Extraction and Characterization of Flavanol-Rich Nutraceuticals Based on High-Performance Liquid Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Instruments
2.3. Samples
2.4. Sample Treatment
2.5. Chromatographic Method for Flavanol Profiling
2.6. Spectrophotometric Method for Total Flavanol Content
2.7. Data Analysis
3. Results and Discussion
3.1. Optimization of the Extraction Conditions
3.1.1. Solvent Composition
3.1.2. Extraction Time and Temperature
3.2. Optimization of the HPLC Method
3.3. Analytical Parameters of the HPLC-FLD Method
3.4. Determination of Flavanols in Nutraceutical Samples
3.5. Sample Characterization by PCA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Côté, J.; Caillet, S.; Doyon, G.; Sylvain, J.F.; Lacroix, M. Bioactive Compounds in Cranberries and Their Biological Properties. Crit. Rev. Food Sci. Nutr. 2010, 50, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS Analysis and Characterization of Polyphenols in Food. TrAC Trends Anal. Chem. 2017, 88, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Howell, A.B.; Reed, J.D.; Krueger, C.G.; Winterbottom, R.; Cunningham, D.G.; Leahy, M. A-Type Cranberry Proanthocyanidins and Uropathogenic Bacterial Anti-Adhesion Activity. Phytochemistry 2005, 66, 2281–2291. [Google Scholar] [CrossRef]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Prior, R.L. Concentrations of Proanthocyanidins in Common Foods and Estimations of Normal Consumption. J. Nutr. 2004, 134, 613–617. [Google Scholar] [CrossRef]
- Vidal-Casanella, O.; Núñez, O.; Granados, M.; Saurina, J.; Sentellas, S. Analytical Methods for Exploring Nutraceuticals Based on Phenolic Acids and Polyphenols. Appl. Sci. 2021, 11, 8276. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Evaluation of Parameters That Affect the 4-Dimethylaminocinnamaldehyde Assay for Flavanols and Proanthocyanidins. J. Food Sci. 2010, 75, C619–C625. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Maciel, L.G.; Nunes, D.S. Chemical Perspective and Criticism on Selected Analytical Methods Used to Estimate the Total Content of Phenolic Compounds in Food Matrices. TrAC Trends Anal. Chem. 2016, 80, 266–279. [Google Scholar] [CrossRef]
- Vidal-Casanella, O.; Nuñez, O.; Hernández-Cassou, S.; Saurina, J. Assessment of Experimental Factors Affecting the Sensitivity and Selectivity of the Spectrophotometric Estimation of Proanthocyanidins in Foods and Nutraceuticals. Food Anal. Methods 2021, 14, 485–495. [Google Scholar] [CrossRef]
- Vidal-Casanella, O.; Nuñez, O.; Saurina, J. Liquid Chromatographic Fingerprints for the Characterization of Flavanol-Rich Nutraceuticals Based on 4-Dimethylaminocinnamaldehyde Precolumn Derivatization. Sci. Pharm. 2021, 89, 18. [Google Scholar] [CrossRef]
- Puigventos, L.; Nunez, O.; Saurina, J. HPLC Fingerprints for the Authentication of Cranberry-Based Products Based on Multivariate Calibration Approaches. Curr. Anal. Chem. 2016, 13, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Pardo-Mates, N.; Vera, A.; Barbosa, S.; Hidalgo-Serrano, M.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L. Characterization, Classification and Authentication of Fruit-Based Extracts by Means of HPLC-UV Chromatographic Fingerprints, Polyphenolic Profiles and Chemometric Methods. Food Chem. 2017, 221, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhytkyzy, I.; Nuñez, O.; Saurina, J. Size Exclusion Coupled to Reversed Phase Liquid Chromatography for the Characterization of Cranberry Products. Food Anal. Methods 2019, 12, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Bakhytkyzy, I.; Nuñez, O.; Saurina, J. Determination of Flavanols