Comparison of Different Extraction Techniques and Conditions for Optimizing an HPLC-DAD Method for the Routine Determination of the Content of Chlorogenic Acids in Green Coffee Beans
Abstract
:1. Introduction
2. Experimental
2.1. Collection and Processing of Coffee Sample
2.2. Materials and Reagents
2.3. Instruments
2.4. HPLC Separation Method
2.5. Optimization of Extraction Procedure
2.5.1. Preliminary Extraction Experiments
2.5.2. Effect of the Extraction Technique
2.5.3. Effect of the Extraction Solvent
2.5.4. Effect of the Extraction Temperature
2.5.5. Effect of the Extraction Time
2.5.6. Effect of the Solid-to-Solvent Ratio
2.5.7. Effect of the Grinding Treatments
2.6. Statistical Analysis
3. Results
3.1. Optimization of HPLC Separation Method
3.2. Optimization of the Extraction Procedure
3.2.1. Preliminary Extraction Experiments
3.2.2. Effect of the Extraction Technique
3.2.3. Effect of the Extraction Solvent
3.2.4. Effect of the Extraction Temperature
3.2.5. Effect of the Extraction Time
3.2.6. Effect of the Solid-to-Solvent Ratio
3.2.7. Effect of the Grinding Treatments
3.3. Optimized Method for the Quantitative Determination of CGAs
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pancsira, J. International coffee trade: A literature review. J. Agric. Inform. 2022, 13. [Google Scholar] [CrossRef]
- Megersa, H.G. Coffee (Coffea arabica L.) field establishment and management practices in ethiopia. Am. J. Eng. Technol. Manag. 2022, 7, 48–58. [Google Scholar]
- Farah, A. Coffee: Production, Quality and Chemistry; Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Ribeiro, D.E.; Borem, F.M.; Cirillo, M.A.; Prado, M.V.B.; Ferraz, V.P.; Alves, H.M.R.; da Silva Taveira, J.H. Interaction of genotype, environment and processing in the chemical composition expression and sensorial quality of arabica coffee. Afr. J. Agric. Res. 2016, 11, 2412–2422. [Google Scholar]
- Leroy, T.; Ribeyre, F.; Bertrand, B.; Charmetant, P.; Dufour, M.; Montagnon, C.; Marraccini, P.; Pot, D. Genetics of coffee quality. Braz. J. Plant Physiol. 2006, 18, 229–242. [Google Scholar] [CrossRef]
- Farah, A.; de Paulis, T.; Trugo, L.C.; Martin, P.R. Effect of roasting on the formation of chlorogenic acid lactones in coffee. J. Agric. Food Chem. 2005, 53, 1505–1513. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Grześkowiak, T. Analytical methods applied for the characterization and the determination of bioactive compounds in coffee. Eur. Food Res. Technol. 2015, 240, 19–31. [Google Scholar] [CrossRef]
- da Silva Taveira, J.H.; Borém, F.M.; Figueiredo, L.P.; Reis, N.; Franca, A.S.; Harding, S.A.; Tsai, C.-J. Potential markers of coffee genotypes grown in different brazilian regions: A metabolomics approach. Food Res. Int. 2014, 61, 75–82. [Google Scholar] [CrossRef]
- Wianowska, D.; Gil, M. Recent advances in extraction and analysis procedures of natural chlorogenic acids. Phytochem. Rev. 2019, 18, 273–302. [Google Scholar] [CrossRef] [Green Version]
- Farah, A.; de Paula Lima, J. Consumption of chlorogenic acids through coffee and health implications. Beverages 2019, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Ding, Y.; Li, L.; Ge, M.; Ban, G.; Yang, H.; Dai, J.; Zhang, L. Effects and mechanism of chlorogenic acid on weight loss. Curr. Pharm. Biotechnol. 2020, 21, 1099–1106. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Chromatographic methods for coffee analysis: A review. J. Food Res. 2017, 6, 60–82. [Google Scholar] [CrossRef] [Green Version]
