LC-ESI-QTOF-MS/MS Profiling and Antioxidant Activity of Phenolics from Custard Apple Fruit and By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Extraction of Phenolic Compounds
2.4. Polyphenol Estimation and Antioxidant Assays
2.4.1. Determination of Total Phenolic Content (TPC)
2.4.2. Determination of Total Flavonoid Content (TFC)
2.4.3. Determination of Total Tannin Content (TTC)
2.4.4. 2,2′-Diphenyl-1-Picrylhydrazyl (DPPH) Assay
2.4.5. Ferric Reducing Antioxidant Power (FRAP) Assay
2.4.6. 2,2′-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS) Assay
2.4.7. Reducing Power Assay (RPA)
2.4.8. Hydroxyl Radical Scavenging Activity (•OH-RSA)
2.4.9. Ferrous Ion Chelating Activity (FICA)
2.4.10. Determination of Total Antioxidant Capacity (TAC)
2.5. Characterization of Phenolic Compounds through LC-ESI-QTOF-MS/MS
2.6. Quantification of Polyphenols via HPLC-PDA Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Content Estimation (TFC, TFC, TTC)
3.2. Antioxidant Activity (FRAP, DPPH, ABTS, RPA, •OH-RSA, FICA and TAC)
3.3. LC-ESI-QTOF-MS/MS Characterization
3.3.1. Phenolic Acids
Hydroxybenzoic Acid and Hydroxycinnamic Acid Derivatives
3.3.2. Flavonoids
Anthocyanin, Dihydroflavonol and Flavonol Derivatives
Flavanone, Flavone and Flavonol Derivatives
Flavonol Derivatives
Isoflavonoid Derivatives
3.3.3. Lignans and Stilbenes
Lignan Derivatives
Stilbene Derivatives
3.3.4. Other Polyphenols
3.4. Distribution of Phenolic Compounds—Venn Diagram
3.5. Heat Map and Hierarchical Clustering Analysis of Phenolic Compounds
3.6. Correlation between Antioxidant Assays and Phenolic Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- George, V.C.; Kumar, D.R.; Suresh, P.K.; Kumar, R.A. Antioxidant, DNA protective efficacy and hplc analysis of Annona muricata (soursop) extracts. J. Food Sci. Technol. 2015, 52, 2328–2335. [Google Scholar] [CrossRef]
- Encina, C.L. 3.1 Annona spp. Atemoya, cherimoya, soursop and sugar apple. In Biotechnology of Fruit and Nut Crops; The Doyle Foundation: Glasgow, Scotland, 2005; p. 74. [Google Scholar]
- Orsi, D.C.; Carvalho, V.S.; Nishi, A.C.F.; Damiani, C.; Asquieri, E.R. Use of sugar apple, atemoya and soursop for technological development of jams: Chemical and sensorial composition. Ciência e Agrotecnologia 2012, 36, 560–566. [Google Scholar] [CrossRef] [Green Version]
- Adefegha, S.A.; Oyeleye, S.I.; Oboh, G. Distribution of phenolic contents, antidiabetic potentials, antihypertensive properties, and antioxidative effects of soursop (Annona muricata L.) fruit parts in vitro. Biochem. Res. Int. 2015, 2015, 347673. [Google Scholar] [CrossRef]
- Manochai, B.; Ingkasupart, P.; Lee, S.H.; Hong, J.H. Evaluation of antioxidant activities, total phenolic content (TPC), and total catechin content (TCC) of 10 sugar apple (Annona squamosa L.) cultivar peels grown in thailand. Food Sci. Technol. 2018, 38, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Ellong, E.N.; Billard, C.; Adenet, S.; Rochefort, K. Polyphenols, carotenoids, vitamin c content in tropical fruits and vegetables and impact of processing methods. Food Nutr. Sci. 2015, 6, 299. [Google Scholar] [CrossRef] [Green Version]
- Ferrazzano, G.F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant polyphenols and their anti-cariogenic properties: A review. Molecules 2011, 16, 1486–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subbiah, V.; Zhong, B.; Nawaz, M.A.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Screening of phenolic compounds in australian grown berries by lc-esi-qtof-ms/ms and determination of their antioxidant potential. Antioxidants 2021, 10, 26. [Google Scholar] [CrossRef]
- De Moraes, M.R.; Ryan, S.M.; Godoy, H.T.; Thomas, A.L.; Maia, J.G.S.; Richards, K.M.; Tran, K.; Smith, R.E. Phenolic compounds and metals in some edible annonaceae fruits. Biol. Trace Elem. Res. 2020, 197, 676–682. [Google Scholar] [CrossRef]
