V.; Qadri, H.; Dar, G.H.; Dervash, M.A.; Bhat, S.A.; Unal, B.T.; Ozturk, M.; Hakeem, K.R.; Yousaf, B. Vulnerability of municipal solid waste: An emerging threat to aquatic ecosystems. Chemosphere 2022, 287, 132223. [Google Scholar] [CrossRef] [PubMed]
- Edokpayi, J.N.; Rogawski, E.T.; Kahler, D.M.; Hill, C.L.; Reynolds, C.; Nyathi, E.; Smith, J.A.; Odiyo, J.O.; Samie, A.; Bessong, P.; et al. Challenges to Sustainable Safe Drinking Water: A Case Study of Water Quality and Use across Seasons in Rural Communities in Limpopo Province, South Africa. Water 2018, 10, 159. [Google Scholar] [CrossRef] [PubMed]
- Vetrimurugan, E.; Brindha, K.; Elango, L.; Ndwandwe, O.M. Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Appl. Water Sci. 2017, 7, 3267–3280. [Google Scholar] [CrossRef]
- Saha, N.; Rahman, M.S.; Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Industrial metal pollution in water and probabilistic assessment of human health risk. J. Environ. Manag. 2017, 185, 70–78. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, P.; Qian, H. Assessment of Groundwater Quality and Human Health Risk (HHR) Evaluation of Nitrate in the Central-Western Guanzhong Basin, China. Int. J. Environ. Res. Public Health 2019, 16, 4246. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lu, J.; Wen, X.; Zhang, Z.; Lin, Y. Severe Nitrate Pollution and Health Risks of Coastal Aquifer Simultaneously Influenced by Saltwater Intrusion and Intensive Anthropogenic Activities. Arch. Environ. Contam. Toxicol. 2019, 77, 79–87. [Google Scholar] [CrossRef]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 663. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- CSIR (Centre of Scientific Research). A CSIR Perspective on Water in South Africa; CSIR Report No. CSIR/NRE/PW/IR/2021/0012A; Centre of Scientific Research: Pretoria, South Africa, 2010. [Google Scholar]
- Addo-Bediako, A. Assessment of Heavy Metal Pollution in the Blyde and Steelpoort Rivers of the Olifants River System, South Africa. Pol. J. Environ. Stud. 2020, 29, 3023–3039. [Google Scholar] [CrossRef]
- Van Veelen, M.; Dhemba, N. Development of Reconcialation Strategy for the Olifants River Water Supply System. Water Quality Report PWMA 04. B50/00/8310/7. Ed; DWA: Pretoria, South Africa, 2011. [Google Scholar]
- USEPA (United State Environmental Protection Agency). Integrated Risk Information System. 2016. Available online: https://www.epa.gov/iris (accessed on 4 July 2024).
- Liang, B.; Han, G.; Liu, M.; Li, X.; Song, C.; Zhang, Q.; Yang, K. Spatial and temporal variation of dissolved heavy metals in the Mun River, Northeast Thailand. Water 2019, 11, 380. [Google Scholar] [CrossRef]
- USEPA (United State Environmental Protection Agency). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Washington, DC, USA; 2004; EPA/540/R/99/005, OSWER 9285.7–02EP, PB99–963312. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e (accessed on 30 June 2024).
- USEPA (US Environmental Protection Agency). Risk Assessment Guidance for Superfund. In Human Health Evaluation Manual; USEPA: Washington, DC, USA, 1989; Volume I, EPA/540/1-89/002. [Google Scholar]
- USEPA (US Environmental Protection Agency). Edition of the Drinking Water Standards and Health Advisories Tables; USEPA: Washington, DC, USA, 2018.
- Li, S.; Zhang, Q. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. J. Hazard. Mater. 2010, 176, 579–588. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef]
- Qin, D.; Jiang, H.; Bai, S.; Tang, S.; Mou, Z. Determination of 28 trace elements in three farmed cyprinid fish species from Northeast China. Food Control 2015, 50, 1–8. [Google Scholar] [CrossRef]
- Mutileni, N.; Mudau, M.; Edokpayi, J.N. Water quality, geochemistry and human health risk of groundwater in the Vyeboom region, Limpopo province, South Africa. Sci. Rep. 2023, 13, 19071. [Google Scholar] [CrossRef]
- USEPA IRIS (US Environmental Protection Agency’s Integrated Risk Information System). Environmental Protection Agency Region I; USEPA: Washington, DC, USA, 2011; p. 20460.
