Determination of Mitotane (DDD) and Principal Metabolite by a Simple HPLC-UV Method and Its Validation in Human Plasma Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. Methods
2.3.1. Calibration and Quality Control Samples
2.3.2. Sample Preparation
2.3.3. HPLC-UV Conditions and Detection
2.3.4. Validation Studies
2.3.5. Application of the Methods
2.3.6. Statistical Calculations
3. Results
3.1. Sample Extraction and HPLC-UV Analysis
3.2. Carryover
3.3. Validation Studies
3.4. Analysis of Anonymous Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fassnacht, M.; Allolio, B. Clinical management of adrenocortical carcinoma. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 273–289. [Google Scholar] [CrossRef]
- Terzolo, M.; Angeli, A.; Fassnacht, M.; Daffara, F.; Tauchmanova, L.; Conton, P.A.; Berruti, A. Adjuvant Mitotane Treatment for Adrenocortical Carcinoma. N. Engl. J. Med. 2007, 356, 2372–2380. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, M.; Terzolo, M.; Allolio, B.; Baudin, E.; Haak, H.; Berruti, A.; Skogseid, B. Combination Chemotherapy in Advanced Adrenocortical Carcinoma. N. Engl. J. Med. 2012, 366, 2189–2197. [Google Scholar] [CrossRef]
- Maiter, D.; Bex, M.; Vroonen, L.; T’Sjoen, G.; Gil, T.; Banh, C.; Chadarevian, R. Efficacy and safety of mitotane in the treatment of adrenocortical carcinoma: A retrospective study in 34 Belgian patients. Ann. Endocrinol. 2016, 77, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Terzolo, M.; Zaggia, B.; Allasino, B.; De Francia, S. Practical treatment using mitotane for adrenocortical carcinoma. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Germano, A.; Rapa, I.; Volante, M.; De Francia, S.; Migliore, C.; Berruti, A.; Terzolo, M. RRM1 modulates mitotane activity in adrenal cancer cells interfering with its metabolization. Mol. Cell. Endocrinol. 2015, 401, 105–110. [Google Scholar] [CrossRef]
- Natoli, L.; Luci, G.; Mennillo, E.; Adeogun, A.O.; Arukwe, A. Assessing the effects of Awba dam sediment (Nigeria) on the steroidogenesis of H295R cells using different extraction methods. Sci. Total Environ. 2019, 650, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ema.europa.eu/en/documents/product-information/lysodren-epar-product-information_en.pdf (accessed on 8 May 2021).
- Baudin, E.; Pellegriti, G.; Bonnay, M.; Penfornis, A.; Laplanche, A.; Vassal, G.; Schlumberger, M. Impact of monitoring plasma 1,1-dichlorodiphenildichloroethane (o, p′DDD) levels on the treatment of patients with adrenocortical carcinoma. Cancer 2001, 92, 1385–1392. [Google Scholar] [CrossRef]
- Kerkhofs, T.M.A.; Derijks, L.J.J.; Ettaieb, M.H.T.; Eekhoff, E.M.W.; Neef, C.; Gelderblom, H.; Haak, H.R. Short-term variation in plasma mitotane levels confirms the importance of trough level monitoring. Eur. J. Endocrinol. 2014, 171, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Inouye, M.; Mio, T.; Sumino, K. Use of GC/MS/SIM for rapid determination of plasma levels of o, p′-DDD, o, p′-DDE and o, p′-DDA. Clin. Chim. Acta 1987, 170, 305–314. [Google Scholar] [CrossRef]
- Benecke, R.; Vetter, B.; De Zeeuw, R.A. Rapid micromethod for the analysis of mitotane and its metabolite in plasma by gas chromatography with electron-capture detection. J. Chromatogr. B Biomed. Sci. Appl. 1987, 417, 287–294. [Google Scholar] [CrossRef]
