Ionic Liquid-Assisted DLLME and SPME for the Determination of Contaminants in Food Samples
Abstract
:1. Introduction
2. Structures, Properties and Recyclability of ILs
3. ILs in Liquid–Liquid Microextraction
3.1. Conventional IL-DLLME
3.2. External Assisted IL-DLLME
3.3. In Situ IL-DLLME
3.4. Magnetic IL-DLLME
4. ILs in Solid-Phase Microextraction
4.1. ILs/PILs Sorbent Coatings
4.2. ILs/PILs-Based Functional Materials
4.3. Magnetic Materials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TOALS | Tetraoctylammonium N-lauroylsarcosinate |
THADHSS | Tetrahexylammonium dihexylsulfosuccinate |
[C4MIM][PF6] | 1-Butyl-3-methylimidazolium hexafluorophosphate |
[C6MIM][PF6] | 1-Hexyl-3-methylimidazolium hexafluorophosphate |
[C8MIM][PF6] | 1-Octyl-3-methylimidazolium hexafluorophosphate |
[C4MIM][NTf2] | 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide |
[C6MIM][NTf2] | 1-Hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide |
[C8MIM][NTf2] | 1-Octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide |
[C16MIM][NTf2] | 1-Hexadecyl-3-methylimidazolium bis(trifuluoromethylsulfonyl)imide |
[N8 8 8 1][NTf2] | Trioctylmethylammonium bis(trifluoromethylsulfonyl)imide |
[C2MIM][BF4] | 1-Ethyl-3-methylimidazolium tetrafluoroborate |
[C4MIM][BF4] | 1-Butyl-3-methylimidazolium tetrafluoroborate; |
[(C6)3C14P][NTf2] | Trihexyl(tetradecyl)phosphonium bistriflamide |
[C6MIM][FeCl4] | 1-Hexyl-3-methylimidazolium tetrachloroferrate |
[C4MIM][FeCl4] | 1-Butyl-3-methylimidazolium tetrachloroferrate |
[C4MIM-SH]Br | 1-(4-thiol)-butyl-3-methylimidazolium bromide |
[P6,6,6,14]FeCl4) | Trihexyl(tetradecyl)phosphonium |
[C8MIM][NTf2] | 1-Octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide |
[TBP][PO4] | Tetra butyl phosphonium phosphate |
[BBIM][NTf2] | 1,3-Dibutylimidazolium bis[(trifluoromethyl)sulfony]imide |
[HHIM][NTf2] | 1,3-dihexylimidazolium bis[(trifluoromethyl)sulfonyl]imide |
[P4 4 4 12][BF4] | Tributyldodecylphosphonium tetrafluoroborate |
[C6MIM][FAP] | 1-Hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate |
poly[VBHDIM][NTf2] | poly(1–4-vinylbenzyl-3-hexadecylimidazolium) bis[(trifluoromethyl)sulfonyl] imide |
poly[DDMGlu][MTFSI] | N,N-didecyl-N-methyl-d-glucaminium poly(2-methyl-acrylic acid 2-[1-(3-{2-[2-(3-trifluoromethanesulfonylamino-propoxy)-ethoxy]-ethoxy}-propylamino)-vinylamino]-ethyl ester) |
[HVIM][Br] | 1-Hexyl-3-vinylimidazolium bromide |
[H2N-C3MIM][Br] | 1-(3-Aminopropyl)-3-methylimidazolium cation with bromide |
[H2N-C3MIM][BF4] | 1-(3-Aminopropyl)-3-methylimidazolium cation with tetrafluoroborate |
[H2N-C3MIM][NTf2] | 1-(3-Aminopropyl)-3-methylimidazolium cation with bis(trifluoromethylsulfonyl)imide anions |
[H2N-C3BIM][Br] | 1-(3-Aminopropyl)-3-benzylimidazolium cation with bromide |
[H2N-C3BIM][NTf2] | 1-(3-Aminopropyl)-3-benzylimidazolium cation with bis(trifluoromethylsulfonyl)imide |
[VIM][C3SO3] | 1-Vinyl-3-(propanesulfonate)imidazolium |
[VIM][C4SO3] | 1-Vinyl-3-(butanesulfonate)imidazolium |
[VIM][C9COO] | 1-Vinyl-3-(nonanocarboxylate)imidazolium |
[VIMC10][SS] | 1-Vinyl-3-decylimidazolium styrenesulfonate |
[(VBIM)2C12]2[SS] | 1,12-Di(3-vinylbenzylimidazolium) dodecane distyrenesulfonate |
[VC16IM][NTf2] | 1-Hexadecyl-3-vinylimidazolium bis[(trifluoromethyl)sulfonyl]imide |
[(VIM)2C12]2[NTf2] | 1,12-Di(3-vinylimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide |
[AVIM][Cl] | 1-Ally-3-vinylimidazolium chloride |
[AMIM][Cl] | 1-Allyl-3-methyl imidazolium chloride |
[C4MIM][Cys] | 1-Butyl-3-methylimidazolium cysteine |
[C4MIM][Cl] | 1-Butyl-3-methylimidazolium chloride |
[VC10OHIM][Cl] | 1-Vinyl-3-(10-hydroxydecyl) chloride |
[C12VIM][Br] | 1-Dodecyl-3-vinylimidazolium bromide |
[C8MIM][Br] | 1-Methyl-3-octyl-imidazolium bromide |
[C12MIM][Br] | 1-Methyl-3-undecyl-imidazolium bromide |
[C18MIM][Br] | 1-Methyl-3-octadecyl-imidazolium bromide |
[BeBIM][Br] | 1-Benzyl-3-butylimidazolium bromide |
[HeOHMIM][Cl] | 1-(6-Hydroxyethyl)-3-methylimidazolium chloride |
[BeEOHIM][Br] | 1-Benzyl-3-(2-hydroxyethyl)imidazolium bromide |
[AMIM][MeSO4] | 1-Allyl-3-methylimidazolium methylsulfate |
[C4mim][Br] | 1-Octyl-3-methylimidazolium bromide |
[C4mim][TsO] | 1-Octyl-3-methylimidazolium p-methylbenzene sulfonate |
References
- Hernández, F.; Portolés, T.; Ibáñez, M.; Bustos-López, M.C.; Díaz, R.; Botero-Coy, A.M.; Fuentes, C.L.; Peñuelad, G. Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia. Sci. Total Environ. 2012, 439, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matějíček, D.; Kubáň, V. Enhancing sensitivity of liquid chromatographic/ion-trap tandem mass spectrometric determination of estrogens by on-line pre-column derivatization. J. Chromatogr. A 2008, 1192, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Sodré, F.F.; Pescara, I.C.; Montagner, C.C.; Jardim, W.F. Assessing selected estrogens and xenoestrogens in Brazilian surface waters by liquid chromatography-tandem mass spectrometry. Microchem. J. 2010, 96, 92–98. [Google Scholar] [CrossRef]
- Wu, M.; Wang, L.; Zeng, B.; Zhao, F. Ionic liquid polymer functionalized carbon nanotubes-doped poly(3,4-ethylenedioxythiophene) for highly-efficient solid-phase microextraction of carbamate pesticides. J. Chromatogr. A 2016, 1444, 42–49. [Google Scholar] [CrossRef]
- Wang, C.; Ji, S.; Wu, Q.; Wu, C.; Wang, Z. Determination of triazine herbicides in environmental samples by dispersive liquid-liquid microextraction coupled with high performance liquid chromatography. J. Chromatogr. Sci. 2011, 49, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Song, S.; Wang, C.; Wu, Q.; Wang, Z. Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent. Anal. Chim. Acta 2011, 708, 155–159. [Google Scholar] [CrossRef]
- Kataoka, H.; Lord, H.L.; Pawliszyn, J. Applications of solid-phase microextraction in food analysis. J. R. Soc. Chem. 2000, 880, 35–62. [Google Scholar] [CrossRef]
- Wardencki, W.; Michulec, M.; Curyo, J. A review of theoretical and practical aspects of solid-phase microextraction in food analysis. Int. J. Food Sci. Technol. 2004, 39, 703–717. [Google Scholar] [CrossRef]
- Emanuela, G.; Souza-Silva, E.A.; Ho, T.D.; Anderson, J.L.; Janusz, P. Exploiting the tunable selectivity features of polymeric ionic liquid-based SPME sorbents in food analysis. Talanta 2018, 188, 522–530. [Google Scholar]
- Souza-Silva, E.A.; Emanuela, G.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. Trends Anal. Chem. 2015, 71, 236–248. [Google Scholar] [CrossRef]