- dos Santos Scholz, M.B.; Kitzberger, C.S.G.; Durand, N.; Rakocevic, M. From the field to coffee cup: Impact of planting design on chlorogenic acid isomers and other compounds in coffee beans and sensory attributes of coffee beverage. Eur. Food Res. Technol. 2018, 244, 1793–1802. [Google Scholar] [CrossRef]
- Farah, A.; Donangelo, C.M. Phenolic compounds in coffee. Braz. J. Plant Physiol. 2006, 18, 23–36. [Google Scholar] [CrossRef]
- Moreira, R.; Trugo, L.; De Maria, C.; Matos, A.; Santos, S.; Leite, J. Discrimination of brazilian arabica green coffee samples by chlorogenic acid composition. Arch. Latinoam. Nutr. 2001, 51, 95–99. [Google Scholar]
- Bastian, F.; Hutabarat, O.S.; Dirpan, A.; Nainu, F.; Harapan, H.; Emran, T.B.; Simal-Gandara, J. From plantation to cup: Changes in bioactive compounds during coffee processing. Foods 2021, 10, 2827. [Google Scholar] [CrossRef]
- Bolka, M.; Emire, S. Effects of coffee roasting technologies on cup quality and bioactive compounds of specialty coffee beans. Food Sci. Nutr. 2020, 8, 6120–6130. [Google Scholar] [CrossRef]
- Clifford, M.N. Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden. J. Sci. Food Agric. 1999, 79, 362–372. [Google Scholar] [CrossRef]
- Tfouni, S.A.; Carreiro, L.B.; Teles, C.R.; Furlani, R.P.; Cipolli, K.M.; Camargo, M.C. Caffeine and chlorogenic acids intake from coffee brew: Influence of roasting degree and brewing procedure. Int. J. Food Sci. Technol. 2014, 49, 747–752. [Google Scholar] [CrossRef]
- Jeon, J.-S.; Kim, H.-T.; Jeong, I.-H.; Hong, S.-R.; Oh, M.-S.; Yoon, M.-H.; Shim, J.-H.; Jeong, J.H.; Abd El-Aty, A. Contents of chlorogenic acids and caffeine in various coffee-related products. J. Adv. Res. 2019, 17, 85–94. [Google Scholar] [CrossRef]
- Barbosa, M.d.S.G.; dos Santos Scholz, M.B.; Kitzberger, C.S.G.; de Toledo Benassi, M. Correlation between the composition of green arabica coffee beans and the sensory quality of coffee brews. Food Chem. 2019, 292, 275–280. [Google Scholar] [CrossRef]
- Zanin, R.C.; Corso, M.P.; Kitzberger, C.S.G.; dos Santos Scholz, M.B.; de Toledo Benassi, M. Good cup quality roasted coffees show wide variation in chlorogenic acids content. LWT 2016, 74, 480–483. [Google Scholar] [CrossRef]
- Choma, I.M.; Olszowy, M.; Studziński, M.; Gnat, S. Determination of chlorogenic acid, polyphenols and antioxidants in green coffee by thin-layer chromatography, effect-directed analysis and dot blot–comparison to hplc and spectrophotometry methods. J. Sep. Sci. 2019, 42, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-K.; Yoo, H.S.; Shibamoto, T. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: Correlation with coffee acidity. J. Agric. Food Chem. 2009, 57, 5365–5369. [Google Scholar] [CrossRef] [PubMed]
- Babova, O.; Occhipinti, A.; Maffei, M.E. Chemical partitioning and antioxidant capacity of green coffee (coffea arabica and coffea canephora) of different geographical origin. Phytochemistry 2016, 123, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.; Kazi, T. The influence of coffee bean maturity on the content of chlorogenic acids, caffeine and trigonelline. Food Chem. 1987, 26, 59–69. [Google Scholar] [CrossRef]
