Monitoring of Aflatoxin M1 in Various Origins Greek Milk Samples Using Liquid Chromatography Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Sample Preparation
2.4. Method Validation
2.5. Method Assessment
2.5.1. Measurement of Uncertainty
2.5.2. Application to Real Samples
3. Results and Discussion
3.1. Method Optimization
3.2. Method Validation
3.2.1. Matrix Effect
3.2.2. Linearity
3.2.3. Precision-Trueness
3.2.4. Selectivity
3.2.5. LODs and LOQs
3.2.6. CCα
3.3. Method Assessment
3.3.1. Measurement of Uncertainty
- Uf: maximum standard measurement uncertainty (μg kg−1);
- LOD: method’s limit of detection (μg kg−1);
- α: a constant, numeric factor depending on the concentration C (in this case, α = 0.2 for all concentration levels);
- C: the concentration of interest (μg kg−1).
3.3.2. Application to Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iqbal, S.Z.; Asi, M.; Ariño, A. Aflatoxins. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2017; pp. 43–47. [Google Scholar] [CrossRef]
- Iqbal, S.Z. Mycotoxins in food, recent development in food analysis and future challenges: A review. Curr. Opin. Food Sci. 2021, 42, 237–247. [Google Scholar] [CrossRef]
- Fallah, A.A.; Jafari, T.; Fallah, A.; Rahnama, M. Determination of aflatoxin M1 levels in Iranian white and cream cheese. Food Chem. Toxicol. 2009, 47, 1872–1875. [Google Scholar] [CrossRef]
- Gürbay, A.; Sabuncuoǧlu, S.A.; Girgin, G.; Şahin, G.; Yiǧit, Ş.; Yurdakök, M.; Tekinalp, G. Exposure of newborns to aflatoxin M1 and B1 from mothers’ breast milk in Ankara, Turkey. Food Chem. Toxicol. 2010, 48, 314–319. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon Int. Agency Res. Cancer 2002, 82, 171–300. [Google Scholar]
- Prandini, A.; Tansini, G.; Sigolo, S.; Filippi, L.; Laporta, M.; Piva, G. On the occurrence of aflatoxin M1 in milk and dairy products. Food Chem. Toxicol. 2009, 47, 984–991. [Google Scholar] [CrossRef]
- Maggira, M.; Ioannidou, M.; Sakaridis, I.; Samouris, G. Determination of aflatoxin m1 in raw milk using an hplc-fl method in comparison with commercial elisa kits—Application in raw milk samples from various regions of greece. Vet. Sci. 2021, 8, 46. [Google Scholar] [CrossRef]
- Sadia, A.; Jabbar, M.A.; Deng, Y.; Hussain, E.A.; Riffat, S.; Naveed, S.; Arif, M. A survey of aflatoxin M1 in milk and sweets of Punjab, Pakistan. Food Control. 2012, 26, 235–240. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Liu, S.; Qiu, F.; Kong, W.; Wei, J.; Xiao, X.; Yang, M. Development and validation of an accurate and rapid LC-ESI-MS/MS method for the simultaneous quantification of aflatoxin B1, B2, G1 and G2 in lotus seeds. Food Control. 2013, 1, 156–161. [Google Scholar] [CrossRef]
- Anfossi, L.; Calderara, M.; Baggiani, C.; Giovannoli, C.; Arletti, E.; Giraudi, G. Development and Application of Solvent-free Extraction for the Detection of Aflatoxin M 1 in Dairy Products by Enzyme Immunoassay. J. Agric. Food Chem. 2008, 56, 1852–1857. [Google Scholar] [CrossRef]
- Thirumala-Devi, K.; Mayo, M.A.; Hall, A.J.; Craufurd, P.Q.; Wheeler, T.R.; Waliyar, F.; Subrahmanyam, A.; Reddy, D.V.R. Development and application of an indirect competitive enzyme-linked immunoassay for aflatoxin m(1) in milk and milk-based confectionery. J. Agric. Food Chem. 2002, 50, 933–937. [Google Scholar] [CrossRef]
- Grosso, F.; Fremy, J.M.; Bevis, S.; Dragacci, S. Joint IDF-IUPAC-IAEA(FAO) interlaboratory validation for determining aflatoxin M1 in milk by using immunoaffinity clean-up before thin-layer chromatography. Food Addit. Contam. 2007, 21, 348–357. [Google Scholar] [CrossRef]