- Zhang, J.; Wu, Q.; Wang, Z.; Gao, S.; Jia, H.; Shen, Y. Distribution, water quality, and health risk assessment of trace elements in three streams during the wet season, Guiyang, Southwest China. Elem Sci. Anth. 2021, 9, 00133. [Google Scholar] [CrossRef]
- Alam, L.; Mokhtar, M.B.; Alam, M.M.; Bari, M.A.; Kathijotes, N.; Ta, G.C.; Ern, L.K. Seasonal variation and preliminary risk assessment of trace element pollution in surface water from Langat River, Malaysia. Int. J. Appl. Environ. Sci. 2015, 10, 10–40. [Google Scholar]
- USEPA (US Environmental Protection Agency. Drinking Water Standards and Health Advisories, EPA 822-R09–011; Office of Water: Washington, DC, USA, 2009.
- Madilonga, R.T.; Edokpayi, J.N.; Volenzo, E.T.; Durowoju, O.S.; Odiyo, J.O. Water Quality Assessment and Evaluation of Human Health Risk in Mutangwi River, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2021, 18, 6765. [Google Scholar] [CrossRef]
- Custodio, M.; Cuadrado, W.; Peñaloza, R.; Montalvo, R.; Ochoa, S.; Quispe, J. Human Risk from Exposure to Heavy Metals and Arsenic in Water from Rivers with Mining Influence in the Central Andes of Peru. Water 2020, 12, 1946. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Shaheen, N.; Islam, M.S.; Habibullah-al-Mamun, M.; Islam, S.; Mohiduzzaman, M.; Bhattacharjee, L. Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere 2015, 128, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Živković, N.; Takić, L.; Djordjević, L.; Djordjević, A.; Mladenović-Ranisavljević, I.; Golubović, T.; Božilov, A. Sediments and river surface water: A case study from a Serbian mine. Polish J. Environ. Stud. 2019, 28, 2009–2020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, Q.; Gao, S.; Wang, Z.; He, S. Distribution, source, water quality and health risk assessment of dissolved heavy metals in major rivers in Wuhan, China. PeerJ 2021, 9, e11853. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Islam, H.M.T.; Mia, M.U.; Khan, R.; Habib, M.A.; Bodrud-Doza, M.; Siddique, M.A.B.; Chu, R. Co-distribution, possible origins, status and potential health risk of trace elements in surface water sources from six major River Basins, Bangladesh. Chemosphere 2020, 249, 126180. [Google Scholar] [CrossRef]
- Ferreira, M.D.S.; Fontes, M.P.; Pacheco, A.A.; Lima, H.N.; Santos, J.Z.L. Risk Assessment of Trace Elements Pollution of Manaus Urban Rivers. Sci. Total Environ. 2019, 709, 134471. [Google Scholar] [CrossRef]
Parameter | Unit | Child | Adult |
---|---|---|---|
Exposure Frequency (EF) | Day/year | 365 | 365 |
Body Weight (BW) | kg | 15 | 70 |
Ingestion Rate (IR) or Daily Intake (DI) | L/day | 1.8 | 2.2 |
Exposure Duration (ED) | Years | 6 | 70 |
Skin Surface Area (SA) | cm3 | 6600 | 18,000 |
Exposure Time (ET) | Hours/day | 1 | 0.58 |
Conversion Factor (CF) | L/cm3 | 0.001 | 0.001 |