- Kuhnert, N.; Jaiswal, R.; Eravuchira, P.; El-Abassy, R.M.; von der Kammer, B.; Materny, A. Scope and limitations of principal component analysis of high resolution lc-tof-ms data: The analysis of the chlorogenic acid fraction in green coffee beans as a case study. Anal. Methods 2011, 3, 144–155. [Google Scholar] [CrossRef]
- Ali, A.M.A.; Yagi, S.; Qahtan, A.A.; Alatar, A.A.; Angeloni, S.; Maggi, F.; Caprioli, G.; Abdel-Salam, E.M.; Sinan, K.I.; Zengin, G. Evaluation of the chemical constituents, antioxidant and enzyme inhibitory activities of six yemeni green coffee beans varieties. Food Biosci. 2022, 46, 101552. [Google Scholar]
- Mehari, B.; Redi-Abshiro, M.; Chandravanshi, B.S.; Combrinck, S.; Atlabachew, M.; McCrindle, R. Profiling of phenolic compounds using uplc–ms for determining the geographical origin of green coffee beans from ethiopia. J. Food Compos. Anal. 2016, 45, 16–25. [Google Scholar] [CrossRef]
- Bicho, N.C.; Leitão, A.E.; Ramalho, J.C.; Lidon, F.C. Chemical descriptors for sensory and parental origin of commercial coffea genotypes. Int. J. Food Sci. Nutr. 2012, 63, 835–842. [Google Scholar] [CrossRef]
- Bicho, N.C.; Leitao, A.E.; Ramalho, J.C.; Lidon, F.C. Identification of chemical clusters discriminators of the roast degree in arabica and robusta coffee beans. Eur. Food Res. Technol. 2011, 233, 303–311. [Google Scholar] [CrossRef]
- Tripetch, P.; Borompichaichartkul, C. Effect of packaging materials and storage time on changes of colour, phenolic content, chlorogenic acid and antioxidant activity in arabica green coffee beans (Coffea arabica L. Cv. Catimor). J. Stored Prod. Res. 2019, 84, 101510. [Google Scholar] [CrossRef]
- Flambeau, K.J.; Yoon, J.-R. Characterization of raw and roasted fully washed specialty bourbon cultivar of coffea arabica from major coffee growing areas in rwanda. Food Eng. Prog. 2018, 22, 89–99. [Google Scholar] [CrossRef]
- De Maria, C.; Trugo, L.; Moreira, R.; Petracco, M. Simultaneous determination of total chlorogenic acid, trigonelline and caffeine in green coffee samples by high performance gel filtration chromatography. Food Chem. 1995, 52, 447–449. [Google Scholar] [CrossRef]
- Macheiner, L.; Schmidt, A.; Schreiner, M.; Mayer, H.K. Green coffee infusion as a source of caffeine and chlorogenic acid. J. Food Compos. Anal. 2019, 84, 103307. [Google Scholar] [CrossRef]
- Ky, C.-L.; Louarn, J.; Guyot, B.; Charrier, A.; Hamon, S.; Noirot, M. Relations between and inheritance of chlorogenic acid contents in an interspecific cross between coffea pseudozanguebariae and coffea liberica var ‘dewevrei’. Theor. Appl. Genet. 1999, 98, 628–637. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Serra, F.; Reniero, F.; Heberger, K. Botanical and geographical characterization of green coffee (coffea arabica and coffea canephora): Chemometric evaluation of phenolic and methylxanthine contents. J. Agric. Food Chem. 2009, 57, 4224–4235. [Google Scholar] [CrossRef]
- Atlabachew, M.; Abebe, A.; Alemneh Wubieneh, T.; Tefera Habtemariam, Y. Rapid and simultaneous determination of trigonelline, caffeine, and chlorogenic acid in green coffee bean extract. Food Sci. Nutr. 2021, 9, 5028–5035. [Google Scholar] [CrossRef]
- Belguidoum, K.; Amira-Guebailia, H.; Boulmokh, Y.; Houache, O. Hplc coupled to uv–vis detection for quantitative determination of phenolic compounds and caffeine in different brands of coffee in the algerian market. J. Taiwan Inst. Chem. Eng. 2014, 45, 1314–1320. [Google Scholar] [CrossRef]