- Absalan, G.; Akhond, M.; Sheikhian, L. Extraction and high performance liquid chromatographic determination of 3-indole butyric acid in pea plants by using imidazolium-based ionic liquids as extractant. Talanta 2009, 77, 407–411. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, M.; Chao, S.; El-Sepai, F.; Wang, K.; Yan, Z.; Ye, M. Ionic liquids extraction of para red and sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography. Anal. Chim. Acta 2009, 650, 65–69. [Google Scholar] [CrossRef]
- Mulugeta, M.; Wibetoe, G.; Engelsen, C.J.; Lund, W. Speciation analysis of As, Sb and Se in leachates of cementitious construction materials using selective solid phase extraction and ICP-MS. J. Anal. At. Spectrom. 2010, 25, 169. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Y.; Liu, J.; Xia, X.; Wang, D. Ammonium pyrrolidinedithiocarbamate-modified activated carbon micro-column extraction for the determination of As(iii) in water by graphite furnace atomic absorption spectrometry. Microchim. Acta 2008, 161, 137–142. [Google Scholar] [CrossRef]
- Uluozlu, O.D.; Tuzen, M.; Mendil, D.; Soylak, M. Determination of As(III) and As(V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry. Food Chem. Toxicol. 2010, 48, 1393–1398. [Google Scholar] [CrossRef]
- Dadfarnia, S.; Shabani, A. Recent development in liquid phase microextraction for determination of trace level concentration of metals-a review. Anal. Chim. Acta 2010, 658, 107–119. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.K.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction, a review. Anal. Chim. Acta 2008, 624, 253–268. [Google Scholar] [CrossRef]
- Martinis, E.M.; Berton, P.; Monasterio, R.P.; Wuilloud, R.G. Emerging ionic liquid-based techniques for total-metal and metal-speciation analysis. Trac. Trends Anal. Chem. 2010, 29, 1184. [Google Scholar] [CrossRef]
- Jain, A.; Verma, K.K. Recent advances in applications of single-drop microextraction, a review. Anal. Chim. Acta 2011, 706, 37–65. [Google Scholar] [CrossRef]
- Jisi, Z.; Bo, L.; Jing, P.; Bing, C.; Hongjing, W.; Baiyu, Z. Vortex- and shaker-assisted liquid-liquid microextraction (VSA-LLME) coupled with gas chromatography and mass spectrome-try (GC-MS) for analysis of 16 polycyclic aromatic hydrocarbons (PAHs) in offshore produced water. Water Air Soil Pollut. 2015, 226, 318. [Google Scholar]
- Martinis, E.M.; Berton, P.; Wuilloud, R.G. Ionic liquid-based microextrac-tion techniques for trace-element analysis. Trends Anal. Chem. 2014, 60, 54–70. [Google Scholar] [CrossRef]
- Mashaallah, R.; Massoud, K.; Elham, G.; Mohadeseh, T. Application of in-syringe dispersive liquid-liquid microextraction and narrow-bore tube dispersive liquid-liquid microextraction for the determination of trace amounts of BTEX in water samples. J. Chromatogr. Sci. 2015, 7, 7. [Google Scholar]
- Jian, C.; Ping, D.L.; Guo, M.J.; Yang, F.W.; Cheng, L.Z. Liquid-liquid equilibria of multi-component systems including n-hexane, n-octane, benzene, toluene, xylene and sulfolane at 298.15 K and atmospheric pressure. Fluid Phase Equilibria 2000, 173, 109–119. [Google Scholar]
- Ensafi, A.A.; Izadi, M.; Karimi-Maleh, H. Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics 2013, 19, 137–144. [Google Scholar] [CrossRef]
- Sadeghi, R.; Karimi-Maleh, H.; Bahari, A.; Taghavi, M. A novel biosensor based on ZnO nanoparticle/1,3-dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phys. Chem. Liq. 2013, 51, 704–714. [Google Scholar] [CrossRef]
- Trujillo-Rodríguez, M.J.; Nan, H.; Varona, M.; Emaus, M.N.; Souza, I.D.; Anderson, J.L. Advances of ionic liquids in analytical chemistry. Anal. Chem. 2019, 91, 505–531. [Google Scholar] [CrossRef]
- Martín-Calero, A.; Pino, V.; Afonso, A.M. Ionic liquids as a tool for determination of metals and organic compounds in food analysis. Trac. Trends Anal. Chem. 2011, 30, 1598–1619. [Google Scholar] [CrossRef]
- Baghdadi, M.; Shemirani, F. Cold-induced aggregation microextraction, a novel sample preparation technique based on ionic liquids. Anal. Chim. Acta 2008, 613, 56–63. [Google Scholar] [CrossRef]
- Ho, T.D.; Cheng, Z.; Hantao, L.W.; Anderson, J.L. Ionic liquids in analytical chemistry, fundamentals, advances, and perspectives. Anal. Chem. 2014, 86, 262–285. [Google Scholar] [CrossRef]
- Yao, C.; Anderson, J.L. Dispersive liquid-liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Anal. Bioanal. Chem. 2009, 395, 1491–1502. [Google Scholar] [CrossRef]
- Zhou, Q.; Bai, H.; Xie, G.; Xiao, J. Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. J. Chromatogr. A 2008, 1188, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cagliero, C.; Pierson, S.A.; Anderson, J.L. Rapid and sensitive analysis of polychlorinated biphenyls and acrylamide in food samples using ionic liquid-based in situ dispersive liquid-liquid microextraction coupled to headspace gas chromatography. J. Chromatogr. A 2017, 1481, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buldini, P.L.; Ricci, L.; Sharma, J.L. Recent applications of sample preparation techniques in food analysis. J. Chromatogr. A 2002, 975, 47. [Google Scholar] [CrossRef]
- Abdulra’uf, L.B.; Lawal, A.; Sirhan, A.Y.; Tan, G.H. Review of ionic liquids in microextraction analysis of pesticide residues in fruit and vegetable samples. Chromatographia 2020, 83, 11–33. [Google Scholar] [CrossRef]
- Merone, G.M.; Tartaglia, A.; Rosato, E.; D’Ovidio, C.; Locatelli, M. Ionic liquids in analytical chemistry: Applications and Recent Trends. Curr. Anal. Chem. 2021, 17, 1340–1355. [Google Scholar] [CrossRef]
- Rykowska, I.; Ziemblińska, J.; Nowak, I. Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids, a review. J. Mol. Liq. 2018, 259, 319–339. [Google Scholar] [CrossRef]
- Mallakpour, S.; Dinari, M. Ionic liquids as green solvents: Progress and prospects. In Green Solvents II: Properties and Applications of Ionic Liquids; Mohammad, A., Inamuddin, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–32. [Google Scholar]
- Isosaari, P.; Srivastava, V.; Sillanpaa, M. Ionic liquid-based water treatment technologies for organic pollutants, Current status and future prospects of ionic liquid mediated technologies. Sci. Total Environ. 2019, 690, 604–619. [Google Scholar] [CrossRef]
- Trujillo-Rodríguez, M.J.; Pino, V.; Miró, M. High-throughput microscale extraction using ionic liquids and derivatives, A review. J. Sep. Sci. 2020, 43, 1890–1907. [Google Scholar] [CrossRef]
