Hydrochemistry and Irrigation Quality of High-Altitude Lakes: A Case Study of the Ramaroshan Lake Complex, Nepal Himalayas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Water Sampling and Laboratory Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of Lake Water
3.2. Characterization of Hydrochemical Facies
3.3. Major Sources and Controlling Factors of Hydrochemistry
3.4. Association among Hydrochemical Attributes
3.5. Comparative Analysis
Lakes | pH | EC | TDS | Ca2+ | Mg2+ | Na+ | K+ | HCO3− | Cl− | SO42− | References |
---|---|---|---|---|---|---|---|---|---|---|---|
RLC | 8.76 ± 0.4 | 100.03 ± 15.42 | 52.39 ± 7.16 | 12.02 ± 2.24 | 3.51 ± 1.38 | 5.89 ± 0.89 | 1.67 ± 0.78 | 61.58 ± 9.45 | 4.41 ± 1.43 | 0.48 ± 0.14 | Present study |
RLC | 6.9 ± 0.2 | 77.41 ± 36.71 | 40.02 ± 19.02 | 6.76 ± 3.2 | 3.41 ± 1.55 | 5.6± 0.23 | 1.34 ± 0.77 | 43.58 ± 23.98 | 11.83 ± 3.91 | 1.04 ± 0.62 | [29] |
Batula | 7.43 ± 0.17 | 67.85 ± 31.76 | 34.85 ± 16.6 | 10.28 ± 4.67 | 3.27 ± 1.46 | 5.5 ± 0.25 | 2.3 ± 0.64 | 39.23 ±14.92 | 12.12 ± 3.42 | 1.96 ± 3.29 | [62] |
Rara | 8.42 ± 0.3 | 189.93 ± 5.3 | 94.75 ± 3.29 | 9.17 ± 2.67 | 5.89 ±3.65 | 0.35 ± 0.19 | 0.8 ± 0.51 | 54.02 ± 23.4 | 0.10 ± 0.05 | 0.14 ± 0.05 | [8] |
Gosaikunda | 7.0 ± 1.075 | 11.66 ± 5.249 | 7.17 ± 4.981 | 3.47 ± 2.055 | 1.30 ± 0.654 | 0.45 ± 5.435 | 0.28 ± 0.071 | 17.49 ± 3.284 | 20.5 ± 13.781 | 3.94 ± 2.380 | [68] |
Betkot | 7.77 ± 0.19 | 337 ± 20.46 | 168 ± 10.28 | 15.80 ± 1.48 | 6.8 ± 0.98 | 4.89 ± 0.33 | 2.9 ± 0.42 | 24.92 ± 2.56 | 5.31 ± 2.42 | - | [26] |
Kupinde | 8.16 ± 0.29 | 136 ± 3.04 | 68 ± 1.67 | 27.97 ± 4.33 | 11.23 ± 4.93 | 7.38 ± 0.36 | 3.47 ± 0.65 | 157.71 ± 69.09 | 6.04 ± 1.34 | 0.64 ± 0.5 | [69] |
Ghodaghodi | 8 ± 0.64 | 142 ± 26.52 | 77 ± 13.69 | 16 ± 1.034 | 2.4 ± 0.12 | 5.5 ± 1.48 | 2.1 ± 0.54 | 49 ± 10.58 | 6.6 ± 1.51 | 4.8 ± 0.94 | [25] |
Rajarani | 8.71 ± 0.46 | 54.05 ± 6.86 | 32.15 ± 6.57 | 5.56 ± 1.17 | 1.96 ± 1.24 | 8.09 ± 0.53 | 2.67 ± 0.07 | 32.75 ± 4.44 | 11.64 ± 1.91 | - | [23] |
Begnas | 7.89 ± 0.26 | 69 ± 4.26 | 40 ± 2.66 | 7.3 ± 0.27 | 2.24 ± 0.08 | 2.30 ± 0.31 | 0.72 ± 0.12 | 17.88 ± 1.78 | 1.99 ± 0.48 | 2.57 ± 0.92 | [10] |
Rupa | 9.06 ± 0.22 | 110 ± 15.68 | 64 ± 9.04 | 9.83 ± 1.29 | 3.58 ± 0.11 | 4.12 ± 1.36 | 1.00 ± 0.17 | 37.60 ± 5.04 | 2.13 ± 2.02 | 2.4 ± 0.43 | [10] |
3.6. Irrigation Quality Assessment
Parameters | Range | Class | Number of Samples |
---|---|---|---|
EC | <250 | Excellent | 38 |
250–750 | Good | 0 | |
750–2000 | Permissible | 0 | |
2000–3000 | Doubtful | 0 | |
>3000 | Unsuitable | 0 | |
Na% | <20 | Excellent | 1 |
20–40 | Good | 33 | |
40–60 | Permissible | 4 | |
60–80 | Doubtful | 0 | |
>80 | Unsuitable | 0 | |
MR | <50 | Suitable | 38 |
>50 | Unsuitable | 0 | |
TH | 0–60 | Soft | 36 |
61–120 | Moderately hard | 2 | |
121–180 | Hard | 0 | |
>180 | Very hard | 0 | |
SAR | <20 | Excellent | 38 |
20–40 | Good | 0 | |
40–60 | Permissible | 0 | |
60–80 | Doubtful | 0 | |
>80 | Unsuitable | 0 | |
PI | >75 | Class I | 3 |
25–75 | Class II | 35 | |
<25 | Class III | 0 | |
KR | <1 | Suitable | 38 |
>1 | Unsuitable | 0 | |
CROSS | <10 | Excellent | 38 |
10–18 | Good | 0 | |
18–26 | Permissible | 0 | |