- Ali, A.; Wu, H.; Ponnampalam, E.N.; Cottrell, J.J.; Dunshea, F.R.; Suleria, H.A.R. Comprehensive profiling of most widely used spices for their phenolic compounds through lc-esi-qtof-ms2 and their antioxidant potential. Antioxidants 2021, 10, 721. [Google Scholar] [CrossRef]
- Feng, Y.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS characterization of bioactive compounds from black spices and their potential antioxidant activities. J. Food Sci. Technol. 2020, 57, 4671–4687. [Google Scholar] [CrossRef]
- Peng, D.; Zahid, H.F.; Ajlouni, S.; Dunshea, F.R.; Suleria, H.A.R. Lc-esi-qtof/ms profiling of australian mango peel by-product polyphenols and their potential antioxidant activities. Processes 2019, 7, 764. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhong, B.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Identification of phenolic compounds in australian grown dragon fruits by lc-esi-qtof-ms/ms and determination of their antioxidant potential. Arab. J. Chem. 2021, 14, 103151. [Google Scholar] [CrossRef]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A. LC-ESI-QTOF/MS characterisation of phenolic acids and flavonoids in polyphenol-rich fruits and vegetables and their potential antioxidant activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Chou, O.; Lee, F.Y.; Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Characterization of phenolics in rejected kiwifruit and their antioxidant potential. Processes 2021, 9, 781. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef] [PubMed]
- Samsonowicz, M.; Regulska, E.; Karpowicz, D.; Leśniewska, B. Antioxidant properties of coffee substitutes rich in polyphenols and minerals. Food Chem. 2019, 278, 101–109. [Google Scholar] [CrossRef]
- Stavrou, I.J.; Christou, A.; Kapnissi-Christodoulou, C.P. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem. 2018, 269, 355–374. [Google Scholar] [CrossRef]
- Haile, M.; Kang, W.H. Antioxidant activity, total polyphenol, flavonoid and tannin contents of fermented green coffee beans with selected yeasts. Fermentation 2019, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Sogi, D.S.; Siddiq, M.; Greiby, I.; Dolan, K.D. Total phenolics, antioxidant activity, and functional properties of ‘tommy atkins’ mango peel and kernel as affected by drying methods. Food Chem. 2013, 141, 2649–2655. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Baptista, P.; Vilas-Boas, M.; Barros, L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast portugal: Individual cap and stipe activity. Food Chem. 2007, 100, 1511–1516. [Google Scholar] [CrossRef]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Dinis, T.C.; Madeira, V.M.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Serquiz, A.; Alves, M.; Fernandes-Negreiros, M.; Rocha, H. In vitro antioxidant activity of aqueous extracts from the atemoya fruit (peel, pulp, and seed): Correlation of their protein, carbohydrate, and phenolic compound contents. J. Adv. Food Technol. 2018, 1, 103. [Google Scholar]
- Zhong, B.; Robinson, N.A.; Warner, R.D.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. LC-ESI-QTOF-MS/MS characterization of seaweed phenolics and their antioxidant potential. Mar. Drugs 2020, 18, 331. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS characterization of phenolic compounds in palm fruits (jelly and fishtail palm) and their potential antioxidant activities. Antioxidants 2019, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Santos, W.N.D.; Sauthier, M.C.S.; Cavalcante, D.D.; Benevides, C.M.; Dias, F.S.; Santos, D. Mineral composition, nutritional properties, total phenolics and flavonoids compounds of the atemoya fruit (Annona squamosa L. × Annona cherimola mill.) and evaluation using multivariate analysis techniques. An. Acad. Bras. Ciênc. 2016, 88, 1243–1252. [Google Scholar] [CrossRef]