Averaging Time (AT) Particular Emission Factor (PEM) | Days Days m3/kg | 365 × 6 1.3 × 109 | 365 × 70 1.3 × 103 |
Element | RfD (mg/kg/Day) | Reference |
---|---|---|
Oral reference dose | ||
As | 0.0003 | [23,24] |
Cr | 0.003 | [23,25] |
Fe | 0.7 | [26] |
Mn | 0.14 | [23,27] |
Ni | 0.02 | [23,26] |
Pb | 0.0014 | [25,27] |
Zn | 0.3 | [23,28] |
Dermal reference dose | ||
As | 0.000123 | [29] |
Cr | 0.000015 | [30] |
Fe | 0.045 | [29] |
Mn | 0.00096 | [25,28] |
Ni | 0.0008 | [25] |
Pb | 0.00042 | [25] |
Zn | 0.06 | [29] |
Upstream | Midstream | Downstream | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | |
Blyde River | |||||||||
As | 0.004 | 0.003 | 0.005 | 0.007 | 0.007 | 0.008 | 0.01 | 0.009 | 0.01 |
Cr | 0.003 | 0.001 | 0.004 | 0.005 | 0.005 | 0.006 | 0.009 | 0.007 | 0.011 |
Fe | 0.07 | 0.04 | 0.1 | 0.02 | 0.007 | 0.03 | 0.03 | 0.023 | 0.04 |
Mn | 0.01 | 0.01 | 0.01 | 0.05 | 0.05 | 0.06 | 0.08 | 0.08 | 0.09 |
Ni | 0.06 | 0.05 | 0.06 | 0.12 | 0.09 | 0.14 | 0.05 | 0.05 | 0.05 |
Pb | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.003 |
Zn | 0.008 | 0.007 | 0.01 | 0.017 | 0.013 | 0.02 | 0.004 | 0.004 | 0.004 |
Steelpoort River | |||||||||
As | 0.006 | 0.005 | 0.007 | 0.003 | 0.002 | 0.004 | 0.003 | 0.002 | 0.003 |
Cr | 0.002 | 0.001 | 0.003 | 0.005 | 0.003 | 0.007 | 0.004 | 0.004 | 0.005 |
Fe | 0.23 | 0.13 | 0.27 | 0.21 | 0.17 | 0.25 | 0.31 | 0.21 | 0.4 |
Mn | 0.06 | 0.05 | 0.07 | 0.03 | 0.02 | 0.04 | 0.04 | 0.04 | 0.05 |
Ni | 0.09 | 0.08 | 0.11 | 0.026 | 0.023 | 0.03 | 0.046 | 0.039 | 0.051 |
Pb | 0.002 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 |
Zn | 0.034 | 0.021 | 0.044 | 0.054 | 0.043 | 0.062 | 0.37 | 0.033 | 0.041 |
Element | Blyde River | Steelpoort River | Blyde River | Steelpoort River | Blyde River | Steelpoort River | Blyde River | Steelpoort River |
---|---|---|---|---|---|---|---|---|
Ingestion | Dermal | |||||||
Adult | Adult | Child | Child | Adult | Adult | Child | Child | |
As | 2.0 × 10−4 | 1.3 × 10−4 | 8.0 × 10−4 | 5.0 × 10−4 | 3.0 × 10−6 | 1.3 × 10−6 | 6.0 × 10−6 | 3.2 × 10−6 |
Cr | 2.0 × 10−4 | 1.1 × 10−4 | 7.0 × 10−4 | 4.0 × 10−4 | 4.0 × 10−6 | 2.4 × 10−6 | 1.0 × 10−5 | 3.0 × 10−6 |
Fe | 1.3 × 10−4 | 8.0 × 10−3 | 5.0 × 10−3 | 3.0 × 10−2 | 1.0 × 10−5 | 8.2 × 10−5 | 3.0 × 10−5 | 2.0 × 10−4 |
Mn | 1.5 × 10−3 | 1.4 × 10−3 | 6.0 × 10−3 | 5.0 × 10−3 | 2.0 × 10−5 | 1.4 × 10−5 | 4.0 × 10−5 | 3.4 × 10−5 |
Ni | 2.4 × 10−3 | 1.8 × 10−3 | 1.0 × 10−2 | 7.0 × 10−3 | 1.0 × 10−4 | 7.4 × 10−5 | 2.0 × 10−4 | 1.8 × 10−4 |
Pb | 4.0 x10−5 | 5.0 × 10−5 | 2.0 × 10−4 | 2.0 × 10−4 | 2.0 × 10−6 | 2.2 × 10−6 | 2.0 × 10−6 | 5.3 × 10−6 |
Zn | 3.0 × 10−4 | 1.3 × 10−4 | 1.2 × 10−3 | 5.0 × 10−3 | 2.0 × 10−5 | 8.0 × 10−5 | 5.0 × 10−5 | 1.9 × 10−4 |
Element | HQ ing | HQ der | HI = ΣHQs | |||
---|---|---|---|---|---|---|