<26 | Unsuitable | 0 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saleem, M.; Jeelani, G.; Shah, R.A. Hydrogeochemistry of Dal Lake and the potential for present, future management by using facies, ionic ratios, and statistical analysis. Environ. Earth Sci. 2015, 74, 3301–3313. [Google Scholar] [CrossRef]
- Seth, R.; Mohan, M.; Singh, P.; Singh, R.; Dobhal, R.; Singh, K.P.; Gupta, S. Water quality evaluation of Himalayan rivers of Kumaun region, Uttarakhand, India. Appl. Water Sci. 2016, 6, 137–147. [Google Scholar] [CrossRef]
- Worako, A.W. Physicochemical and biological water quality assessment of Lake Hawassa for multiple designated water uses. J. Urban Environ. Eng. 2015, 9, 146–157. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Saini, R.; Swain, S.; Patra, A.; Khanday, G.; Gupta, H.; Purushothaman, P.; Chakrapani, G. Water chemistry of three Himalayan Lakes: Dal (Jammu & Kashmir), Khajjiar (Himachal Pradesh) and Nainital (Uttarakhand). Ann. Rainfall mm 2008, 655, 2300. [Google Scholar]
- Ahamad, F.; Sharma, A.K.; Tyagi, S.K. A Study on comparative assessment of water quality of Dal and Nigeen Lakes of Jammu and Kashmir, India. AgroEnvironmental Sustain. 2023, 1, 48–56. [Google Scholar] [CrossRef]
- Rupakheti, D.; Tripathee, L.; Kang, S.; Sharma, C.M.; Paudyal, R.; Sillanpää, M. Assessment of water quality and health risks for toxic trace elements in urban Phewa and remote Gosainkunda lakes, Nepal. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 959–973. [Google Scholar] [CrossRef]
- Gurung, S.; Gurung, A.; Sharma, C.M.; Jüttner, I.; Tripathee, L.; Bajracharya, R.M.; Raut, N.; Pradhananga, P.; Sitaula, B.K.; Zhang, Y. Hydrochemistry of Lake Rara: A high mountain lake in western Nepal. Lakes Reserv. Res. Manag. 2018, 23, 87–97. [Google Scholar] [CrossRef]
- Sharma, C.M.; Sharma, S.; Bajracharya, R.M.; Gurung, S.; Jüttner, I.; Kang, S.; Zhang, Q.; Li, Q. First results on bathymetry and limnology of high-altitude lakes in the Gokyo Valley, Sagarmatha (Everest) National Park, Nepal. Limnology 2012, 13, 181–192. [Google Scholar] [CrossRef]
- Pant, R.R.; Bishwakarma, K.; Pal, K.B.; Thapa, L.B.; Shrestha, R.G.; Karuppannan, S.; Garu, L.; Bista, S.; Singh, V.B. Comparative analysis of hydrochemical variables of two Ramsar-listed lakes in Pokhara Valley, Nepal. Int. J. Energy Water Resour. 2023, 7, 1–13. [Google Scholar] [CrossRef]
- Gaury, P.K.; Meena, N.K.; Mahajan, A. Hydrochemistry and water quality of Rewalsar Lake of Lesser Himalaya, Himachal Pradesh, India. Environ. Monit. Assess. 2018, 190, 84. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Pant, R.R.; Zhang, F.; Rehman, F.U.; Wang, G.; Ye, M.; Zeng, C.; Tang, H. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci. Total Environ. 2018, 622, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Wang, R.; Liu, Z.; Wu, S.; Jiang, L. Spatial-temporal patterns of major ion chemistry and its controlling factors in the Manasarovar Basin, Tibet. J. Geogr. Sci. 2015, 25, 687–700. [Google Scholar] [CrossRef]