- Espb, V.; Musial, P.; Freeman, C.J.; Sinsheimer, J.E.; Arbor, A.; Cliffs, E. Mitotane (o.p’-DDD) emulsion and tablet analysis by high-perform- ance liquid chromatography. J. Chromatogr. 1985, 319, 6–9. [Google Scholar]
- Di Paolo, A.; Arrigoni, E.; Luci, G.; Cucchiara, F.; Danesi, R.; Galimberti, S. Precision medicine in lymphoma by innovative instrumental platforms. Front Oncol. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, A.; Luci, G. Personalized Medicine of Monoclonal Antibodies in Inflammatory Bowel Disease: Pharmacogenetics, Therapeutic Drug Monitoring, and Beyond. Front Pharmacol. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Sarli, V.; Ciofi, L.; Lastella, M.; Muscatello, B.; Pisaturo, F.; Paolilli, O.; Luci, G.; Cucchiara, F.; Pellegrini, G.; Bocci, G.; et al. Appropriateness of repetitive therapeutic drug monitoring and laboratory turnaround time. Clin. Chem. Lab. Med. 2019, 57, 14–16. [Google Scholar] [CrossRef]
- Mornar, A.; Sertić, M.; Turk, N.; Nigović, B.; Koršić, M. Simultaneous analysis of mitotane and its main metabolites in human blood and urine samples by SPE-HPLC technique. Biomed. Chromatogr. 2012, 26, 1308–1314. [Google Scholar] [CrossRef]
- Luci, G.; Cucchiara, F.; Ciofi, L.; Lastella, M.; Danesi, R.; Di, A. A new validated HPLC-UV method for therapeutic monitoring of daptomycin in comparison with reference mass spectrometry. J. Pharm. Biomed. Anal. 2020, 182, 113132. [Google Scholar] [CrossRef]
- Luci, G. A rapid HPLC-FLD method for Ochratoxin A detection in pig muscle, kidney, liver by using enzymatic digestion with MISPE extraction. MethodsX 2020, 7, 100873. [Google Scholar] [CrossRef]
- Luci, G.; Intorre, L.; Ferruzzi, G.; Mani, D.; Giuliotti, L.; Pretti, C.; Tognetti, R.; Bertini, S.; Meucci, V. Determination of ochratoxin A in tissues of wild boar (Sus scrofa L.) by enzymatic digestion (ED) coupled to high-performance liquid chromatography with a fluorescence detector (HPLC-FLD). Mycotoxin Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.; Chen, Z.; Pothier, L.; Ryan, L.; Altshul, L. The relationship between human semen parameters and environmental exposure to polychlorinated biphenyls and p,p′-DDE. Environ. Health Perspect. 2003, 111, 1505–1511. [Google Scholar] [CrossRef] [Green Version]
- Toscani, T.; Moseriti, A.; Dossena, A.; Dall’Asta, C.; Simoncini, N.; Virgili, R. Determination of ochratoxin A in dry-cured meat products by a HPLC-FLD quantitative method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 855, 242–248. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry; U.S. Department of Health and Human Services Food and Drug Administration: Silver Spring, MD, USA, 2018; pp. 1–44.
- Puglisi, S.; Calabrese, A.; Basile, V.; Ceccato, F.; Scaroni, C.; Simeoli, C.; Terzolo, M. Mitotane Concentrations Influence the Risk of Recurrence in Adrenocortical Carcinoma Patients on Adjuvant Treatment. J. Clin. Med. 2019, 8, 1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Paolo, A.; Ciofi, L.; Bacca, A.; Bernini, G. A case report of a TDM-guided optimization of mitotane for a safe and effective long-term treatment. J. Chemother. 2019, 31, 105–108. [Google Scholar] [CrossRef]
- Kelce, W.R.; Stone, C.R.; Laws, S.C.; Gray, L.E.; Kemppainent, J.A.; Wilsonti, E.M. Persistent DDT metabolite p,p′-DDE is a potent androgen receptor antagonist. Nature 1995, 4, 1054–1057. [Google Scholar] [CrossRef] [PubMed]