- Shundo, L.; Sabino, M. Aflatoxin M1 in milk by immunoaffinity column cleanup with TLC/HPLC determination. Brazilian J. Microbiol. 2006, 37, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Li, Q.; Sun, L.; Du, Y.; Xia, J.; Zhang, Y. Simultaneous determination of aflatoxin B1 and M1 in milk, fresh milk and milk powder by LC-MS/MS utilising online turbulent flow chromatography. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2015, 32, 1175–1184. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, X.-J.; Liu, Y.-Q.; Yang, H.-M.; Guo, Q.-L. Simultaneous Determination of Chloramphenicol and Aflatoxin M 1 Residues in Milk by Triple Quadrupole Liquid ChromatographyÀTandem Mass Spectrometry. J. Agric. Food Chem. 2011, 59, 3532–3538. [Google Scholar] [CrossRef]
- Quinto, M.; Spadaccino, G.; Palermo, C.; Centonze, D. Determination of aflatoxins in cereal flours by solid-phase microextraction coupled with liquid chromatography and post-column photochemical derivatization-fluorescence detection. J. Chromatogr. A 2009, 1216, 8636–8641. [Google Scholar] [CrossRef]
- Manetta, A.C.; Di Giuseppe, L.; Giammarco, M.; Fusaro, I.; Simonella, A.; Gramenzi, A.; Formigoni, A. High-performance liquid chromatography with post-column derivatisation and fluorescence detection for sensitive determination of aflatoxin M1 in milk and cheese. J. Chromatogr. A 2005, 1083, 219–222. [Google Scholar] [CrossRef]
- Sirhan, A.Y.; Tan, G.H.; Wong, R.C.S. Determination of aflatoxins in food using liquid chromatography coupled with electrospray ionization quadrupole time of flight mass spectrometry (LC-ESI-QTOF-MS/MS). Food Control. 2013, 31, 35–44. [Google Scholar] [CrossRef]
- Cigić, I.K.; Prosen, H. An Overview of Conventional and Emerging Analytical Methods for the Determination of Mycotoxins. Int. J. Mol. Sci. 2009, 10, 62. [Google Scholar] [CrossRef]
- Stefanovic, S.; Spiric, D.; Petronijevic, R.; Trailovic, J.N.; Milicevic, D.; Nikolic, D.; Jankovic, S. Comparison of two Analytical Methods (ELISA and LC-MS/MS) for Determination of Aflatoxin B1 in Corn and Aflatoxin M1 in Milk. Procedia Food Sci. 2015, 5, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhou, X.J.; Liu, Y.Q.; Yang, H.M.; Guo, Q.L. Food Additives and Contaminants Determination of aflatoxin M 1 in milk by triple quadrupole liquid chromatography-tandem mass spectrometry Determination of aflatoxin M 1 in milk by triple quadrupole liquid chromatography-tandem mass spectrometry. Food Addit. Contam. 2010, 27, 1261–1265. [Google Scholar] [CrossRef]
- Campone, L.; Piccinelli, A.L.; Celano, R.; Pagano, I.; Russo, M.; Rastrelli, L. Rapid and automated analysis of aflatoxin M1 in milk and dairy products by online solid phase extraction coupled to ultra-high-pressure-liquid-chromatography tandem mass spectrometry. J. Chromatogr. A 2015, 1428, 212–219. [Google Scholar] [CrossRef]
- Sørensen, L.K.; Elbæk, T.H. Determination of mycotoxins in bovine milk by liquid chromatography tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 820, 183–196. [Google Scholar] [CrossRef]
- Chen, C.Y.; Li, W.J.; Peng, K.Y. Determination of aflatoxin M1 in milk and milk powder using high-flow solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2005, 53, 8474–8480. [Google Scholar] [CrossRef]
- Kos, J.; Hajnal, E.J.; Jajić, I.; Krstović, S.; Mastilović, J.; Šarić, B.; Jovanov, P. Comparison of ELISA, HPLC-FLD and HPLC-MS/MS methods for determination of aflatoxin M1 in natural contaminated milk samples. Acta Chim. Slov. 2016, 63, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Qiu, F.; Kong, W.; Wei, J.; Yang, M.; Luo, Z.; Qin, J.; Ma, X. Co-occurrence of aflatoxin B1, B2, G1, G2 and ochrotoxin A in Glycyrrhiza uralensis analyzed by HPLC-MS/MS. Food Control. 2013, 1, 216–221. [Google Scholar] [CrossRef]
- Huang, L.C.; Zheng, N.; Zheng, B.Q.; Wen, F.; Cheng, J.B.; Han, R.W.; Xu, X.M.; Li, S.L.; Wang, J.Q. Simultaneous determination of aflatoxin M 1, ochratoxin A, zearalenone and a-zearalenol in milk by UHPLC-MS/MS. Food Chem. 2014, 146, 242–249. [Google Scholar] [CrossRef]
- European Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, 70, 12–34.