Blyde River | Adult | Child | Adult | Child | Adult | Child |
As | 6.67 × 10−1 | 2.67 × 10 | 2.44 × 10−2 | 4.89 × 10−2 | 6.91 × 10−1 | 2.72 × 10 |
Cr | 6.66 × 10−2 | 2.33 × 10−1 | 2.67 × 10−1 | 6.67 × 10−1 | 3.34 × 10−1 | 9.00 × 10−1 |
Fe | 1.86 × 10−4 | 7.14 × 10−3 | 2.22 × 10−4 | 6.70 × 10−4 | 4.08 × 10−4 | 7.81 × 10−3 |
Mn | 1.07 × 10−2 | 4.29 × 10−2 | 2.08 × 10−2 | 4.17 × 10−2 | 3.15 × 10−2 | 8.46 × 10−2 |
Ni | 1.20 × 10−1 | 5.00 × 10−1 | 1.25 × 10−1 | 2.50 × 10−1 | 2.45 × 10−1 | 7.50 × 10−1 |
Pb | 2.86 × 10−2 | 1.43 × 10−1 | 4.76 × 10−3 | 4.76 × 10−3 | 3.34 10−2 | 1.48 × 10−1 |
Zn | 1.00 × 10−3 | 4.00 × 10−3 | 3.33 × 10−4 | 8.3 × 10−4 | 1.33 × 10−3 | 4.83 × 10−3 |
Steelpoort River | ||||||
As | 4.33 × 10−1 | 1.67 × 10 | 1.06 × 10−2 | 2.60 × 10−2 | 4.44 × 10−1 | 1.69 × 10 |
Cr | 3.67 × 10−2 | 1.33 × 10−1 | 1.60 × 10−1 | 2.00 × 10−1 | 1.97 × 10−1 | 3.33 × 10−1 |
Fe | 1.14 × 10−2 | 4.29 × 10−2 | 1.82 × 10−3 | 4.44 × 10−3 | 1.32 × 10−2 | 4.73 × 10−2 |
Mn | 1.00 × 10−2 | 3.57 × 10−2 | 1.46 × 10−2 | 3.03 × 10−2 | 2.46 × 10−2 | 6.60 × 10−2 |
Ni | 9.00 × 10−2 | 3.50 × 10−1 | 9.25 × 10−2 | 2.85 × 10−1 | 1.83 × 10−1 | 6.35 × 10−1 |
Pb | 3.57 × 10−2 | 1.43 × 10−1 | 5.24 × 10−3 | 1.26 × 10−2 | 4.09 × 10−2 | 1.56 × 10−1 |
Zn | 4.33 × 10−4 | 1.67 × 10−2 | 1.37 × 10−3 | 3.17 × 10−3 | 1.80 × 10−3 | 1.99 × 10−2 |
Element | Cancer Risk Ing | Cancer Risk Dermal | CR | Cancer Risk Ing | Cancer Risk Dermal | CR |
---|---|---|---|---|---|---|
Blyde River | Adult | Adult | Child | Child | ||
As | 3.00 × 10−3 | 1.10 × 10−5 | 3.01 × 10−3 | 1.20 × 10−3 | 2.19 × 10−5 | 1.22 × 10−3 |
Cr | 1.00 × 10−4 | 8.00 × 10−5 | 1.80 × 10−4 | 3.50 × 10−4 | 2.00 × 10−4 | 5.50 × 10−4 |
Ni | 4.08 × 10−3 | 1.70 × 10−2 | ||||
Pb | 3.40 × 10−7 | 1.70 × 10−6 | ||||
Steelpoort River | ||||||
As | 1.95 × 10−4 | 4.75 × 10−6 | 1.99 × 10−4 | 7.5 × 10−4 | 1.17 × 10−5 | 7.62 × 10−4 |
Cr | 5.50 × 10−5 | 4.80 × 10−5 | 1.03 × 10−4 | 2.00 × 10−4 | 6.00 × 10−5 | 2.60 × 10−4 |
Ni | 3.06 × 10−3 | 1.19 × 10−2 | ||||
Pb | 4.25 × 10−7 | 1.70 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addo-Bediako, A. Risk of Chemical Pollution in Olifants River Basin, South Africa: Human Health Implications. Limnol. Rev. 2025, 25, 1. https://doi.org/10.3390/limnolrev25010001
Addo-Bediako A. Risk of Chemical Pollution in Olifants River Basin, South Africa: Human Health Implications. Limnological Review. 2025; 25(1):1. https://doi.org/10.3390/limnolrev25010001
Chicago/Turabian StyleAddo-Bediako, Abraham. 2025. "Risk of Chemical Pollution in Olifants River Basin, South Africa: Human Health Implications" Limnological Review 25, no. 1: 1. https://doi.org/10.3390/limnolrev25010001
APA StyleAddo-Bediako, A. (2025). Risk of Chemical Pollution in Olifants River Basin, South Africa: Human Health Implications. Limnological Review, 25(1), 1. https://doi.org/10.3390/limnolrev25010001