- Bishwakarma, K.; Wang, G.-X.; Zhang, F.; Adhikari, S.; Karki, K.; Ghimire, A. Hydrochemical characterization and irrigation suitability of the Ganges Brahmaputra River System: Review and assessment. J. Mt. Sci. 2022, 19, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Mallick, J. Hydrogeochemical characteristics and assessment of water quality on the Al-Saad Lake, Abha Saudi Arabia. Appl. Water Sci. 2017, 7, 2869–2882. [Google Scholar] [CrossRef]
- Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Geochemistry of the Tigris River basin, Turkey: Spatial and seasonal variations of major ion compositions and their controlling factors. Quat. Int. 2013, 304, 22–32. [Google Scholar] [CrossRef]
- Thomas, J.; Joseph, S.; Thrivikramji, K. Discriminant analysis for characterization of hydrochemistry of two mountain river basins of contrasting climates in the southern Western Ghats, India. Environ. Monit. Assess. 2015, 187, 365. [Google Scholar] [CrossRef]
- Khadka, U.R.; Ramanathan, A. Hydrogeochemical analysis of Phewa lake: A lesser Himalayan lake in the Pokhara Valley, Nepal. Environ. Nat. Resour. J. 2021, 19, 68–83. [Google Scholar] [CrossRef]
- Pant, R.R.; Chalaune, T.B.; Dangol, A.; Dhital, Y.P.; Sharma, M.L.; Pal, K.B.; Shah, S.T.H.; Shrestha, A.K.; Thapa, L.B. Hydrochemical assessment of the Beeshazar and associated lakes in Central Nepal. SN Appl. Sci. 2021, 3, 38. [Google Scholar] [CrossRef]
- Pal, K.B.; Bishwakarma, K.; Chalaune, T.B.; Upadhaya, D.; Joshi, T.R.; Thapa, L.B.; Sharma, M.L.; Joshi, S.; Pant, R.R. Hydrochemical assessment of Jhilmila Lake, Kanchanpur, Nepal. Sci. World 2021, 14, 124–131. [Google Scholar] [CrossRef]
- Kaphle, B.; Wang, J.-B.; Kai, J.-L.; Lyu, X.-M.; Paudayal, K.N.; Adhikari, S. Hydrochemistry of Rara Lake: A Ramsar lake from the southern slope of the central Himalayas, Nepal. J. Mt. Sci. 2021, 18, 141–158. [Google Scholar] [CrossRef]
- Adhikari, B.; Pant, R.R.; Baral, U.; Shrestha, S.; Neupane, S.; Khanal, B.; Acharya, A.; Bhattarai, H. Geochemical and multivariate assessment of water quality in the Rajarani Lake, Dhankuta, Nepal. J. Nepal Geol. Soc. 2020, 60, 37–49. [Google Scholar] [CrossRef]
- Pant, R.; Khanal, N.; Pal, K.; Thapa, L.; Galaju, R.; Chaudhari, S.; Basnet, B.; Dhami, N.; Duediev, K.; Bishwakarma, K. Hydrochemical characteristics and macrophytes in the Betana Lake, Eastern Nepal. J. Sustain. Agric. 2020, 3, 44–51. [Google Scholar]
- Pant, R.R.; Pal, K.B.; Bishwakarma, K.; Thapa, L.B.; Dangol, A.; Dawadi, B.; Poudel, P.; Bhattarai, B.; Joshi, T.R.; Bhatt, Y.R. Application of multivariate approaches to the hydro-chemical assessment of the Ghodaghodi lake, sudurpaschim province, Nepal. Nepal J. Sci. Technol. 2020, 19, 46–54. [Google Scholar] [CrossRef]
- Pant, R.R.; Dhakal, T.; Thapa, L.; Baral, U.; Dangol, A.; Chalaune, T.; Pal, K. Water quality assessment of the Betkot lake, Sudurpaschim Province, Nepal. N. Am. Acad. Res. 2019, 2, 36–62. [Google Scholar] [CrossRef]
- Khadka, U.R.; Ramanathan, A. Major ion composition and seasonal variation in the Lesser Himalayan lake: Case of Begnas Lake of the Pokhara Valley, Nepal. Arab. J. Geosci. 2013, 6, 4191–4206. [Google Scholar] [CrossRef]