- Zeng, H.; Wang, Y.; Kong, J.; Chan, N.; Yuan, Y. Ionic liquid-based microwave-assisted extraction of rutin from chinese medicinal plants. Talanta 2010, 83, 582–590. [Google Scholar] [CrossRef]
- Meindersma, G.W.; de Haan, A.B. (2008). Conceptual Process Design for Aromatic/Aliphatic Separation with Ionic Liquids. Chem. Eng. Res. Des. 2008, 86, 745–752. [Google Scholar] [CrossRef]
- Meindersma, G.W.; Podt, A.; de Haan, A.B. Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures. Fuel Process.Technol. 2005, 87, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Meindersma, G.W.; Podt, A.; de Haan, A.B. Ternary liquid-liquid equilibria for mixtures of toluene plus n-heptane plus an ionic liquid. Fluid Phase Equilibr. 2006, 247, 158–168. [Google Scholar] [CrossRef]
- Meindersma, G.W.; Podt, A.; Klaren, M.B.; De Haan, A.B. Separation of aromatic and aliphatic hydrocarbons with ionic liquids. Chem. Eng. Commun. 2006, 193, 1384–1396. [Google Scholar] [CrossRef]
- Markiewicz, M.; Piszora, M.; Caicedo, N.; Jungnickel, C.; Stolte, S. Toxicity of ionic liquid cations and anions towards activated sewage sludge organisms from different sources–consequences for biodegradation testing and wastewater treatment plant operation. Water Res. 2013, 47, 2921–2928. [Google Scholar] [CrossRef]
- Blanchard, L.A.; Brennecke, J.F. Recovery of organic products from ionic liquids using supercritical carbon dioxide. Ind. Eng. Chem. Res. 2001, 40, 287–292. [Google Scholar] [CrossRef]
- Blanchard, L.A.; Hancu, D.; Beckman, E.J.; Brennecke, J.F. Green processing using ionic liquids and CO2. Nature 1999, 399, 28–29. [Google Scholar] [CrossRef]
- Zhang, M.; Mallik, A.K.; Takafuji, M.; Ihara, H.; Qiu, H. Versatile ligands for high-performance liquid chromatography: An overview of ionic liquid-functionalized stationary phases. Anal. Chim. Acta 2015, 887, 1–16. [Google Scholar] [CrossRef]
- Qian, X.D.; You, L.B.; Ping, L.S.; Yuan, X.Z.; Chu, S.Y. A novel and eco-friendly method for the preparation of ionic liquids. Synth. Stuttg. 2003, 17, 2626–2628. [Google Scholar]
- Estager, J.; Lévêque, J.M.; Cravotto, G.; Boffa, L.; Bonrath, W.; Draye, M. One-pot and solventless synthesis of ionic liquids under ultrasonic irradiation. Synlett 2007, 13, 2065–2068. [Google Scholar] [CrossRef]
- He, A.; Dong, B.; Feng, X.; Yao, S. Recovery of benzothiazolium ionic liquids from the coexisting glucose by ion-exchange resins. J. Mol. Liq. 2016, 227, 178–183. [Google Scholar] [CrossRef]
- Huang, K.; Rui, W.; Yan, C.; Huiquan, L.; Jinshu, W. Recycling and reuse of ionic liquid in homogeneous cellulose acetylation. Chin. J. Chem. Eng. 2013, 21, 577–584. [Google Scholar] [CrossRef]
- Kröckel, J.; Kragl, U. Nanofiltration for the separation of nonvolatile products from solutions containing ionic liquids. Chem. Eng. Technol. 2003, 26, 1166–1168. [Google Scholar] [CrossRef]
- Mallick, B.; Balke, B.; Felser, C.; Mudring, A.V. Dysprosium room-temperature ionic liquids with strong luminescence and response to magnetic fields. Angew. Chem. Int. Ed. 2008, 47, 7635–7638. [Google Scholar] [CrossRef]
- Dong, K.; Liu, X.; Dong, H.; Zhang, X.; Zhang, S. Multiscale studies on ionic liquids. Chem. Rev. 2017, 117, 6636–6695. [Google Scholar] [CrossRef]
- Hollóczki, O.; Malberg, F.; Welton, T.; Kirchner, B. On the origin of ionicity in ionic liquids. Ion pairing versus charge transfer. Phys. Chem. Chem. Phys. 2014, 16, 16880–16890. [Google Scholar] [CrossRef]
- Nishihata, K.; Tsunashima, K.; Matsumiya, M. Physicochemical and electrochemical properties of room-temperature ionic liquids based on quaternary phosphonium cations and tetracyanoborate anion. ECS Trans. 2016, 72, 9–15. [Google Scholar] [CrossRef]
- Kokosa, J.M. Recent trends in using sing-drop microextraction and related techniques in green analytical methods. Trends Anal. Chem. 2015, 71, 194–204. [Google Scholar] [CrossRef]
- Tang, S.; Qi, T.; Ansah, P.D.; Fouemina, J.N.; Shen, W.; Basheer, C.; Lee, H.K. Single-drop microextraction. Trends Anal. Chem. 2018, 108, 306–313. [Google Scholar] [CrossRef]
- Wang, J.; Huang, S.; Wang, P.; Yang, Y. Method development for the analysis of phthalate esters in tea beverages by ionic liquid hollow fibre liquid-phase microextraction and liquid chromatographic detection. Food Control. 2016, 67, 278–284. [Google Scholar] [CrossRef]
- Altunay, N.; Elik, A.; Gürkan, R. Vortex assisted-ionic liquid based dispersive liquid liquid microextraction of low levels of nickel and cobalt in chocolate-based samples and their determination by FAAS. Microchem. J. 2019, 147, 277–285. [Google Scholar] [CrossRef]
- Chou, T.Y.; Lin, S.L.; Fuh, M.R. Determination of phenylurea herbicides in aqueous samples using partitioned dispersive liquid–liquid microextraction. Talanta 2009, 80, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Ba, I.X.; Xu, J. Simultaneous determination of simazine, cyanazine, and atrazine in honey samples by dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. J. Sep. Sci. 2017, 40, 3882–3888. [Google Scholar] [CrossRef] [PubMed]
- Yahya, P.; Meghdad, P.; Reza, A.; Toraj, A.J.; Nazir, F.; Kiomar, S.; Reza, G.H. Assessment of triazine herbicides residual in fruit and vegetables using Ultrasound assisted extraction-dispersive liquid-Liquid microextraction with solidification of floating organic drop. J. Braz. Chem. Soc. 2017, 28, 1247–1255. [Google Scholar]
- Rezaee, M.; Assadi, Y.; Hosseini, M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Yamini, Y.; Faraji, M. Evolution of dispersive liquid–liquid microextraction method. J. Chromatogr. A 2010, 1217, 2342–2357. [Google Scholar] [CrossRef]
- Zgoła-Grzeskowiak, A.; Grzeskowiak, T. Dispersive liquid-liquid microextraction. Trends Anal. Chem. 2011, 30, 1382–1399. [Google Scholar] [CrossRef]
- Chormey, D.S.; Bakrdere, S. Principles and recent advancements in microextraction techniques. Compr. Anal. Chem. 2018, 81, 257–294. [Google Scholar]
- Farajzadeh, M.A.; Khoshmaram, L.; Sheykhizadeh, S. A Review on application of microextraction techniques for analysis of chemical compounds and metal ions in foodstuffs. Anal. Bioanal. Chem. Res. 2014, 1, 1–19. [Google Scholar]
- Yin, Q.; Zhu, Y.; Yang, Y. Dispersive liquid-liquid microextraction followed by magnetic solid-phase extraction for determination of four parabens in beverage samples by ultra-performance liquid chromatography tandem mass spectrometry. Food Anal. Methods 2018, 11, 797–807. [Google Scholar] [CrossRef]