- Lemos, M.F.; de Andrade Salustriano, N.; de Souza Costa, M.M.; Lirio, K.; da Fonseca, A.F.A.; Pacheco, H.P.; Endringer, D.C.; Fronza, M.; Scherer, R. Chlorogenic acid and caffeine contents and anti-inflammatory and antioxidant activities of green beans of conilon and arabica coffees harvested with different degrees of maturation. J. Saudi Chem. Soc. 2022, 26, 101467. [Google Scholar] [CrossRef]
- Worku, M.; De Meulenaer, B.; Duchateau, L.; Boeckx, P. Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Res. Int. 2018, 105, 278–285. [Google Scholar] [CrossRef]
- Lemos, M.F.; Perez, C.; da Cunha, P.H.P.; Filgueiras, P.R.; Pereira, L.L.; da Fonseca, A.F.A.; Ifa, D.R.; Scherer, R. Chemical and sensory profile of new genotypes of brazilian coffea canephora. Food Chem. 2020, 310, 125850. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.; Ramalakshmi, K.; Rao, L.J.M. Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chem. 2012, 130, 184–188. [Google Scholar] [CrossRef]
- Gant, A.; Leyva, V.E.; Gonzalez, A.E.; Maruenda, H. Validated hplc-diode array detector method for simultaneous evaluation of six quality markers in coffee. J. AOAC Int. 2015, 98, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Huang, H.-W.; Wang, C.-Y. Effects of high pressure-assisted extraction on yield, antioxidant, antimicrobial, and anti-diabetic properties of chlorogenic acid and caffeine extracted from green coffee beans. Food Bioprocess Technol. 2022, 15, 1529–1538. [Google Scholar] [CrossRef]
- De Azevedo, A.; Mazzafera, P.; Mohamed, R.; Melo, S.; Kieckbusch, T.G. Extraction of caffeine, chlorogenic acids and lipids from green coffee beans using supercritical carbon dioxide and co-solvents. Braz. J. Chem. Eng. 2008, 25, 543–552. [Google Scholar] [CrossRef]
- Farah, A.; Monteiro, M.C.; Calado, V.; Franca, A.S.; Trugo, L. Correlation between cup quality and chemical attributes of brazilian coffee. Food Chem. 2006, 98, 373–380. [Google Scholar] [CrossRef]
- Perrone, D.; Farah, A.; Donangelo, C.M.; de Paulis, T.; Martin, P.R. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant brazilian coffee cultivars. Food Chem. 2008, 106, 859–867. [Google Scholar] [CrossRef]
- Scholz, M.B.d.S.; Kitzberger, C.S.G.; Pagiatto, N.F.; Pereira, L.F.P.; Davrieux, F.; Pot, D.; Charmetant, P.; Leroy, T. Chemical composition in wild ethiopian arabica coffee accessions. Euphytica 2016, 209, 429–438. [Google Scholar] [CrossRef]
- Ky, C.-L.; Noirot, M.; Hamon, S. Comparison of five purification methods for chlorogenic acids in green coffee beans (Coffea sp.). J. Agric. Food Chem. 1997, 45, 786–790. [Google Scholar] [CrossRef]
- Dias, R.C.; Faria, A.F.d.; Mercadante, A.Z.; Bragagnolo, N.; Benassi, M.d.T. Comparison of extraction methods for kahweol and cafestol analysis in roasted coffee. J. Braz. Chem. Soc. 2013, 24, 492–499. [Google Scholar] [CrossRef] [Green Version]
- ISO 6673:2003; Green coffee: Determination of loss in mass at 105 °C. International Organization for Standardization: Geneva, Switzerland, 2003.
- ICH. Validation of Analytical Procedures q2 (r1); International Conference of Harmonization: Geneva, Switzerland, 2022. [Google Scholar]
- ISO 20481:2008; Coffee and coffee products—Determination of the caffeine content using high performance liquid chromatography (HPLC)—Reference method. International Organization for Standardization: Geneva, Switzerland, 2008.