- Bhatta, R.; Gurung, S.; Joshi, R.; Tuladhar, S.; Regmi, D.; Kafle, B.K.; Dahal, B.M.; Raut, N.; Kafle, K.R.; Kayastha, R.; et al. Spatio-temporal hydrochemistry of two selected Ramsar sites (Rara and Ghodaghodi) of west Nepal. Heliyon 2022, 8, e11243. [Google Scholar] [CrossRef]
- Chalaune, T.B.; Dangol, A.; Sharma, J.; Sharma, C.M. First results on physico-chemical status and bathymetry of lakes in Ramaroshan Wetland, Far-West Nepal. Nepal J. Environ. Sci. 2020, 8, 17–27. [Google Scholar] [CrossRef]
- DoF. Wetlands of Western Nepal. A Brief Profile of Selected Lakes; Department of Forests and Soil Conservation: Kathmandu, Nepal, 2017. [Google Scholar]
- Paudel, J.; Khanal, L.; Pandey, N.; Upadhyaya, L.P.; Sunar, C.B.; Thapa, B.; Bhatta, C.R.; Pant, R.R.; Kyes, R.C. Determinants of herpetofaunal diversity in a threatened wetland ecosystem: A case study of the Ramaroshan Wetland Complex, Western Nepal. Animals 2022, 13, 135. [Google Scholar] [CrossRef]
- Poudel, A.K.; Adhikari, D. Monitoring of wetland dependent birds in Ramaroshan Lake Complex of Achham, Nepal. Bird Conserv. Nepal Newsl. 2020, 12–14. [Google Scholar]
- Dahal, B.K.; Dahal, R.K. Landslide hazard map: Tool for optimization of low-cost mitigation. Geoenviron. Disasters 2017, 4, 8. [Google Scholar] [CrossRef]
- Karki, J.; Shrestha, K.; Khanal, B. Faunal diversity and related conservation issues at Badimalika region (Achham, Bajura, and Kalikot districts), Nepal. Wildlife 2003, 8, 14–22. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005; Volume 6. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Government Printing Office: Washington, DC, USA, 1954.
- Kelly, W. Permissible composition and concentration of irrigated waters. Proc. ASCF 1940, 66, 607. [Google Scholar]
- Doneen, L.D. Notes on Water Quality in Agriculture; Published as a Water Science and Engineering, Paper 4001; Department of Water Science and Engineering, University of California: Davis, CA, USA, 1964. [Google Scholar]
- Paliwal, K. Irrigation with Saline Water; Monogram No. 2 (New Series); IARI: New Delhi, India, 1972; p. 198. [Google Scholar]
- Rengasamy, P.; Marchuk, A. Cation ratio of soil structural stability (CROSS). Soil Res. 2011, 49, 280–285. [Google Scholar] [CrossRef]
- Sheikh, N.; Yeragi, S.G. Seasonal temperature changes and their influence on free carbondioxide, dissolved oxygen (DO) and pH in Tansa River of Thane District, Maharastra. Int. J. Aquat. Biol. 2003, 18, 73–75. [Google Scholar]
- Singh, H.; Singh, D.; Singh, S.K.; Shukla, D. Assessment of river water quality and ecological diversity through multivariate statistical techniques, and earth observation dataset of rivers Ghaghara and Gandak, India. Int. J. River Basin Manag. 2017, 15, 347–360. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; Volume 1. [Google Scholar]
- CBS. Environment Statistics of Nepal; Central Bureau of Statistics: Kathmandu, Nepal, 2019. [Google Scholar]
- Das, B.K.; Kaur, P. Major ion chemistry of Renuka Lake and weathering processes, Sirmaur District, Himachal Pradesh, India. Environ. Geol. 2001, 40, 908–917. [Google Scholar] [CrossRef]
- Patel, P.; Raju, N.J.; Reddy, B.S.R.; Suresh, U.; Gossel, W.; Wycisk, P. Geochemical processes and multivariate statistical analysis for the assessment of groundwater quality in the Swarnamukhi River basin, Andhra Pradesh, India. Environ. Earth Sci. 2016, 75, 611. [Google Scholar] [CrossRef]