- Fan, C.; Li, N.; Cao, X. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid–liquid microextraction as a pretreatment method followed by high-performance liquid chromatography. Food Chem. 2015, 174, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, S.V.; Lyskovtseva, K.A.; Pletnev, I.V. Extraction and determination of synthetic food dyes using tetraalkylammonium based liquid-liquid extraction-ScienceDirect. Microchem. J. 2020, 162, 105833. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, H.; Bing, P.; Li, S.; Zhou, Z. Comparison of the performance of conventional, temperature-controlled, and ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction combined with high-performance liquid chromatography in analyzing pyrethroid pesticides in honey samples. J. Chromatogr. A 2011, 1218, 6621–6629. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, J.; Baker, G.A.; Jiji, R.D.; Baker, S.N. Developing microwave-assisted ionic liquid microextraction for the detection and tracking of hydrophobic pesticides in complex environmental matrices. RSC Adv. 2013, 3, 17113–17119. [Google Scholar] [CrossRef]
- Zhang, J.; Min, L.; Yang, M.; Peng, B.; Li, Y.; Zhou, W.; Gao, H.; Lu, R. Magnetic retrieval of ionic liquids, fast dispersive liquid–liquid microextraction for the determination of benzoylurea insecticides in environmental water samples. J. Chromatogr. A 2012, 1254, 23–29. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Bamorowat, M.; Mogaddam, M.A. Ionic liquid-based air-assisted liquid–liquid microextraction for the extraction and preconcentration of aryloxyphenoxypropionate herbicides from aqueous and vegetable samples followed by HPLC-DAD. Food Anal. Methods 2017, 10, 749–758. [Google Scholar] [CrossRef]
- You, X.W.; Chen, X.C.; Liu, F.M.; Hou, F.; Li, Y.Q. Ionic liquid-based air-assisted liquid–liquid microextraction followed by high performance liquid chromatography for the determination of five fungicides in juice samples. Food Chem. 2018, 239, 354–359. [Google Scholar] [CrossRef]
- Gure, A.; Lara, F.J.; Garcia-Campana, A.M.; Megersa, N.; del Olmo-Iruela, M. Vortex-assisted ionic liquid dispersive liquid–liquid microextraction for the determination of sulfonylurea herbicides in wine samples by capillary high-performance liquid chromatography. Food Chem. 2015, 170, 348–353. [Google Scholar] [CrossRef]
- Lubomirsky, E.; Padró, J.M.; Reta, M.R. Development of a dispersive liquid-liquid microextraction technique for the analysis of aryloxyphenoxy-propionate herbicides in soy-based foods. Microchem. J. 2016, 129, 63–70. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Xu, B.; Li, X.; Jin, R.; Zhang, H.; Song, D. Magnetic ionic liquid–based dispersive liquid–liquid microextraction for the determination of triazine herbicides in vegetable oils by liquid chromatography. J. Chromatogr. A 2014, 1373, 9–16. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, S.; Bo, X.; Li, X.; Wang, X.; Zhang, H.; Song, D. Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid-liquid microextraction for the determination of triazine herbicides in oilseeds. Anal. Chim. Acta 2015, 888, 67–74. [Google Scholar] [CrossRef]
- Wang, X.; Chen, P.; Cao, L.; Xu, G.; Yang, S.; Fang, Y.; Wang, G.; Hong, X. Selenium speciation in rice samples by magnetic ionic liquid-based up-and-down-shaker-assisted dispersive liquid-liquid microextraction coupled to graphite furnace atomic absorption spectrometry. Food Anal. Methods 2017, 10, 1653–1660. [Google Scholar] [CrossRef]
- Qu, J.; Li, Y.; Gao, M.; Tan, C.; Li, J.; Wang, X.; Wang, H. Development and optimization of a thiol imidazolium-based ionic liquid for ultrasonic assisted liquid-liquid microextraction combined with HPLC-FLD for determination of bisphenols in milk and juice samples. LWT 2019, 111, 653–662. [Google Scholar] [CrossRef]
- Rui, S.; Dan, L.; Wu, L.; Jing, H.; Lian, W.; Wang, K.; Yang, H. Determination of triazine herbicides in juice samples by microwave-assisted ionic liquid/ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography. J. Sep. Sci. 2017, 40, 2950–2958. [Google Scholar]
- Yao, T.; Du, K. Simultaneous determination of sulfonamides in milk, in-situ magnetic ionic liquid dispersive liquid-liquid microextraction coupled with HPLC. Food Chem. 2020, 331, 127342. [Google Scholar] [CrossRef]
- Yang, C.; Ran, L.; Xu, M.; Ren, D.; Yi, L. In situ ionic liquid dispersive liquid–liquid microextraction combined with ultra high performance liquid chromatography for determination of neonicotinoid insecticides in honey samples. J. Sep. Sci. 2019, 42, 1930–1937. [Google Scholar] [CrossRef]
- Adhami, K.; Asadollahzadeh, H.; Ghazizadeh, M. Preconcentration and determination of nickel (II) and copper (II) ions, in vegetable oils by [TBP][PO4] IL-based dispersive liquid–liquid microextraction technique, and flame atomic absorption spectrophotometry. J. Food Compos. Anal. 2020, 89, 103457. [Google Scholar] [CrossRef]
- Bani, S.M.; Saaid, M.; Saad, B. An in situ dansylation ultrasound-assisted dispersive liquid-liquid microextraction based on ionic liquid for determination of biogenic amines in foods. Food Anal. Methods 2020, 13, 568–577. [Google Scholar] [CrossRef]
- Zhang, R.; Tan, Z.; Zhao, J.; Wen, Y.; Fan, S.; Liu, C. Determination of pyrethroid residues in herbal tea using temperature-controlled ionic liquid dispersive liquid-liquid microextraction by high performance liquid chromatography. Sci. Rep. 2020, 10, 4709. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Yang, Z.; Jin, S.; Gao, L.; He, L.; Jiang, X. A simple one-step transferred sample preparation for effective purification and extraction of auramine o in bean product by combining air-assisted ionic liquid-based dispersive liquid-liquid microextraction. Microchem. J. 2020, 159, 105571. [Google Scholar] [CrossRef]
- Xu, W.; Li, J.; Feng, J.; Wang, Z.; Zhang, H. In-syringe temperature-controlled liquid–liquid microextraction based on solidifed floating ionic liquid for the simultaneous determination of triazine and phenylurea pesticide in vegetable protein drinks. J. Chromatogr. B 2021, 1174, 122721. [Google Scholar] [CrossRef]