- Gil, M.; Wianowska, D. Chlorogenic acids–their properties, occurrence and analysis. Ann. Univ. Mariae Curie-Sklodowska Sect. AA–Chem. 2017, 72, 61. [Google Scholar] [CrossRef]
- Franca, A.S.; Mendonça, J.C.; Oliveira, S.D. Composition of green and roasted coffees of different cup qualities. LWT-Food Sci. Technol. 2005, 38, 709–715. [Google Scholar] [CrossRef]
- Fekete, S.; Oláh, E.; Fekete, J. Fast liquid chromatography: The domination of core–shell and very fine particles. J. Chromatogr. A 2012, 1228, 57–71. [Google Scholar] [CrossRef]
- Connolly, D.; Nesterenko, E.; Omamogho, J.; Glennon, J. Next-generation stationary phases: Properties and performance of core-shell columns. LCGC Suppl. 2012, 30, 54–58. [Google Scholar]
- Hetzel, T.; Teutenberg, T.; Schmidt, T.C. Selectivity screening and subsequent data evaluation strategies in liquid chromatography: The example of 12 antineoplastic drugs. Anal. Bioanal. Chem. 2015, 407, 8475–8485. [Google Scholar] [CrossRef] [PubMed]
- Nobile, M. Development and validation of methods for the detection of residues in unconventional and innovative matrices through LC-MS/MS analyses for safety of food of animal origin; Università degli Studi di Milano: Milan, Italy, 2017. [Google Scholar]
- Gleba, J.; Kim, J. Determination of morphine, fentanyl and their metabolites in small sample volumes using liquid chromatography tandem mass spectrometry. J. Anal. Toxicol. 2020, 44, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Rees, D. The spectrophotometric determination of caffeine in coffee and tea products, with special reference to coffee and chicory mixtures. Analyst 1963, 88, 310–313. [Google Scholar] [CrossRef]
- Wianowska, D.; Typek, R.; Dawidowicz, A.L. Chlorogenic acid stability in pressurized liquid extraction conditions. J. AOAC Int. 2015, 98, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Mediani, A.; Kamal, N.; Lee, S.Y.; Abas, F.; Farag, M.A. Green extraction methods for isolation of bioactive substances from coffee seed and spent. Sep. Purif. Rev. 2022, 1–19. [Google Scholar] [CrossRef]
- Shirsath, S.; Sonawane, S.; Gogate, P. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process. Process Intensif. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Li, H.; Chen, B.; Yao, S. Application of ultrasonic technique for extracting chlorogenic acid from eucommia ulmodies oliv.(e. Ulmodies). Ultrason. Sonochem. 2005, 12, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Salces, R.M.; Korta, E.; Barranco, A.; Berrueta, L.; Gallo, B.; Vicente, F. Pressurized liquid extraction for the determination of polyphenols in apple. J. Chromatogr. A 2001, 933, 37–43. [Google Scholar] [CrossRef]
- Risso, É.M.; Péres, R.G.; Amaya-Farfan, J. Determination of phenolic acids in coffee by micellar electrokinetic chromatography. Food Chem. 2007, 105, 1578–1582. [Google Scholar] [CrossRef]
- Ky, C.-L.; Louarn, J.; Dussert, S.; Guyot, B.; Hamon, S.; Noirot, M. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild coffea arabica l. And c. Canephora p. Accessions. Food Chem. 2001, 75, 223–230. [Google Scholar] [CrossRef]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Shotipruk, A.; Kaufman, P.B.; Wang, H.Y. Feasibility study of repeated harvesting of menthol from biologically viable menthaxpiperata using ultrasonic extraction. Biotechnol. Prog. 2001, 17, 924–928. [Google Scholar] [CrossRef]
- Xue, M.; Shi, H.; Zhang, J.; Liu, Q.-Q.; Guan, J.; Zhang, J.-Y.; Ma, Q. Stability and degradation of caffeoylquinic acids under different storage conditions studied by high-performance liquid chromatography with photo diode array detection and high-performance liquid chromatography with electrospray ionization collision-induced dissociation tandem mass spectrometry. Molecules 2016, 21, 948. [Google Scholar] [PubMed] [Green Version]
- Dawidowicz, A.L.; Typek, R. Thermal stability of 5-o-caffeoylquinic acid in aqueous solutions at different heating conditions. J. Agric. Food Chem. 2010, 58, 12578–12584. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Mason, T.J.; Lelas, V.; Paniwnyk, L.; Herceg, Z. Effect of ultrasound treatment on particle size and molecular weight of whey proteins. J. Food Eng. 2014, 121, 15–23. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Typek, R. Transformation of chlorogenic acids during the coffee beans roasting process. Eur. Food Res. Technol. 2017, 243, 379–390. [Google Scholar] [CrossRef]