- Shah, K.A.; Joshi, G.S. Evaluation of Water Quality Index for River Sabarmati, Gujrat, India. Appl. Water Sci. 2017, 7, 1349–1358. [Google Scholar] [CrossRef]
- McGowan, W. Water Processing: Residential, Commercial, Light-Industrial, 3rd ed.; Water Quality Association: Lisle, IL, USA, 2000. [Google Scholar]
- Nagaraju, A.; Suresh, S.; Killham, K.; Hudson-Edwards, K. Hydrogeochemistry of waters of mangampeta barite mining area, Cuddapah Basin, Andhra Pradesh, India. Turk. J. Eng. Environ. Sci. 2006, 30, 203–219. [Google Scholar]
- Sharma, R.C.; Kumar, R. Water quality of sacred glacial Lake Satopanth of Garhwal Himalaya, India. Appl. Water Sci. 2017, 7, 4757–4764. [Google Scholar] [CrossRef]
- Dinka, M.O.; Loiskandl, W.; Ndambuki, J.M. Hydrochemical characterization of various surface water and groundwater resources available in Matahara areas, Fantalle Woreda of Oromiya region. J. Hydrol. Reg. Stud. 2015, 3, 444–456. [Google Scholar] [CrossRef]
- Naveen, K.S.H.; Nair, B. Assessment of lake water quality in Gudiyattam region using multivariate statistical techniques. J. Environ. Treat. Tech. 2022, 10, 92–102. [Google Scholar]
- Meybeck, M. Atmospheric inputs and river transport of dissolved substances. In Proceedings of the Hamburg Symposium, Hamburg, Germany, 19 August 1983; IAHS: Hamburg, Germany, 1983; pp. 173–192. [Google Scholar]
- Das, B.D. Assessment of surface water quality of Chimdi Lake of Sunsari District, Nepal. Int. J. Nat. Resour. Ecol. Manag. 2017, 2, 20–23. [Google Scholar] [CrossRef]
- Srinivasamoorthy, K.; Gopinath, M.; Chidambaram, S.; Vasanthavigar, M.; Sarma, V. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. J. King Saud Univ.-Sci. 2014, 26, 37–52. [Google Scholar] [CrossRef]
- Bhat, N.A.; Jeelani, G.; Bhat, M.Y. Hydrogeochemical assessment of groundwater in karst environments, Bringi watershed, Kashmir Himalayas, India. Curr. Sci. 2014, 106, 1000–1007. [Google Scholar]
- Singh, R.; Kayastha, S.P.; Pandey, V.P. Water quality of Marshyangdi River, Nepal: An assessment using water quality index (WQI). J. Inst. Sci. Technol. 2021, 26, 13–21. [Google Scholar] [CrossRef]
- Amankwaa, G.; Yin, X.; Zhang, L.; Huang, W.; Cao, Y.; Ni, X. Hydrochemistry and multivariate statistical analysis of the quality of water from Lake Bosomtwe for agricultural and human consumption. J. Water Supply Res. Technol.—AQUA 2020, 69, 704–719. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in geochemical interpretation of water analyses. Trans. Am. Geophys. Union 1944, 25, 914–923. [Google Scholar]
- Durov, S.A. Natural waters and graphic representation of their composition. Dokl. Akad. Nauk. SSSR 1948, 59, 87–90. [Google Scholar]
- Dangol, A.; Pant, R.R.; Chalaune, T.B.; Sharma, J.; Thapa, B.; Thapa, L.B.; Bishwakarma, K. Hydrochemical characterization of lentic and lotic environments of Ramaroshan area, Sudurpaschim Province, Nepal. Geogr. J. Nepal 2022, 15, 83–102. [Google Scholar] [CrossRef]