- Toledo, B.R.; Hantao, L.W.; Ho, T.D.; Augusto, F.; Anderson, J.L. A chemometric approach toward the detection and quantification of coffee adulteration by solidphase microextraction using polymeric ionic liquid sorbent coatings. J. Chromatogr. A 2014, 1346, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Xu, X.; Liu, Z.; Xue, S.; Zhang, L. Novel functionalized magnetic ionic liquid green separation technology coupled with high performance liquid chromatography, a rapid approach for determination of estrogens in milk and cosmetics. Talanta 2020, 209, 120542. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.; Nasehi, Z. Simultaneous determination of brilliant green and crystal violet dyes in fish and water samples with dispersive liquid-liquid micro-extraction using ionic liquid followed by zero crossing first derivative spectrophotometric analysis method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 201, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, E.F.; Oviedo, M.N.; Wuilloud, R.G. Ultra-trace cr preconcentration in honey samples by magnetic ionic liquid dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry-ScienceDirect. Spectrochim. Acta Part B At. Spectrosc. 2020, 169, 105879. [Google Scholar] [CrossRef]
- Wei, L.; Ji, Q.; Hu, Z. Detection of organophosphorus pesticides in wheat by ionic liquid-based dispersive liquid-liquid microextraction combined with HPLC. J. Anal. Methods Chem. 2018, 1–10. [Google Scholar]
- Ravelo-Pérez, L.M.; Hernández-Borges, J.; Asensio-Ramos, M.; Rodríguez-Delgado, M.Á. Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas. J. Chromatogr. A 2009, 1216, 7336–7345. [Google Scholar] [CrossRef]
- Wang, Y.; You, J.; Ren, R.; Yao, X.; Gao, S.; Zhang, H.; Yu, A. Determination of triazines in honey by dispersive liquid–liquid microextraction high-performance liquid chromatography. J. Chromatogr. A 2010, 1217, 4241–4246. [Google Scholar] [CrossRef]
- Kokosa, J.M. Selecting an extraction solvent for a greener liquid phase microextraction (LPME) mode-based analytical method. Trends Anal. Chem. 2019, 118, 238–247. [Google Scholar] [CrossRef]
- Makoś, P.; Przyjazny, A.; Boczkaj, G. Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogr. A 2018, 1570, 28–37. [Google Scholar] [CrossRef]
- Gao, S.; Xiao, Y.; Wei, Y.; Liu, Z.; Zhang, H. Ultrasound-assisted ionic liquid/ionic liquid-dispersive liquid-liquid microextraction for the determination of sulfonamides in infant formula milk powder using high-performance liquid chromatography. Talanta 2012, 99, 875–882. [Google Scholar] [CrossRef]
- Alonso, F.; Beletskaya, I.P.; Yus, M. Non-conventional methodologies for transition-metal catalysed carbon–carbon coupling, a critical overview. Part 1, the heck reaction. Tetrahedron 2005, 61, 11771–11835. [Google Scholar] [CrossRef]
- Alonso, F.; Beletskaya, I.P.; Yus, M. Non-conventional methodologies for transition-metal catalysed carbon–carbon coupling, a critical overview. Part 2, the suzuki reaction. Tetrahedron 2008, 64, 3047–3101. [Google Scholar] [CrossRef]
- Leveque, J.M.; Cravotto, G. Microwaves, power ultrasound, and ionic liquids. a new synergy in green organic synthesis. Chimia 2006, 60, 313–320. [Google Scholar] [CrossRef]
- Baghdadi, M.; Shemirani, F. In situ solvent formation microextraction based on ionic liquids, a novel sample preparation technique for determination of inorganic species in saline solutions. Anal. Chim. Acta 2009, 634, 186–191. [Google Scholar] [CrossRef]
- Bagheri, H.; Zandi, O.; Aghakhani, A. Magnetic nanoparticle-based micro-solid phase extraction and GC-MS determination of oxadiargyl in aqueous samples. Chromatographia 2011, 74, 483–488. [Google Scholar] [CrossRef]
- Román, I.P.; Chisvert, A.; Canals, A. Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography-mass spectrometry for UV-filter determination in water samples. J. Chromatogr. A 2011, 1218, 2467–2475. [Google Scholar] [CrossRef]
- Fan, C.; Liang, Y.; Dong, H.; Ding, G.; Zhang, W.; Tang, G.; Yang, J.; Kong, D.; Wang, D.; Cao, Y. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples. Anal. Chim. Acta 2017, 975, 20–29. [Google Scholar] [CrossRef]
- Yang, M.; Wu, X.; Jia, Y.; Xi, X.; Yang, X.; Lu, R.; Zhang, S.; Gao, H.; Zhou, W. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology. Anal. Chim. Acta 2016, 906, 118–127. [Google Scholar] [CrossRef]
- Hayashi, S.; Hamaguchi, H.O. Discovery of a magnetic ionic liquid [BMIM]FeCl4. Chem. Lett. 2004, 33, 1590–1591. [Google Scholar] [CrossRef]
- Deng, N.; Li, M.; Zhao, L.; Lu, C.; de Rooy, S.L.; Warner, I.M. Highly efficient extraction of phenolic compounds by use of magnetic room temperature ionic liquids for environmental remediation. J. Hazard. Mater. 2011, 192, 1350–1357. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.; Albo, J.; Irabien, A. Magnetic ionic liquids, synthesis, properties and applications. RSC Adv. 2014, 4, 40008–40018. [Google Scholar] [CrossRef]
- Beiraghi, A.; Shokri, M. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy. Talanta 2018, 178, 616–621. [Google Scholar] [CrossRef]
- Campillo, N.; Vias, P.; Andrejová, J.; Andruch, V. Ten years of dispersive liquid–liquid microextraction and derived techniques. Appl. Spectrosc. Rev. 2016, 52, 267–415. [Google Scholar] [CrossRef]
- Bojko, B.; Reyes-Garces, N.; Bessonneau, V.; Gorynski, K.; Mousavi, F.; Souza-Silva, E.A.; Pawliszyn, J. Solid-phase microextraction in metabolomics. Trends Anal. Chem. 2014, 61, 168–180. [Google Scholar] [CrossRef]
- Reyes-Garces, N.; Emanuela, G.; Gomez-Ríos, G.A.; Alam, M.N.; Boyacl, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in solid phase microextraction and perspective on future directions. Anal. Chem. 2017, 90, 302–360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhou, L.; Chen, H.; Wang, C.Z.; Xia, Z.; Yuan, C.S. Solid-phase microextraction technology for in vitro and in vivo metabolite analysis. Trends Anal. Chem. 2016, 80, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkle, S.; Kleeberg, K.; Fritsche, J. Recent developments and applications of solid phase microextraction (SPME) in food and environmental analysis—A review. Chromatography 2015, 2, 293–381. [Google Scholar] [CrossRef] [Green Version]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, J.; Tian, J.; Zhu, F.; Zeng, F.; Su, C.; Ouyang, G. New materials in solid phase microextraction. Trends Anal. Chem. 2013, 47, 68–83. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Q.; Yang, X.; Wang, W.; Li, Z.; Zhang, L.; Wang, C.; Wang, Z. A zeolitic imidazolate framework based nanoporous carbon as a novel fiber coating for solid-phase microextraction of pyrethroid pesticides. Talanta 2017, 166, 46–53. [Google Scholar] [CrossRef]