by Liquid Chromatography with Fluorescence Detection. Application to the Characterization of Cranberry-Based Pharmaceuticals through Profiling and Fingerprinting Approaches. J. Pharm. Biomed. Anal. 2018, 156, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Hammerstone, J.F.; Lazarus, S.A.; Mitchell, A.E.; Rucker, R.; Schmitz, H.H. Identification of Procyanidins in Cocoa (Theobroma Cacao) and Chocolate Using High-Performance Liquid Chromatography/Mass Spectrometry. J. Agric. Food Chem. 1999, 47, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Casanella, O.; Arias-Alpizar, K.; Nuñez, O.; Saurina, J. Hydrophilic Interaction Liquid Chromatography to Characterize Nutraceuticals and Food Supplements Based on Flavanols and Related Compounds. Separations 2021, 8, 17. [Google Scholar] [CrossRef]
- Liu, H.; Zou, T.; Gao, J.M.; Gu, L. Depolymerization of Cranberry Procyanidins Using (+)-Catechin, (-)-Epicatechin, and (-)-Epigallocatechin Gallate as Chain Breakers. Food Chem. 2013, 141, 488–494. [Google Scholar] [CrossRef]
- Neto, C.C.; Krueger, C.G.; Lamoureaux, T.L.; Kondo, M.; Vaisberg, A.J.; Hurta, R.A.R.; Curtis, S.; Matchett, M.D.; Yeung, H.; Sweeney, M.I.; et al. MALDI-TOF MS Characterization of Proanthocyanidins from Cranberry Fruit (Vaccinium Macrocarpon) That Inhibit Tumor Cell Growth and Matrix Metalloproteinase Expression in Vitro. J. Sci. Food Agric. 2006, 86, 18–25. [Google Scholar] [CrossRef]
- Brown, P.N.; Turi, C.E.; Shipley, P.R.; Murch, S.J. Comparisons of Large (Vaccinium Macrocarpon Ait) and Small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) Cranberry in British Columbia by Phytochemical Determination, Antioxidant Potential, and Metabolomic Profiling with Chemometric Analysis. Planta Med. 2012, 78, 630–640. [Google Scholar] [CrossRef] [Green Version]
- Iswaldi, I.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Uberos, J.; Lardón, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Characterization by High-Performance Liquid Chromatography with Diode-Array Detection Coupled to Time-of-Flight Mass Spectrometry of the Phenolic Fraction in a Cranberry Syrup Used to Prevent Urinary Tract Diseases, Together with a Study of Its Antibacter. J. Pharm. Biomed. Anal. 2012, 58, 34–41. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, W. Optimization of Microwave-Assisted Extraction of Anthocyanins from Purple Corn (Zea mays L.) Cob and Identification with HPLC-MS. Innov. Food Sci. Emerg. Technol. 2010, 11, 470–476. [Google Scholar] [CrossRef]
- Borges, G.D.S.C.; Vieira, F.G.K.; Copetti, C.; Gonzaga, L.V.; Fett, R. Optimization of the Extraction of Flavanols and Anthocyanins from the Fruit Pulp of Euterpe Edulis Using the Response Surface Methodology. Food Res. Int. 2011, 44, 708–715. [Google Scholar] [CrossRef]
- Alberti, A.; Zielinski, A.A.F.; Zardo, D.M.; Demiate, I.M.; Nogueira, A.; Mafra, L.I. Optimisation of the Extraction of Phenolic Compounds from Apples Using Response Surface Methodology. Food Chem. 2014, 149, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, B.; Zhang, L.L.; Yue, X.Y.; Liang, J.; Jiang, J.; Gao, X.L.; Yue, P.X. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds and Anthocyanins from Blueberry (Vaccinium Ashei) Wine Pomace. Food Chem. 2016, 204, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Vvedenskaya, I.O.; Rosen, R.T.; Guido, J.E.; Russell, D.J.; Mills, K.A.; Vorsa, N. Characterization of Flavonols in Cranberry (Vaccinium Macrocarpon) Powder. J. Agric. Food Chem. 2004, 52, 188–195. [Google Scholar] [CrossRef]