- Aksever, F. Hydrogeochemical Characterization and water quality assessments of springs in the Emirdag (Afyonkarahisar) basin, Turkey. Arab. J. Geosci. 2019, 12, 780. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Li, X.; Qi, J.; Zhang, Q.; Guo, J.; Yu, L.; Zhao, R. Hydrochemical characteristics and multivariate statistical analysis of natural water system: A case study in Kangding County, Southwestern China. Water 2018, 10, 80. [Google Scholar] [CrossRef]
- Brown, G.; Sharp, M.; Tranter, M. Subglacial chemical erosion: Seasonal variations in solute provenance, Haut Glacier d’Arolla, Valais, Switzerland. Ann. Glaciol. 1996, 22, 25–31. [Google Scholar] [CrossRef]
- Singh, V.B.; Ramanathan, A.; Mandal, A. Hydrogeochemistry of high-altitude lake: A case study of the Chandra Tal, Western Himalaya, India. Arab. J. Geosci. 2016, 9, 308. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q. Research advances in identifying sulphate contamination source of water environment by using stable isotopes. Int. J. Environ. Res. Public Health 2019, 16, 1914. [Google Scholar] [CrossRef]
- Nimusiima, D.; Byamugisha, D.; Omara, T.; Ntambi, E. Physicochemical and microbial quality of water from the Ugandan stretch of the Kagera Transboundary River. Limnol. Rev. 2023, 23, 157–176. [Google Scholar] [CrossRef]
- Raut, R.; Sharma, S.; Bajracharya, R.M.; Sharma, C.M.; Gurung, S. Physico-chemical characterization of Gosainkunda Lake. Nepal J. Sci. Technol. 2012, 13, 107–114. [Google Scholar] [CrossRef]
- Sunar, C.B.; Khanal, L.; Pant, R.R.; Thapa, B.; Chand, B. Hydrochemistry of Kupinde Lake at the Lesser Himalaya in Karnali Province. J. Inst. Sci. Technol. 2023, 28, 57–69. [Google Scholar] [CrossRef]
- Hosseinifard, S.J.; Aminiyan, M.M. Hydrochemical characterisation of groundwater quality for drinking and agricultural purposes: A case study in Rafsanjan Plain, Iran. Water Qual. Expo. Health 2015, 7, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Bishwakarma, K.; Pant, R.R.; Pal, K.B.; Ghimire, A.; Thapa, L.B.; Saud, P.; Joshi, S.; Panthi, K.P. Water quality and land use/cover changes in the Phewa Watershed, Gandaki Province, Nepal. Nepal J. Environ. Sci. 2019, 7, 31–39. [Google Scholar] [CrossRef]
- Wilcox, L.V. Classification and Use of Irrigation Water; US Department of Agriculture: Washington, DC, USA, 1955. [Google Scholar]
- Acharya, A.; Sharma, M.; Bishwakarma, K.; Dahal, P.; Kumar, S.; Chaudhari, A.; Neupane, S.; Pokhrel, B.; Pant, R. Chemical characteristics of the Karmanasha River water and its appropriateness for irrigational usage. J. Nepal Chem. Soc. 2020, 41, 94–102. [Google Scholar] [CrossRef]
- Giri, A.; Bharti, V.K.; Kalia, S.; Kumar, K.; Khansu, M. Hydrochemical and quality assessment of irrigation water at the trans-Himalayan high-altitude regions of Leh, Ladakh, India. Appl. Water Sci. 2022, 12, 197. [Google Scholar] [CrossRef]
Lakes | Geographic Coordinates | Altitude (m asl) | Core Area (ha) | Mean Depth (m) | Water Volume (Peak Period, m3) | |
---|---|---|---|---|---|---|
Latitude | Longitude | |||||
Tallodhaune | 29.2290° N | 81.4571° E | 2299 | 0.55 | 3 | 204.4 |
Mathilodhaune | 29.2304° N | 81.4610° E | 2316 | 1.63 | 3.6 | NA |
Batula | 29.2293° N | 81.4663° E | 2406 | 3.2 | 8 | 2999 |