- Corso, C.R.; Acco, A.; Bach, C.; Bonatto, S.J.R.; de Figueiredo, B.C.; de Souza, L.M. Pharmacological profile and effects of mitotane in adrenocortical carcinoma. Br. J. Clin. Pharmacol. 2020. [Google Scholar] [CrossRef]
- Gründer, G.; Hiemke, C.; Paulzen, M.; Veselinovic, T.; Vernaleken, I. Therapeutic plasma concentrations of antidepressants and antipsychotics: Lessons from PET imaging. Pharmacopsychiatry 2011, 44, 236–248. [Google Scholar] [CrossRef] [PubMed]
DAY | Mitotane (DDD) Concentration (mg/L) | Accuracy (%) | Precision (%) | CV (%) | |
---|---|---|---|---|---|
Theoretical | Measured | ||||
1 | 0.50 | 0.49 ± 0.02 | −2.04 | 4.08 | 6.01 |
5.0 | 4.78 ± 0.19 | −4.40 | 3.97 | 2.86 | |
50.0 | 50.25 ± 1.86 | 0.50 | 6.38 | 2.45 | |
2 | 0.50 | 0.53 ± 0.03 | 6.00 | 6.38 | 6.57 |
5.0 | 4.83 ± 0.14 | −3.40 | 2.89 | 3.23 | |
50.0 | 49.56 ± 2.01 | −0.88 | 4.05 | 2.35 | |
3 | 0.50 | 0.52 ± 0.03 | 4.00 | 6.52 | 5.67 |
5.0 | 4.89 ± 0.19 | −2.20 | 3.88 | 3.44 | |
50.0 | 48.88 ± 2.33 | −2.24 | 4.76 | 2.77 |
DAY | DDE Concentration (mg/L) | Accuracy (%) | Precision (%) | CV (%) | |
---|---|---|---|---|---|
Theoretical | Measured | ||||
1 | 0.10 | 0.11 ± 0.01 | 10.00 | 8.33 | 9.61 |
0.40 | 0.38 ± 0.03 | −5.00 | 9.37 | 4.50 | |
1.00 | 0.94 ± 0.04 | −6.00 | 4.25 | 2.83 | |
2 | 0.10 | 0.11 ± 0.01 | 10.00 | 7.69 | 10.89 |
0.40 | 0.37 ± 0.03 | −7.50 | 9.67 | 4.64 | |
1.00 | 0.94 ± 0.05 | −6.00 | 5.31 | 2.08 | |
3 | 0.10 | 0.08 ± 0.01 | 10.00 | 7.14 | 9.05 |
0.40 | 0.37 ± 0.02 | −7.50 | 6.06 | 5.22 | |
1.00 | 0.94 ± 0.05 | −6.00 | 5.37 | 1.77 |
Concentration (mg/L) | Acc. (%) | Prec. (%) | CV (%) | LOD (mg/L) | LOQ (mg/L) | r2 | ||
---|---|---|---|---|---|---|---|---|
Theoretical | Measured | |||||||
DDD | 0.50 | 0.49 ± 0.02 | 3.87 | 2.63 | 6.38 | 0.102 | 0.310 | 0.9988 |
5.0 | 4.78 ± 1.39 | 2.58 | 0.46 | 3.56 | ||||
50.0 | 49.15 ± 1.86 | 1.16 | 0.11 | 2.20 | ||||
DDE | 0.10 | 0.12 ± 0.03 | 3.87 | 2.63 | 6.38 | 0.036 | 0.108 | 0.9964 |
0.40 | 0.38 ± 0.10 | 2.58 | 0.46 | 3.56 | ||||
1.00 | 0.98 ± 0.27 | 1.16 | 0.11 | 2.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luci, G.; Cucchiara, F.; Ciofi, L.; Mattioli, F.; Lastella, M.; Danesi, R.; Di Paolo, A. Determination of Mitotane (DDD) and Principal Metabolite by a Simple HPLC-UV Method and Its Validation in Human Plasma Samples. Separations 2021, 8, 63. https://doi.org/10.3390/separations8050063
Luci G, Cucchiara F, Ciofi L, Mattioli F, Lastella M, Danesi R, Di Paolo A. Determination of Mitotane (DDD) and Principal Metabolite by a Simple HPLC-UV Method and Its Validation in Human Plasma Samples. Separations. 2021; 8(5):63. https://doi.org/10.3390/separations8050063
Chicago/Turabian StyleLuci, Giacomo, Federico Cucchiara, Laura Ciofi, Francesca Mattioli, Marianna Lastella, Romano Danesi, and Antonello Di Paolo. 2021. "Determination of Mitotane (DDD) and Principal Metabolite by a Simple HPLC-UV Method and Its Validation in Human Plasma Samples" Separations 8, no. 5: 63. https://doi.org/10.3390/separations8050063
APA StyleLuci, G., Cucchiara, F., Ciofi, L., Mattioli, F., Lastella, M., Danesi, R., & Di Paolo, A. (2021). Determination of Mitotane (DDD) and Principal Metabolite by a Simple HPLC-UV Method and Its Validation in Human Plasma Samples. Separations, 8(5), 63. https://doi.org/10.3390/separations8050063