- Yu, H.; Ho, T.D.; Anderson, J.L. Ionic liquid and polymeric ionic liquid coatings in solid phase microextraction. Trends Anal. Chem. 2013, 45, 219–232. [Google Scholar] [CrossRef]
- Sajid, M.; Khaled, N.M.; Rutkowska, M.; Szczepańska, N.; Namieśnik, J.; Płotka-Wasylka, J. Solid phase microextraction, apparatus, sorbent materials, and application. Crit. Rev. Anal. Chem. 2018, 49, 271–278. [Google Scholar] [CrossRef]
- Cagliero, C.; Ho, T.D.; Zhang, C.; Bicchi, C.; Anderson, J.L. Determination of acrylamide in brewed coffee and coffee powder using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to gas chromatography–mass spectrometry. J. Chromatogr. A 2016, 1449, 2–7. [Google Scholar] [CrossRef]
- Crucello, J.; Miron, L.F.O.; Ferreira, V.H.C.; Nan, H.; Marques, M.O.M.; Ritschel, P.S.; Zanus, M.C.; Anderson, J.L.; Poppi, R.J.; Hantao, L.W. Characterization of the aroma profile of novel Brazilian wines by solid-phase microextraction using polymeric ionic liquid sorbent coatings. Anal. Bioanal. Chem. 2018, 410, 4749–4762. [Google Scholar] [CrossRef] [Green Version]
- Joshi, M.D.; Ho, T.D.; Cole, W.; Anderson, J.L. Determination of polychlorinated biphenyls in ocean water and bovine milk using crosslinked polymeric ionic liquid sorbent coatings by solid-phase microextraction. Talanta 2014, 118, 172–179. [Google Scholar] [CrossRef]
- Trujillo-Rodríguez, M.J.; Yu, H.; Cole, W.T.S.; Ho, T.D.; Pino, V.; Anderson, J.L.; Afonso, A.M. Polymeric ionic liquid coatings versus commercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses. Talanta 2014, 121, 153–162. [Google Scholar] [CrossRef]
- Zhao, F.; Meng, Y.; Anderson, J.L. Polymeric ionic liquids as selective coatings for the extraction of esters using solid-phase microextraction. J. Chromatogr. A 2008, 1208, 1–9. [Google Scholar] [CrossRef]
- Sadeghi, S.; Oliaei, S. Microextraction of sulfathiazole from milk and honey samples using a polymeric ionic liquid membrane followed by fluorometric determination. J. Food Compos. Anal. 2021, 97, 103774. [Google Scholar] [CrossRef]
- Pacheco-Fernández, I.; Trujillo-Rodríguez, M.J.; Kuroda, K.; Holen, A.L.; Jensen, M.B.; Anderson, J.L. Zwitterionic polymeric ionic liquid-based sorbent coatings in solid phase microextraction for the determination of short chain free fatty acids. Talanta 2019, 200, 415–423. [Google Scholar] [CrossRef]
- Feng, J.; Wang, X.; Yu, T.; Luo, C.; Sun, M. Basalt fibers grafted with a poly(ionic liquids) coating for in-tube solid-phase microextraction. J. Sep. Sci. 2018, 41, 3267–3274. [Google Scholar] [CrossRef]
- Ho, T.D.; Cole, W.T.S.; Augusto, F.; Anderson, J.L. Insight into the extraction mechanism of polymeric ionic liquid sorbent coatings in solid-phase microextraction. J. Chromatogr. A 2013, 1298, 146–151. [Google Scholar] [CrossRef]
- Trujillo-Rodríguez, M.J.; Anderson, J. Silver-based polymeric ionic liquid sorbent coatings for solid-phase microextraction, Materials for the selective extraction of unsaturated compounds. Anal. Chim. Acta 2019, 1047, 52–61. [Google Scholar] [CrossRef]
- Clark, K.D.; Emaus, M.N.; Varona, M.; Bowers, A.N.; Anderson, J.L. Ionic liquids, solvents and sorbents in sample preparation. J. Sep. Sci. 2018, 41, 209–235. [Google Scholar] [CrossRef]
- Yavir, K.; Konieczna, K.; Marcinkowski, U.; Kloskowski, A. Ionic liquids in the microextraction techniques, the influence of ILs structure and properties. Trends Anal. Chem. 2020, 130, 115994. [Google Scholar] [CrossRef]
- Feng, J.; Sun, M.; Li, L.; Wang, X.; Duan, H.; Luo, C. Multiwalled carbon nanotubes-doped polymeric ionic liquids coating for multiple headspace solid-phase microextraction. Talanta 2014, 123, 18–24. [Google Scholar] [CrossRef]
- Hernández-Hernández, A.A.; Álvarez-Romero, G.A.; Contreras-López, E.; Aguilar-Arteaga, K.; Castañeda-Ovando, A. Food analysis by microextraction methods based on the use of magnetic nanoparticles as supports: Recent advances. Food Anal. Methods 2017, 10, 2974–2993. [Google Scholar] [CrossRef]
- Ferreira, T.A.; Flores-Aguilar, J.F.; Santos, E.M.; Rodriguez, J.A.; Ibarra, I.S. New poly(ionic liquid) based fiber for determination of oxytetracycline in milk samples by application of SPME-CE technique. Molecules 2019, 24, 430. [Google Scholar] [CrossRef] [Green Version]
- Rynkowska, E.; Fatyeyeva, K.; Kujawski, W. Application of polymer-based membranes containing ionic liquids in membrane separation processes, a critical review. Rev. Chem. Eng. 2017, 34, 341–363. [Google Scholar] [CrossRef]
- Song, X.; Shi, Y.; Chen, J. Carbon nanotubes-reinforced hollow fibre solid-phase microextraction coupled with high performance liquid chromatography for the determination of carbamate pesticides in apples. Food Chem. 2013, 139, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Feng, J.; Wang, X.; Luo, C.; Sun, M. Ionic liquid functionalized silica aerogel as coating for solid-phase microextraction. J. Chromatogr. A 2019, 1583, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Yang, P.; Pang, R.; Lu, X.; Xiao, J.; Li, S.; Zhang, H.; Zhao, J. Ionogel-based ionic liquid coating for solid-phase microextraction of organophosphorus pesticides from wine and juice samples. Food Anal. Methods 2018, 11, 270–281. [Google Scholar] [CrossRef]
- Jon, C.S.; Meng, L.Y.; Li, D. Recent review on carbon nanomaterials functionalized with ionic liquids in sample pretreatment application. Trends Anal. Chem. 2019, 120, 115641. [Google Scholar] [CrossRef]
- Ai, Y.; Wu, M.; Li, L.; Zhao, F.; Zeng, B. Highly selective and effective solid phase microextraction of benzoic acid esters using ionic liquid functionalized multiwalled carbon nanotubes-doped polyaniline coating. J. Chromatogr. A 2016, 1437, 1–7. [Google Scholar] [CrossRef]
- Li, L.; Wu, M.; Feng, Y.; Zhao, F.; Zeng, B. Doping of three-dimensional porous carbon nanotube-graphene-ionic liquid composite into polyaniline for the headspace solid-phase microextraction and gas chromatography determination of alcohols. Anal. Chim. Acta 2016, 948, 48–54. [Google Scholar] [CrossRef]
- Wu, M.; Chen, G.; Liu, P.; Zhou, W.; Jia, Q. Preparation of porous aromatic framework/ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection. Analyst 2016, 141, 243–250. [Google Scholar] [CrossRef]
- Feng, J.; Sun, M.; Bu, Y.; Luo, C. Facile modification of multi-walled carbon nanotubesepolymeric ionic liquids-coated solid-phase microextraction fibers by on-fiber anion exchange. J. Chromatogr. A 2015, 1393, 8–17. [Google Scholar] [CrossRef]