Jingale | 29.2320° N | 81.4684° E | 2410 | 21.5 | 12 | 11,070.5 |
Gagra | 29.2463° N | 81.4622° E | 2470 | NA | NA | NA |
Lamadaha | 29.2376° N | 81.4815° E | 2522 | 1.1 | 6 | 7945 |
Daudhe | 29.2466° N | 81.4921° E | 2852 | NA | NA | NA |
Parameters | Unit | Min | Max | Mean | SD | WHO | NWQGAC |
---|---|---|---|---|---|---|---|
pH | 7.60 | 9.2 | 8.76 | 0.40 | 6.5–8.5 | 6.5–9 | |
EC | µS/cm | 59.00 | 116.00 | 100.03 | 15.42 | 1500.00 | - |
TDS | mg/L | 35.00 | 60.00 | 52.39 | 7.16 | 1000.00 | 1000 |
Temperature | °C | 16.20 | 21.30 | 18.88 | 1.43 | – | - |
Turbidity | NTU | 0.29 | 4.15 | 1.25 | 0.97 | 5.00 | - |
DO | mg/L | 7.30 | 9 | 8 | 0.46 | 5 | 5–9 |
CO2 | mg/L | 2.20 | 6.60 | 3.53 | 1.31 | 6.0 | <12 |
Cl− | mg/L | 2.84 | 8.52 | 4.41 | 1.43 | 250.00 | - |
HCO3− | mg/L | 40.00 | 75.00 | 61.58 | 9.45 | 600.00 | 20–100 |
TH | mg/L | 36.00 | 72.00 | 44.42 | 7.91 | 150.00 | 20–100 |
CaH | mg/L | 22.00 | 44.00 | 30.05 | 5.59 | - | - |
MgH | mg/L | 4.00 | 30.00 | 14.37 | 5.65 | - | - |
Ca2+ | mg/L | 8.80 | 17.60 | 12.02 | 2.24 | 100.00 | - |
Mg2+ | mg/L | 0.98 | 7.32 | 3.51 | 1.38 | 50.00 | - |
Na+ | mg/L | 4.30 | 7.50 | 5.89 | 0.89 | 200.00 | - |
K+ | mg/L | 0.80 | 3.50 | 1.67 | 0.78 | 100.00 | - |
NO3− | mg/L | 0.02 | 2.36 | 0.44 | 0.45 | 50.00 | <300 |
PO43− | mg/L | 0.12 | 0.26 | 0.16 | 0.04 | 1 | <0.6 |
NH4 | mg/L | 0.07 | 0.24 | 0.13 | 0.04 | 0.5 | - |
SO42− | mg/L | 0.18 | 0.72 | 0.48 | 0.14 | 250.00 | - |
Fe3+ | mg/L | 0.24 | 0.27 | 0.25 | 0.01 | 0.3 | <10 |
Parameter | Units | Tallodhaune Lake | Mathilodhaune Lake | Batula Lake | Jingale Lake | Gagra Lake | Lamadaha Lake | Daudhe Lake |
---|---|---|---|---|---|---|---|---|
pH | 8.47 | 8.64 | 8.38 | 8.81 | 9.10 | 8.85 | 9.13 | |
EC | µS/cm | 111.00 | 113.80 | 102.60 | 105.40 | 77.00 | 98.00 | 60.67 |
TDS | mg/L | 57.00 | 59.20 | 52.40 | 55.33 | 41.00 | 50.75 | 35.33 |
TH | mg/L | 42.67 | 40.80 | 44.80 | 48.00 | 40.67 | 41.00 | 42.00 |
CaH | mg/L | 29.33 | 32.80 | 32.00 | 31.60 | 24.00 | 26.50 | 26.00 |
MgH | mg/L | 13.33 | 8.00 | 12.80 | 16.40 | 16.67 | 14.50 | 16.00 |
DO | mg/L | 7.77 | 7.64 | 8.36 | 8.23 | 8.37 | 7.83 | 8.83 |
Ca2+ | mg/L | 11.73 | 13.12 | 12.80 | 12.64 | 9.60 | 10.60 | 10.40 |
Mg2+ | mg/L | 3.25 | 1.95 | 3.12 | 4.00 | 4.07 | 3.54 | 3.90 |
K+ | mg/L | 3.03 | 2.88 | 2.12 | 1.19 | 1.17 | 1.18 | 1.03 |
Na+ | mg/L | 7.27 | 6.76 | 6.46 | 5.39 | 5.63 | 6.10 | 4.67 |
NH4+ | mg/L | 0.11 | 0.10 | 0.09 | 0.15 | 0.11 | 0.13 | 0.15 |
Cl− | mg/L | 7.10 | 5.11 | 3.98 | 4.17 | 3.31 | 4.62 | 3.31 |
Fe3+ | mg/L | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.26 | 0.24 |
NO3− | mg/L | 0.28 | 0.41 | 0.46 | 0.53 | 0.16 | 0.48 | 0.33 |
SO42− | mg/L | 0.37 | 0.36 | 0.29 | 0.40 | 0.48 | 0.59 | 0.64 |
HCO3− | mg/L | 56.67 | 54.00 | 62.00 | 65.33 | 61.67 | 63.75 | 56.67 |
PO43− | mg/L | 0.17 | 0.14 | 0.13 | 0.15 | 0.17 | 0.17 | 0.20 |
Lakes | Ca2+/Mg2+ | (Ca2+ + Mg2+)/Tz+ | (Na+ + K+)/Tz+ | (Ca2+ + Mg2+)/(Na+ + K+) | (Ca2+ + Mg2+)/(HCO3−+ SO42−) | C Ratio = (HCO3−)/(HCO3− + SO42−) |
---|---|---|---|---|---|---|
Tallo Dhaune | 2.31 | 0.67 | 0.31 | 2.15 | 0.91 | 0.99 |
Mathilo Dhaune | 4.25 | 0.68 | 0.31 | 2.20 | 0.99 | 0.99 |
Batula | 2.88 | 0.71 | 0.27 | 2.66 | 0.99 | 0.99 |
