Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Ramaroshan area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7248 KiB  
Article
Hydrochemistry and Irrigation Quality of High-Altitude Lakes: A Case Study of the Ramaroshan Lake Complex, Nepal Himalayas
by Bina Thapa, Laxman Khanal, Ramesh Raj Pant, Chet Raj Bhatta, Prekshya Subedi, Laxmi Prasad Upadhyaya, Chandra Bahadur Sunar, Janaki Poudel, Naresh Pandey, Pensri Kyes, Ankit Kumar Singh, Kiran Bishwakarma and Randall C. Kyes
Limnol. Rev. 2024, 24(1), 30-52; https://doi.org/10.3390/limnolrev24010003 - 8 Jan 2024
Cited by 8 | Viewed by 2765
Abstract
The Ramaroshan Lake Complex (RLC) in Sudurpaschim Province, Nepal, is a Himalayan lake cluster that holds significant ecological, economic, religious, and esthetic importance. This study aimed to provide a comprehensive characterization of the hydrochemical properties of water within the RLC and assess its [...] Read more.
The Ramaroshan Lake Complex (RLC) in Sudurpaschim Province, Nepal, is a Himalayan lake cluster that holds significant ecological, economic, religious, and esthetic importance. This study aimed to provide a comprehensive characterization of the hydrochemical properties of water within the RLC and assess its suitability for irrigation purposes. A total of 38 water samples were collected from seven different lakes of the complex. The physicochemical parameters and major ions were then analyzed. The water samples from the RLC were alkaline, and based on total hardness, they ranged from soft to moderately hard categories. The presence of major ions included the following: Ca2+ > Na+ > Mg2+ > K+ > Fe3+ > NH4+ and HCO3 > Cl > SO42− > NO3 > PO43−. The alkaline earth metals (Ca2+ and Mg2+) dominated the alkali metals (Na+ and K+) and weak acids (HCO3) dominated the strong acids (Cl and SO42−). The dominant hydrochemical facies of the lake water was a Ca-HCO3 type indicating a calcium carbonate type of lithology. Carbonate rock weathering was the most dominant process in influencing the hydrochemistry of the water. A high ratio of (Ca2++ Mg2+)/Tz+ and a lower ratio of (Na+ + K+)/Tz+ revealed the dominance of Ca2+ and Mg2+ resulting from carbonate weathering, with little contribution from silicate weathering. Different irrigation indices revealed the suitability of the RLC water for irrigation. The insights derived from this study are pivotal in safeguarding water quality and bolstering sustainability efforts. The study also furnishes foundational data crucial to an array of stakeholders including researchers and policymakers and significantly contributes to advancing water management strategies and fostering ecosystem conservation in the Himalayan freshwater lakes, particularly in the face of the overarching challenge posed by global climate change. Full article
Show Figures

Figure 1

14 pages, 3947 KiB  
Article
Determinants of Herpetofaunal Diversity in a Threatened Wetland Ecosystem: A Case Study of the Ramaroshan Wetland Complex, Western Nepal
by Janaki Paudel, Laxman Khanal, Naresh Pandey, Laxmi Prasad Upadhyaya, Chandra Bahadur Sunar, Bina Thapa, Chet Raj Bhatta, Ramesh Raj Pant and Randall C. Kyes
Animals 2023, 13(1), 135; https://doi.org/10.3390/ani13010135 - 29 Dec 2022
Cited by 6 | Viewed by 3849
Abstract
Wetlands are among the highly threatened ecosystems due to anthropogenic activities. The Ramaroshan Wetland Complex (RWC) of Achham District, Nepal is one of the high-altitude wetlands facing human induced degradation and loss. Herpetofauna are key bio-indicators of environmental health and habitat quality and [...] Read more.
Wetlands are among the highly threatened ecosystems due to anthropogenic activities. The Ramaroshan Wetland Complex (RWC) of Achham District, Nepal is one of the high-altitude wetlands facing human induced degradation and loss. Herpetofauna are key bio-indicators of environmental health and habitat quality and are useful to assess habitat conditions of such threatened ecosystems. This study quantified the land use and land cover (LULC) change in the RWC and documented the diversity and distribution pattern of herpetofauna. The LULC in the area (13.94 Km2) was analyzed for 1989, 2000, 2010 and 2021 by supervised classification of remote sensing images. Surveys were conducted along 25 transects, each of 200 m in length and environmental variables were recorded for every observation of herpetofauna. The LULC analysis revealed an overall loss of 16% of the total water body between 1989 (0.25 Km2) and 2021 (0.21 Km2). Eleven species of herpetofauna (five amphibians and six reptiles) within five families and two orders (i.e., Anura and Squamata), were recorded with low diversity (H’ = 1.88312) and evenness (E = 0.3642) indices. The herpetofauna had a hump-shaped distribution along the elevation gradient with the highest richness and abundance at 2300 m asl. Amphibian abundance decreased with increasing distance to nearest water sources, whereas reptile abundance increased. Amphibians were more abundant in agricultural field and marsh land, whereas reptile abundance was higher around human settlements. Results indicate that the wetland area in the RWC is declining at an alarming rate and, in turn, might account for the low diversity and abundance of the herpetofauna. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

Back to TopTop