- Montano, D.F.; Casanova, H.; Cardona, W.I.; Giraldo, L.F. Functionalization of montmorillonite with ionic liquids based on 1-alkyl-3-methylimidazolium, effect of anion and length chain. Mater. Chem. Phys. 2017, 198, 386–392. [Google Scholar] [CrossRef]
- Pelit, F.O.; Pelit, L.; Dizdas, T.N.; Aftata, C.; Ertas, H.; Yalcinkaya, E.E.; Turkmen, H.; Ertas, F.N. A novel polythiophene-ionic liquid modified clay composite solid phase microextraction fiber, Preparation, characterization and application to pesticide analysis. Anal. Chim. Acta 2015, 859, 37–45. [Google Scholar] [CrossRef]
- Pei, J.; Xing, X.; Xia, B.; Wang, Z.; Luo, Z. Study on the adsorption behaviour between an imidazolium ionic liquid and Na-Montmorillonite. Molecules 2019, 24, 1396. [Google Scholar] [CrossRef] [Green Version]
- Tashakkori, P.; Tagaç, A.A.; Merdivan, M. Fabrication of montmorillonite/ionic liquid composite coated solid-phase microextraction fibers for determination of phenolic compounds in fruit juices by gas chromatography and liquid chromatography. J. Chromatogr. A 2021, 1635, 461741. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Pino, V.; Ayala, J.H.; Pasán, J.; Ruiz-Pérez, C.; Afonso, A.M. A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultrahigh-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions. J. Chromatogr. A 2016, 1436, 42–50. [Google Scholar]
- Nasrollahpour, A.; Moradi, S.E.; Baniamerian, M.J. Vortex-assisted dispersive solid-phase microextraction using ionic liquid-modified metal-organic frameworks of PAHs from environmental water, vegetable, and fruit juice samples. Food Anal. Methods 2017, 10, 2815–2826. [Google Scholar] [CrossRef]
- Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Profumo, A. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review. Anal. Chim. Acta 2017, 974, 1–26. [Google Scholar] [CrossRef]
- Hamdan, S.; Moore, L., Jr.; Lejeune, J.; Hasan, F.; Carlisle, T.K.; Bara, J.E.; Gin, D.L.; LaFrate, A.L.; Noble, R.D.; Spivak, D.A.; et al. Ionic liquid crosslinkers for chiral imprinted nanogumbos. J. Colloid Interface Sci. 2016, 463, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Kadhirvel, P.; Azenha, M.; Shinde, S.; Schillinger, E.; Silva, A.F. Imidazolium-based functional monomers for the imprinting of the anti-inflammatory drug naproxen, comparison of acrylic and sol-gel approaches. J. Chromatogr. A 2013, 1314, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Huang, X. Preparation and application of a poly (ionic liquid)-based molecularly imprinted polymer for multiple monolithic fiber solid-phase microextraction of phenolic acids in fruit juice and beer samples. Analyst 2017, 142, 4039. [Google Scholar] [CrossRef]
- Chatzimitakos, T.G.; Anderson, J.L.; Stalikas, C.D. Matrix solid-phase dispersion based on magnetic ionic liquids, an alternative sample preparation approach for the extraction of pesticides from vegetables. J. Chromatogr. A 2018, 1581, 168–172. [Google Scholar] [CrossRef]
- Yao, L.; Liu, H.T.; Wang, X.; Xu, W.Z.; Zhu, Y.Q.; Wang, H.; Pang, L.Y.; Lin, C.W. Ultrasound-assisted surfactant-enhanced emulsification microextraction using a magnetic ionic liquid coupled with micro-solid phase extraction for the determination of cadmium and lead in edible vegetable oils. Food Chem. 2018, 256, 212–218. [Google Scholar] [CrossRef]
- Boon, Y.H.; Zain, N.N.M.; Mohamad, S.; Osman, H.; Raoov, M. Magnetic poly(β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food Chem. 2019, 278, 322–332. [Google Scholar] [CrossRef]
- Liu, F.; Yang, X.; Wu, X.; Xi, X.; Gao, H.; Zhang, S.; Zhou, W.; Lu, R. A dispersive magnetic solid phase microextraction based on ionic liquid-coated and cyclodextrin-functionalized magnetic core dendrimer nanocomposites for the determination of pyrethroids in juice samples. Food Chem. 2018, 268, 485–491. [Google Scholar] [CrossRef]
- Dong, X.; Gao, X.; Song, J.; Zhao, L. A novel dispersive magnetic solid phase microextraction using ionic liquid-coated amino silanized magnetic graphene oxide nanocomposite for high efficient separation/preconcentration of toxic ions from shellfish samples. Food Chem. 2021, 360, 130023. [Google Scholar] [CrossRef] [PubMed]
- Fontanals, N.; Borrull, F.; Marcé, R.M. Ionic liquids in solid-phase extraction. Trends Anal. Chem. 2012, 41, 15–26. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X. Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, H.; Liu, Z.; Gao, N.; Du, L.; Fu, Y. Ionic liquid-magnetic nanoparticle microextraction of safranin T in food samples. Food Anal. Methods 2015, 8, 541–548. [Google Scholar] [CrossRef]
- Mehdinia, A.; Shegefti, S.; Shemirani, F. A novel nanomagnetic task specific ionic liquid as a selective sorbent for the trace determination of cadmium in water and fruit samples. Talanta 2015, 144, 1266–1272. [Google Scholar] [CrossRef]
- Ramandi, N.F.; Shemirani, F. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples. Talanta 2015, 131, 404–411. [Google Scholar] [CrossRef]
- Soylak, M.; Yilmaz, E. Determination of cadmium in fruit and vegetables by ionic liquid magnetic microextraction and flame atomic absorption spectrometry. Anal. Lett. 2015, 48, 464–476. [Google Scholar] [CrossRef]
- Amde, M.; Temsgen, A.; Dechassa, N. Ionic liquid functionalized zinc oxide nanorods for solid-phase microextraction of aflatoxins in food products. J. Food Compos. Anal. 2020, 91, 103528. [Google Scholar] [CrossRef]
- Yu, H.; Merib, J.; Anderson, J.L. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography. J. Chromatogr. A 2016, 1438, 10–21. [Google Scholar] [CrossRef] [Green Version]
Matrix | Target Analytes | ILs | Extraction Technique | Recoveries (%) | Reference |
---|---|---|---|---|---|
Milk and coffee | Polychlorinated biphenyls and acrylamide | [C4MIM][Br]; [C8MIM][Br]; [BeBIM][Br]; [BeEOHIM][Br]; [HeOHMIM][Cl] | In situ IL-DLLME | - | [32] |
Honey | Triazine herbicides | [C6MIM][PF6] | Conventional IL-DLLME | 94.2–103.4% | [50] |
Chocolates | Nickel and cobalt | [C6MIM][FAP] | Vortex-assisted IL-DLLME | - | [61] |
Beverage | Parabens | [C8MIM][PF6] | Conventional IL-DLLME | 58.8–89.2% | [70] |
Honey | Chlorophenol compounds | [C4MIM][NTf2] | In situ DLLME | 91.60–114.33% | [71] |
Soft noncarbonated vitaminized drink | Red 2G, azorubine, allura red and fast green dyes | TOALS; THADHSS | In situ DLLME | 100% | [72] |