Jingale | 2.44 | 0.76 | 0.22 | 3.67 | 0.99 | 0.99 |
Gagra | 1.42 | 0.73 | 0.25 | 2.94 | 0.99 | 0.99 |
Lamadaha | 1.86 | 0.72 | 0.26 | 2.79 | 0.99 | 0.99 |
Daude | 1.69 | 0.77 | 0.21 | 3.63 | 0.98 | 0.98 |
Parameters | Rotated Component Matrix (Components) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
TDS | 0.689 | −0.103 | 0.298 | 0.236 | 0.380 |
Cl− | 0.720 | −0.025 | 0.066 | 0.315 | −0.255 |
HCO3 | −0.194 | 0.158 | 0.115 | 0.235 | 0.789 |
CaH | 0.126 | −0.042 | 0.962 | 0.054 | 0.108 |
MgH | −0.149 | 0.961 | 0.030 | 0.045 | 0.061 |
Ca2+ | 0.126 | −0.042 | 0.962 | 0.054 | 0.108 |
Mg2+ | −0.149 | 0.961 | 0.030 | 0.045 | 0.061 |
K+ | 0.831 | −0.285 | 0.029 | −0.282 | −0.029 |
Na+ | 0.812 | −0.140 | −0.076 | −0.297 | 0.022 |
NO3− | 0.134 | 0.044 | 0.095 | 0.847 | 0.131 |
PO43− | −0.032 | 0.421 | −0.227 | 0.319 | −0.374 |
NH4+ | −0.280 | 0.097 | 0.062 | 0.794 | −0.055 |
SO42− | −0.480 | 0.036 | −0.137 | 0.378 | −0.615 |
Fe3+ | −0.289 | 0.367 | 0.493 | 0.054 | 0.054 |
Eigenvalue | 3.832 | 2.757 | 1.686 | 1.534 | 1.049 |
Variance | 27.369 | 19.695 | 12.040 | 10.958 | 7.493 |
Cumulative variance | 27.369 | 47.064 | 59.104 | 70.062 | 77.555 |
EC | Na% | SAR | MH | KR | PI | CROSS | |
---|---|---|---|---|---|---|---|
Tallodhaune | 111.00 | 40.71 | 2.65 | 21.56 | 0.49 | 66.41 | 3.43 |
Mathiolodhaune | 113.80 | 39.06 | 2.46 | 12.96 | 0.45 | 64.81 | 3.14 |
Batula | 102.60 | 35.27 | 2.31 | 19.89 | 0.41 | 64.41 | 2.85 |
Jingale | 105.40 | 28.77 | 1.89 | 23.64 | 0.34 | 62.14 | 2.24 |
Gagra | 77.00 | 33.24 | 2.16 | 29.83 | 0.41 | 69.71 | 2.57 |
Lamadaha | 98.00 | 34.22 | 2.32 | 25.67 | 0.44 | 70.03 | 2.71 |
Daude | 60.67 | 28.54 | 1.75 | 27.43 | 0.33 | 64.51 | 2.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapa, B.; Khanal, L.; Pant, R.R.; Bhatta, C.R.; Subedi, P.; Upadhyaya, L.P.; Sunar, C.B.; Poudel, J.; Pandey, N.; Kyes, P.; et al. Hydrochemistry and Irrigation Quality of High-Altitude Lakes: A Case Study of the Ramaroshan Lake Complex, Nepal Himalayas. Limnol. Rev. 2024, 24, 30-52. https://doi.org/10.3390/limnolrev24010003
Thapa B, Khanal L, Pant RR, Bhatta CR, Subedi P, Upadhyaya LP, Sunar CB, Poudel J, Pandey N, Kyes P, et al. Hydrochemistry and Irrigation Quality of High-Altitude Lakes: A Case Study of the Ramaroshan Lake Complex, Nepal Himalayas. Limnological Review. 2024; 24(1):30-52. https://doi.org/10.3390/limnolrev24010003
Chicago/Turabian StyleThapa, Bina, Laxman Khanal, Ramesh Raj Pant, Chet Raj Bhatta, Prekshya Subedi, Laxmi Prasad Upadhyaya, Chandra Bahadur Sunar, Janaki Poudel, Naresh Pandey, Pensri Kyes, and et al. 2024. "Hydrochemistry and Irrigation Quality of High-Altitude Lakes: A Case Study of the Ramaroshan Lake Complex, Nepal Himalayas" Limnological Review 24, no. 1: 30-52. https://doi.org/10.3390/limnolrev24010003
APA StyleThapa, B., Khanal, L., Pant, R. R., Bhatta, C. R., Subedi, P., Upadhyaya, L. P., Sunar, C. B., Poudel, J., Pandey, N., Kyes, P., Singh, A. K., Bishwakarma, K., & Kyes, R. C. (2024). Hydrochemistry and Irrigation Quality of High-Altitude Lakes: A Case Study of the Ramaroshan Lake Complex, Nepal Himalayas. Limnological Review, 24(1), 30-52. https://doi.org/10.3390/limnolrev24010003