- Ince, A.E.; Sahin, S.; Sumnu, G. Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. J. Food Sci. Technol. 2014, 51, 2776–2782. [Google Scholar] [CrossRef]
- Shirsath, S.; Sable, S.; Gaikwad, S.; Sonawane, S.; Saini, D.; Gogate, P. Intensification of extraction of curcumin from curcuma amada using ultrasound assisted approach: Effect of different operating parameters. Ultrason. Sonochem. 2017, 38, 437–445. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, D.J. Analysis of coffee bean extracts by use of ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. MethodsX 2014, 1, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Gimase, J.; Thagana, W.; Kirubi, D.; Gichuru, E.; Kathurima, C. Beverage quality and biochemical attributes of arabusta coffee (c. Arabica l. X c. Canephora pierre) and their parental genotypes. Afr. J. Food Sci. 2014, 8, 456–464. [Google Scholar]
- Gichimu, B.M.; Gichuru, E.K.; Mamati, G.E.; Nyende, A.B. Biochemical composition within coffea arabica cv. Ruiru 11 and its relationship with cup quality. J. Food Res. 2014, 3, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Farah, A.; de Paulis, T.; Moreira, D.P.; Trugo, L.C.; Martin, P.R. Chlorogenic acids and lactones in regular and water-decaffeinated arabica coffees. J. Agric. Food Chem. 2006, 54, 374–381. [Google Scholar] [CrossRef]
- Kinuthia, C.; Frohme, M.; Broedel, O.; Mugendi, B.J. LCMS analysis of biochemical composition in different kenyan coffee classifications. Food Sci. Qual. Manag. 2017, 69, 44–52. [Google Scholar]
- Clifford, M.N. Chemical and physical aspects of green coffee and coffee products. In Coffee: Botany, biochemistry and production of beans and beverage; Clifford, M.N., Willson, K.C., Eds.; Springer US: Boston, MA, USA, 1985; pp. 305–374. [Google Scholar]
- Baldosano, H.Y.; Castillo, M.; Elloran, C.D.H.; Bacani, F.T. Effect of particle size, solvent and extraction time on tannin extract from spondias purpurea bark through soxhlet extraction. In Proceedings of the DLSU Research Congress, Manila, Philippines, 2–4 March 2015; pp. 4–9. [Google Scholar]
- Yunus, M.A.C.; Hasan, M.; Othman, N.; Mohd-Setapar, S.H.; Salleh, L.M.; Ahmad-Zaini, M.A.; Idham, Z.; Zhari, S. Effect of particle size on the oil yield and catechin compound using accelerated solvent extraction. J. Teknol. 2013, 60, 21–25. [Google Scholar]
- Putra, N.R.; Rizkiyah, D.N.; Zaini, A.S.; Yunus, M.A.C.; Machmudah, S.; Idham, Z.b.; Hazwan Ruslan, M.S. Effect of particle size on yield extract and antioxidant activity of peanut skin using modified supercritical carbon dioxide and soxhlet extraction. J. Food Process. Preserv. 2018, 42, e13689. [Google Scholar] [CrossRef]
Treatment | Extracted Amount (g/100g); Mean ± SD (n = 5) | ||
---|---|---|---|
3-CQA | 4-CQA | 5-CQA | |
MgO | 0.018 ± 0.005 b 1 | 0.011 ± 0.003 b | 0.011 ± 0.001 b |
Carrez Solutions | 0.807 ± 0.070 a | 0.678 ± 0.086 a | 2.147 ± 0.207 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oteef, M.D.Y. Comparison of Different Extraction Techniques and Conditions for Optimizing an HPLC-DAD Method for the Routine Determination of the Content of Chlorogenic Acids in Green Coffee Beans. Separations 2022, 9, 396. https://doi.org/10.3390/separations9120396
Oteef MDY. Comparison of Different Extraction Techniques and Conditions for Optimizing an HPLC-DAD Method for the Routine Determination of the Content of Chlorogenic Acids in Green Coffee Beans. Separations. 2022; 9(12):396. https://doi.org/10.3390/separations9120396
Chicago/Turabian StyleOteef, Mohammed D. Y. 2022. "Comparison of Different Extraction Techniques and Conditions for Optimizing an HPLC-DAD Method for the Routine Determination of the Content of Chlorogenic Acids in Green Coffee Beans" Separations 9, no. 12: 396. https://doi.org/10.3390/separations9120396
APA StyleOteef, M. D. Y. (2022). Comparison of Different Extraction Techniques and Conditions for Optimizing an HPLC-DAD Method for the Routine Determination of the Content of Chlorogenic Acids in Green Coffee Beans. Separations, 9(12), 396. https://doi.org/10.3390/separations9120396