- EURL-MP-Background doc_003 Guidance Document Performance Criteria v1.1 Draft 17.09.2021-WUR. Available online: https://www.wur.nl/en/show/EURL-MP-background-doc_003-Guidance-document-performance-criteria-v1.1-draft-17.09.2021.htm (accessed on 25 January 2022).
- R-Biopharm AG. AFLAPREP® M, Immunoaffinity Columns for Use in Conjunction with HPLC or LC-MS/MS. 2021. Available online: https://www.azmax.co.jp/wp-content/uploads/2015/11/AFLAPREP-M-IFU-P04V18.pdf (accessed on 21 February 2022).
- Rosi, P.; Borsari, A.; Lasi, G.; Lodi, S.; Galanti, A.; Fava, A.; Girotti, S.; Ferri, E. Aflatoxin M1 in milk: Reliability of the immunoenzymatic assay. Int. Dairy J. 2007, 17, 429–435. [Google Scholar] [CrossRef]
- Ellison, S.L.R.; Williams, A. (Eds.) Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, 3rd ed.; EURACHEM: Teddington, UK, 2012; Available online: https://www.eurachem.org (accessed on 25 January 2022)ISBN 978-0-948926-30-3.
- Taverniers, I.; De Loose, M.; Van Bockstaele, E. Trends in quality in the analytical laboratory. I. Traceability and measurement uncertainty of analytical results. TrAC-Trends Anal. Chem. 2004, 23, 480–490. [Google Scholar] [CrossRef]
- Konieczka, P.; Namieśnik, J. Estimating uncertainty in analytical procedures based on chromatographic techniques. J. Chromatogr. A 2010, 1217, 882–891. [Google Scholar] [CrossRef] [PubMed]
- SANTE/12682/2019 Guidance Document on Analytical Quality Control and Method Validation for Pesticide Residues Analysis in Food and Feed; Accredia: Rome, Italy, 2019; pp. 1–48.
- 2021/808/EC Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to. Off. J. Eur. Union 2021, 180, 84–109.
- Dasenaki, M.E.; Bletsou, A.A.; Hanafi, A.H.; Thomaidis, N.S. Liquid chromatography–tandem mass spectrometric methods for the determination of spinosad, thiacloprid and pyridalyl in spring onions and estimation of their pre-harvest interval values. Food Chem. 2016, 213, 395–401. [Google Scholar] [CrossRef]
- Raposo, F.; Barceló, D. Assessment of goodness-of-fit for the main analytical calibration models: Guidelines and case studies. TrAC Trends Anal. Chem. 2021, 143, 116373. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services Food and Drug Administration; Center for Drug Evaluation and Research (CDER); Center for Veterinary Medicine (CVM). Bioanalytical Method Validation Guidance for Industry; U.S. Department of Health and Human Services Food and Drug Administration: Rockville, MD, USA, 2018.