- Hellström, J.K.; Mattila, P.H. HPLC Determination of Extractable and Unextractable Proanthocyanidins in Plant Materials. J. Agric. Food Chem. 2008, 56, 7617–7624. [Google Scholar] [CrossRef]
- White, B.L.; Howard, L.R.; Prior, R.L. Proximate and Polyphenolic Characterization of Cranberry Pomace. J. Agric. Food Chem. 2010, 58, 4030–4036. [Google Scholar] [CrossRef]
- Feliciano, R.P.; Shea, M.P.; Shanmuganayagam, D.; Krueger, C.G.; Howell, A.B.; Reed, J.D. Comparison of Isolated Cranberry (Vaccinium Macrocarpon Ait.) Proanthocyanidins to Catechin and Procyanidins A2 and B2 for Use as Standards in the 4-(Dimethylamino)Cinnamaldehyde Assay. J. Agric. Food Chem. 2012, 60, 4578–4585. [Google Scholar] [CrossRef]
Sample Type | Product Name | Manufacturing Company | Composition |
---|---|---|---|
Cranberry (1) | Urosens forte | Salvat (Spain) | Vaccinium macrocarpon, Salvia officinalis, ascorbic acid |
Cranberry (2) | Aquilea Cistitus | Uriach (Spain) | Vaccinium macrocarpon |
Cranberry (3) | Zurawina | Colfarm (Poland) | Vaccinium macrocarpon, Urtica urens |
Cranberry (4) | Urinal Intensiv | Walmark (Poland) | Vaccinium macrocarpon, Solidago virgaurea, vitamin D |
Cranberry (5) | Urinal | Walmark (Poland) | Vaccinium macrocarpon, Solidago virgaurea, vitamin D |
Cranberry (6) | High-Strength Cranberry | Swisse (Australia) | Vaccinium macrocarpon |
Cranberry (7) | Urell | Pharmatoka (France) | Vaccinium macrocarpon |
Cranberry (8) | Monurelle | Zambon (Spain) | Vaccinium macrocarpon, ascorbic acid |
Cranberry (9) | Arandano Rojo | Santiveri (Spain) | Vaccinium macrocarpon |
Cranberry (10) | Antiox | NaturTierra (Spain) | Vaccinium macrocarpon, ascorbic acid |
Raspberry, tea, and others (1) | Cetonas de Frambuesa | Drasanvi (Spain) | Rubus idaeus, Mangillera indica, Camellia sinensis, Paullina cupana, Euterpe olercarcea, L-carnitine |
Raspberry and tea (2) | Raspberry Ketones | Aquilea (Spain) | Rubus idaeus, Camellia sinensis |
Raspberry and tea (3) | Raspberry Ketones | Eladiet (Spain) | Rubus idaeus, Camellia sinensis, piridoxin |
Black grape | Resverasor | Soria Natural (Spain) | Vitis vinifera |
Black grape and others | Resveratrol | Aquilea (Spain) | Vitis vinifera, Allium cepa, Polygonum cuspidatum |
Black grape, pomegranate | Revidox | Stillvid (Spain) | Vitis vinifera, Punica granatum |
Grapevine | Arkocápsula Vid Roja | Arkopharma (Spain) | Vitis vinifera (leaf extract) |
Artichoke (1) | Alcachofa | Drasanvi (Spain) | Cynara scolymus |
Artichoke (2) | Alcachofa | Arkopharma (Spain) | Cynara scolymus |
Artichoke (3) | Alcachofa | Aquilea (Spain) | Cynara scolymus |
Artichoke (4) | Alcachofa | Roha (India) | Cynara scolymus |
Artichoke (5) | Alcachofa | Plantea (Spain) | Cynara scolymus |
Antioxidant mixture (1) | Antiox Forte | Saniveri (Spain) | Vitis vinifera, Rubus idaeus, Vaccinium corymbosum, Punica granatum, Fragaria vesca, Vaccinium macrocarpon, Vaccinium myrtillus |
Antioxidant mixture (2) | Venox | Drasanvi (Spain) | Vitis vinifera, Aesculus hippocastanum, Ruscus aculeatus, Hamamelis virginiana, Ribes nigrum, Vaccinium myrtillus |
Compound | Sensitivity (If L mg−1) * | R2 | Linear Range (mg L−1) | Retention time Repeatability (RSD%, n = 6) | Peak Area Repeatability (RSD%, n = 6) | LOD (mg L−1) | LOQ (mg L−1) |
---|---|---|---|---|---|---|---|
Catechin | 26.02 | 0.993 | 0.1–70 | 0.52 | 1.1 | 0.02 | 0.1 |
Epicatechin | 30.43 | 0.999 | 0.1–70 | 0.27 | 2.2 | 0.03 | 0.1 |
A2 | 20.20 | 0.999 | 0.3–70 | 0.09 | 0.6 | 0.10 | 0.3 |
B2 | 15.24 | 0.994 | 0.1–70 | 0.18 | 2.1 | 0.03 | 0.1 |
C1 | 6.59 | 0.994 | 0.4–80 | 0.11 | 1.5 | 0.10 | 0.4 |
Compound | Low Level Recovery (%) | Intermediate Level Recovery (%) | High Level Recovery (%) |
---|---|---|---|