Honey | Pyrethroid pesticides | [N8881][Tf2N] | Conventional, ultrasound-assisted, and temperature-assisted IL-DLLME | 101.2–103.0% | [73,74] |
Infant formula milk powders | sulfonamides | [C2MIM][BF4]; [C4MIM][BF4]; [C4MIM][PF6]; [C6MIM][PF6]; [C8MIM][PF6] | Microwave-assisted IL-DLLME | 79.8–91.7% | [75] |
Vegetable | Aryloxyphenoxypropionate herbicides | [C6MIM][PF6]; [C4MIM][PF6]; [C8MIM][PF6] | Air-assisted IL-DLLME | 76–83% | [76] |
Juice | Fungicides | [C6MIM][NTF2]; [C8MIM][PF6]; [C6MIM][PF6] | Air-assisted IL-DLLME | 74.9–115.4% | [77] |
Wine | Sulfonylurea herbicides | [C6MIM][PF6] | Vortex-assisted IL-DLLME | - | [78] |
Soy milk and soy sauce | Aryloxyphenoxy-propionate herbicides | [(C6)3C14P][NTf2] | Conventional IL-DLLME | - | [79] |
Vegetable oils | Triazine herbicides | [C6MIM][FeCl4] | MIL-DLLME | 81.8–114.2% | [80] |
Oilseeds | Triazine herbicides | [C4MIM][FeCl4] | MSPD-MIL-DLLME | - | [81] |
Rice | Inorganic selenium | [C4MIM][FeCl4] | MIL-UDSA-DLLME | 94.9–104.8% | [82] |
Milk and juice | Bisphenols | [C4MIM][PF6]; [C6MIM][PF6]; [C8MIM][PF6]; [C4MIM][BF4]; [C4MIM-SH][Br] | Ultrasonic-assisted IL-DLLME | 91.6–107.9% | [83] |
Juice | Triazine herbicides | [C2MIM][BF4]; [C4MIM][BF4]; [C4MIM][PF6]; [C6MIM][PF6]; [C8MIM][PF6] | Microwave-assisted IL-DLLME | 76.7–105.7% | [84] |
Milk | Sulfonamides | [C2MIM-TEMPO][PF6], [C3MIM-TEMPO][PF6], [C4MIM-TEMPO][PF6]; [C5MIM-TEMPO][PF6] | In situ MIL-DLLME | - | [85] |
Honey | Neonicotinoid insecticides | [C4MIM][BF4]; [C4MIM][Cl]; [C4MIM][Br]; [C6MIM][Br]; [C8MIM][Br] | In situ IL-DLLME | 81.0–103.4% | [86] |
Vegetable oils | Nickel (II) and copper (II) ions | [TBP][PO4] | Conventional IL-DLLME | - | [87] |
Mango juice, tempe, budu, and canned sardine fish | Biogenic amines | [C4MIM][PF6] | In situ ultrasonic-assisted IL-DLLME | 70.7–118.4% | [88] |
Herbal tea | Pyrethroid pesticides | [C6MIM][PF6] | Ultrasound enhanced temperature-assisted IL-DLLME | 74.02–109.01% | [89] |
Solid bean | Auramine O | [BBIM][Tf2N]; [HHIM][Tf2N] | Air-assisted IL-DLLME | 90% | [90] |
Vegetable protein drinks | Triazine and phenylurea pesticide | [P4 4 4 12][BF4] | Temperature-assisted IL-DLLME | 81.26–118.42% | [91] |
Wheat | Aflatoxins | [C6MIM][PF6], [C8MIM][PF6]; [C10MIM][PF6]; [C6MIM][Tf2N]; [C8MIM][Tf2N] | Conventional IL-DLLME | - | [92] |
Milk | Estrogens | [P6,6,6,14][FeCl4]; [P6,6,6,14]2[MnCl4; [P6,6,6,14]2[CoCl4];[P6,6,6,14]2[NiCl4] | MIL-DLLME | - | [93] |
Fish | Green and violet dyes | [C8MIM][PF6] | Conventional IL-DLLME | - | [94] |
Honey | Cr(III) Species | [P6,6,6,14][FeCl4] | MIL-DLLME | - | [95] |
Wheat | Organophosphorus pesticides | [C8MIM][Tf2N] | Ultrasonic-assisted IL-DLLME | 74.8–115.5% | [96] |
Matrix | Target Analytes | ILs | Extraction Technique | Recoveries (%) | Reference |
---|---|---|---|---|---|
Grape | Organophosphorus pesticides and fruit metabolites | poly[VBHDIM] [NTf2]; poly [DDMGlu][MTFSI] | SPME | - | [9] |
Milk and honey | Sulfathiazole | HVImBr | SPME | - | [25] |
Wine | Short chain free fatty acids | [VIm][C3SO3]; [VIm][C4SO3]; [VIm][C9COO] | SPME | - | [26] |
Brewed coffee and coffee powder | acrylamide | [VImC10][SS]; [(VBIm)2C12] 2[SS] | SPME | - | [124] |
Brazilian wines | Polar volatile organic compounds | [VC16IM][NTf2]; [(VIM)2C12]2[NTf2] | HS-SPME | - | [125] |
Wine | Short chain free fatty acids | [VIm][C9COO] | SPME | - | [130] |
Bottle water | Phthalates | [C12VIM][Br] | IT-SPME | 86.4–119.5% | [131] |
Milk | Oxytetracycline | [AMIM][Cl] | SPME | - | [138] |
Wine and Juice | Organophosphorus Pesticides | [C16MIM][NTf2] | SPME | 54-118% | [142] |
Fruit juices | Multiclass pesticides | [C8MIM[Br]; [C12MIM[Br]; [C18MIMBr] | SPME | - | [149] |
Fresh fruit juices | Phenolic compounds | [H2N-C3MIM][Br]; [H2N-C3MIM][BF4]; [H2N-C3MIM][NTf2]); [H2N-C3BIM][Br]; [H2N-C3BIM][BF4]; [H2N-C3BIM][NTf2] | SPME | - | [151] |
Vegetable and fruit juice | polycyclic aromatic hydrocarbons | [BMIM][Cys]; [BMIM][Cl] | VA-d-μ-SPE | - | [153] |
Fruit juice and beer | Phenolic acids | [AVIM][Cl] | MMF-SPME | - | [157] |
Juice | Pyrethroids | [C8MIM][NTF2] | DM- SPME | 70–90% | [161] |
Shellfsh | Lead(II), copper(II) and cadmium(II) | [C6MIM][PF6] | DM- SPME | 90–110% | [162] |
Chili pepper and processed groundnut | Aflatoxins | [C6MIM][PF6]) | SPME | - | [169] |
Tap water | Phenols, multiclass insecticides | [VC10OHIM][Cl] | SPME | 50.2–115.9% | [170] |
Microextraction | Advantage | Disadvantage |
---|---|---|
SPME | Simplicity of workflow; high sensitivity; short process time, little or no use of organic solvents; the use of small sample Volumes; easy-to-automate. | High cost; fibers are very fragile and snap easily; the recovery and precision of the target analytes are lower than that of DLLME; limited number of commercially available sorbent coatings; the repeatability for different fibers is poor. |
DLLME | Simple operation; rapidness; small sample volume; less extractant usage; low-cost; high enrichment efficiency and precision; excellent recovery for analytes. | It is only suitable for the extraction of medium or high lipophilic target components from an aqueous matrix. For intermediate hydrophilic acid and basic components, it is necessary to adjust the pH value of the sample matrix to make it exist in a non-ionic state to improve the enrichment coefficient. However, it is not suitable for neutral components with strong hydrophilic. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, L.; Cai, C.; Guo, R.; Yao, S.; Zhu, Z.; Hong, Y.; Guo, D. Ionic Liquid-Assisted DLLME and SPME for the Determination of Contaminants in Food Samples. Separations 2022, 9, 170. https://doi.org/10.3390/separations9070170
Nie L, Cai C, Guo R, Yao S, Zhu Z, Hong Y, Guo D. Ionic Liquid-Assisted DLLME and SPME for the Determination of Contaminants in Food Samples. Separations. 2022; 9(7):170. https://doi.org/10.3390/separations9070170
Chicago/Turabian StyleNie, Lirong, Chaochao Cai, Runpeng Guo, Shun Yao, Zhi Zhu, Yanchen Hong, and Dong Guo. 2022. "Ionic Liquid-Assisted DLLME and SPME for the Determination of Contaminants in Food Samples" Separations 9, no. 7: 170. https://doi.org/10.3390/separations9070170
APA StyleNie, L., Cai, C., Guo, R., Yao, S., Zhu, Z., Hong, Y., & Guo, D. (2022). Ionic Liquid-Assisted DLLME and SPME for the Determination of Contaminants in Food Samples. Separations, 9(7), 170. https://doi.org/10.3390/separations9070170