- Evard, H.; Kruve, A.; Leito, I. Tutorial on estimating the limit of detection using LC-MS analysis, part I: Theoretical review. Anal. Chim. Acta 2016, 942, 23–39. [Google Scholar] [CrossRef] [PubMed]
Compound | Precursor Ion (m/z) | Quantifier Ion (m/z) | CE (eV) | Qualifier Ion (m/z) | CE (eV) | Tube Lens | Retention Time (min) |
---|---|---|---|---|---|---|---|
AFM1 | 328.9 | 272.9 | 22 | 228.9 | 38 | 91 | 7.49 |
AFB2 | 315 | 287 | 26 | 259 | 29 | 80 | 7.88 |
Curve | Concentration Range | Calibration Curve | Coefficient of Determination (R2) | Range of Relative Back-Calculation Error |
---|---|---|---|---|
External calibration | 0.75–22.5 μg L−1 | y = (170.6 ± 4.8) × 10−3 x + (10.5 ± 1.9) × 10−2 | 0.997 | (−6.3%)–(+4.2%) |
Matrix matched | 0.75–22.5 μg L−1 | y = (104.4 ± 6.2) × 10−3 x + (1.4 ± 2.0) × 10−2 | 0.993 | (−3.6%)–(8.8%) |
Standard addition | 0.005–0.10 μg kg−1 | y = (135.3 ± 3.4) × 10−1 x + (4.7 ± 8.1) × 10−3 | 0.998 | (−4.5%)–(3.9%) |
Fortification Level | Repeatability | Intermediate Precision | ||||||
---|---|---|---|---|---|---|---|---|
Mean Concentration (μg kg−1) (n = 6) | %RSDr | Acceptance Limits | Mean Concentration (μg kg−1) (n = 2 × 6) | %RSDR | Acceptance Limits | |||
2006/401/EC (0.66 × RSDR) | EURL-MP * (Draft Guideline) | 2006/401/EC | EURL-MP * (Draft Guideline) | |||||
Low | 0.0193 ± 0.0013 | 6.5 | <14.5% | <20% | 0.0200 ± 0.0024 | 12 | <22% | <20% |
Medium | 0.0405 ± 0.0012 | 2.9 | <14.5% | <20% | 0.0400 ± 0.0027 | 6.7 | <22% | <20% |
High | 0.0583 ± 0.0021 | 3.5 | <14.5% | <20% | 0.0597 ± 0.0036 | 6.1 | <22% | <20% |
Fortification Level | Trueness | ||
---|---|---|---|
Mean % Recovery (n = 6) | Acceptance Limits | ||
2006/401/EC | EURL-MP * (Draft Guideline) | ||
low | 77.4 ± 5.0 | 60–120% | 70–120% |
medium | 81.0 ± 2.4 | 60–120% | 70–120% |
high | 77.7 ± 2.7 | 70–110% | 70–120% |
Instrumental Limit of Detection & Quantification | Method Limit of Detection & Quantification | ||
---|---|---|---|
LOD (μg L−1) | LOQ (μg L−1) | LOD (μg kg−1) | LOQ (μg kg−1) |
0.31 | 0.95 | 0.0027 | 0.0089 |
Parameter | Aflatoxin M1 | ||
---|---|---|---|
0.5 × ML | 1 × ML | 1.5 × ML | |
urandom (RSD), % | 11.9 | 6.75 | 6.06 |
ubias, % | 2.65 | 1.18 | 1.42 |
urelative, % | 12.2 | 6.9 | 6.2 |
Urelative (k = 2), % | 24.4 | 13.7 | 12.5 |
Mean concentration | 0.025 | 0.050 | 0.075 |
u, μg kg−1 | 0.0030 | 0.0034 | 0.0047 |
Uf, μg kg−1 * | 0.0052 | 0.010 | 0.015 |
U (k = 2), μg kg−1 | 0.0061 | 0.0069 | 0.0093 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panara, A.; Katsa, M.; Kostakis, M.; Bizani, E.; Thomaidis, N.S. Monitoring of Aflatoxin M1 in Various Origins Greek Milk Samples Using Liquid Chromatography Tandem Mass Spectrometry. Separations 2022, 9, 58. https://doi.org/10.3390/separations9030058
Panara A, Katsa M, Kostakis M, Bizani E, Thomaidis NS. Monitoring of Aflatoxin M1 in Various Origins Greek Milk Samples Using Liquid Chromatography Tandem Mass Spectrometry. Separations. 2022; 9(3):58. https://doi.org/10.3390/separations9030058
Chicago/Turabian StylePanara, Anthi, Maria Katsa, Marios Kostakis, Erasmia Bizani, and Nikolaos S. Thomaidis. 2022. "Monitoring of Aflatoxin M1 in Various Origins Greek Milk Samples Using Liquid Chromatography Tandem Mass Spectrometry" Separations 9, no. 3: 58. https://doi.org/10.3390/separations9030058
APA StylePanara, A., Katsa, M., Kostakis, M., Bizani, E., & Thomaidis, N. S. (2022). Monitoring of Aflatoxin M1 in Various Origins Greek Milk Samples Using Liquid Chromatography Tandem Mass Spectrometry. Separations, 9(3), 58. https://doi.org/10.3390/separations9030058