Catechin | 104 ± 6 | 94 ± 2 | 105 ± 5 |
Epicatechin | 94 ± 3 | 98 ± 1 | 109 ± 2 |
A2 | 108 ± 10 | 106 ± 4 | 102 ± 2 |
B2 | 114 ± 6 | 114 ± 4 | 105 ± 3 |
Sample Type | Epigallocatechin | Catechin | Procyanidin B2 | Epicatechin | Procyanidin C1 | Procyanidin A2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mg g−1 | sd | mg g−1 | sd | mg g−1 | sd | mg g−1 | sd | mg g−1 | sd | mg g−1 | sd | |
Cranberry (1) | 0.26 | 0.04 | 0.011 | 0.001 | 0.37 | 0.09 | 1.1 | 0.3 | 0.04 | 0.03 | 3.8 | 0.2 |
Cranberry (2) | 1.00 | 0.10 | 0.222 | 0.009 | 5.10 | 0.30 | 33.0 | 1.0 | 0.40 | 0.10 | 79.0 | 3.0 |
Cranberry (3) | 0.08 | 0.01 | 0.058 | 0.006 | 0.03 | 0.02 | 2.7 | 0.1 | nd | 0.7 | 0.2 | |
Cranberry (4) | 0.97 | 0.01 | 0.059 | 0.006 | 1.36 | 0.01 | 6.4 | 0.1 | 0.33 | 0.05 | 17.6 | 0.8 |
Cranberry (5) | 0.23 | 0.01 | 0.012 | 0.002 | 0.47 | 0.01 | 1.2 | 0.2 | 0.04 | 0.02 | 3.6 | 0.4 |
Cranberry (6) | 0.13 | 0.05 | nd | nd | 1.4 | 0.3 | 0.06 | 0.02 | 3.2 | 0.3 | ||
Cranberry (7) | 9.10 | 0.90 | 0.463 | 0.009 | 10.10 | 0.10 | 64.0 | 3.0 | 1.40 | 0.10 | 105.0 | 5.0 |
Cranberry (8) | 0.09 | 0.01 | nd | 0.05 | 0.01 | 1.1 | 0.1 | 0.04 | 0.03 | 1.4 | 0.1 | |
Cranberry (9) | nd | 0.038 | 0.002 | 0.34 | 0.01 | 3.1 | 0.1 | 0.21 | 0.08 | 11.2 | 0.4 | |
Cranberry (10) | nd | 2.100 | 0.200 | nd | 42.0 | 2.0 | nd | 10.5 | 0.3 | |||
Raspberry and tea (1) | 0.13 | 0.01 | 0.440 | 0.030 | 0.60 | 0.01 | 8.4 | 0.8 | nd | nd | ||
Raspberry and tea (2) | nd | 0.250 | 0.040 | 0.06 | 0.01 | 57.0 | 1.0 | nd | nd | |||
Raspberry and tea (3) | 0.20 | 0.10 | 0.205 | 0.007 | 0.06 | 0.01 | 49.8 | 0.3 | nd | nd | ||
Black grape | 0.66 | 0.07 | 1.560 | 0.070 | 0.77 | 0.01 | 17.1 | 0.6 | nd | nd | ||
Black grape and others | nd | 3.500 | 0.100 | 10.00 | 0.10 | 47.0 | 3.0 | nd | nd | |||
Black grape pomegranate | 0.13 | 0.01 | 0.820 | 0.050 | 0.47 | 0.01 | 13.5 | 0.4 | nd | nd | ||
Grapevine | 0.58 | 0.03 | 0.310 | 0.010 | 0.79 | 0.01 | 6.0 | 0.3 | nd | nd | ||
Artichoke (1) | 1.40 | 0.10 | 0.165 | 0.007 | nd | 0.3 | 0.1 | 1.30 | 0.10 | nd | ||
Artichoke (2) | 0.15 | 0.03 | 0.138 | 0.007 | nd | 0.18 | 0.01 | 0.40 | 0.03 | nd | ||
Artichoke (3) | 0.34 | 0.09 | 0.108 | 0.001 | nd | 0.03 | 0.01 | 0.50 | 0.10 | nd | ||
Artichoke (4) | 0.37 | 0.10 | 0.180 | 0.010 | nd | nd | 1.80 | 0.40 | nd | |||
Artichoke (5) | 0.14 | 0.02 | 0.045 | 0.004 | nd | 0.03 | 0.01 | 0.13 | 0.03 | nd | ||
Antioxidant mixture (1) | nd | 12.000 | 0.300 | 7.50 | 0.20 | 251.00 | 9.00 | nd | nd | |||
Antioxidant mixture (2) | nd | 1.320 | 0.030 | 1.45 | 0.04 | 22.70 | 0.50 | nd | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal-Casanella, O.; Arias-Alpizar, K.; Núñez, O.; Saurina, J. Extraction and Characterization of Flavanol-Rich Nutraceuticals Based on High-Performance Liquid Chromatography. Separations 2022, 9, 87. https://doi.org/10.3390/separations9040087
Vidal-Casanella O, Arias-Alpizar K, Núñez O, Saurina J. Extraction and Characterization of Flavanol-Rich Nutraceuticals Based on High-Performance Liquid Chromatography. Separations. 2022; 9(4):87. https://doi.org/10.3390/separations9040087
Chicago/Turabian StyleVidal-Casanella, Oscar, Kevin Arias-Alpizar, Oscar Núñez, and Javier Saurina. 2022. "Extraction and Characterization of Flavanol-Rich Nutraceuticals Based on High-Performance Liquid Chromatography" Separations 9, no. 4: 87. https://doi.org/10.3390/separations9040087
APA StyleVidal-Casanella, O., Arias-Alpizar, K., Núñez, O., & Saurina, J. (2022). Extraction and Characterization of Flavanol-Rich Nutraceuticals Based on High-Performance Liquid Chromatography. Separations, 9(4), 87. https://doi.org/10.3390/separations9040087