- Zamudio-Cuevas, Y.; Díaz-Sobac, R.; Vázquez-Luna, A.; Landa-Solís, C.; Cruz-Ramos, M.; Santamaría-Olmedo, M.; Martínez-Flores, K.; Fuentes-Gómez, A.; López-Reyes, A. The antioxidant activity of soursop decreases the expression of a member of the nadph oxidase family. Food Funct. 2014, 5, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Jayadev, A. A comparative analysis of anti oxidant properties of three varieties of Annona sp. Int. J. Appl. Res. 2017, 3, 1174–1178. [Google Scholar]
- Lydia, D.E.; John, S.; Swetha, V.; Sivapriya, T. Investigation on the antimicrobial and antioxidant activity of custard apple (Annona reticulata) peel extracts. Res. J. Pharmacogn. Phytochem. 2017, 9, 241–247. [Google Scholar] [CrossRef]
- Wojdylo, A.; Oszmianski, J.; Laskowski, P. Polyphenolic compounds and antioxidant activity of new and old apple varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef]
- Akomolafe, S.; Ajayi, O.B. A comparative study on antioxidant properties, proximate and mineral compositions of the peel and pulp of ripe Annona muricata (L.) fruit. Int. Food Res. J. 2015, 22, 2381–2388. [Google Scholar]
- Yang, D.; Dunshea, F.R.; Suleria, H.A. Lc-esi-qtof/ms characterization of australian herb and spices (garlic, ginger, and onion) and potential antioxidant activity. J. Food Process. Preserv. 2020, 44, e14497. [Google Scholar] [CrossRef]
- Boakye, A.A. Assessment of Some Health Beneficial Constituents of Edible Portions of Four Underutilised Fruits. Master’s Thesis, University of Ghana, Accra, Ghana, 2013. [Google Scholar]
- Murillo, E.; Britton, G.B.; Durant, A.A. Antioxidant activity and polyphenol content in cultivated and wild edible fruits grown in panama. J. Pharm. Bioallied Sci. 2012, 4, 313–317. [Google Scholar]
- Agu, K.C.; Okolie, P.N. Proximate composition, phytochemical analysis, and in vitro antioxidant potentials of extracts of Annona muricata (soursop). Food Sci. Nutr. 2017, 5, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Al-Nemari, R.; Al-Senaidy, A.; Semlali, A.; Ismael, M.; Badjah-Hadj-Ahmed, A.Y.; Bacha, A.B. Gc-ms profiling and assessment of antioxidant, antibacterial, and anticancer properties of extracts of Annona squamosa L. Leaves. BMC Complement. Med. Ther. 2020, 20, 296. [Google Scholar] [CrossRef] [PubMed]
- Nandhakumar, E.; Indumathi, P. In vitro antioxidant activities of methanol and aqueous extract of Annona squamosa (L.) fruit pulp. J. Acupunct. Meridian Stud. 2013, 6, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A.J.; Saéz, V.; Riquelme, S.; von Baer, D.; Vallverdú-Queralt, A. Phenolic profile of grape canes: Novel compounds identified by lc-esi-ltq-orbitrap-ms. Molecules 2019, 24, 3763. [Google Scholar]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Characterization of phenolic composition in lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef]
- Sasot, G.; Martínez-Huélamo, M.; Vallverdú-Queralt, A.; Mercader-Martí, M.; Estruch, R.; Lamuela-Raventós, R.M. Identification of phenolic metabolites in human urine after the intake of a functional food made from grape extract by a high resolution ltq-orbitrap-ms approach. Food Res. Int. 2017, 100, 435–444. [Google Scholar] [CrossRef]
- Roesler, R.; Catharino, R.R.; Malta, L.G.; Eberlin, M.N.; Pastore, G. Antioxidant activity of annona crassiflora: Characterization of major components by electrospray ionization mass spectrometry. Food Chem. 2007, 104, 1048–1054. [Google Scholar] [CrossRef]
- Nam, J.S.; Jang, H.L.; Rhee, Y.H. Antioxidant Activities and Phenolic Compounds of Several Tissues of Pawpaw (Asimina triloba [L.] Dunal) Grown in Korea. J. Food Chem. 2017, 82, 1827–1833. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Harnly, J.M. Identification of hydroxycinnamoylquinic acids of arnica flowers and burdock roots using a standardized lc-dad-esi/ms profiling method. J. Agric. Food Chem. 2008, 56, 10105–10114. [Google Scholar] [CrossRef]
- Cádiz-Gurrea, M.; Lozano-Sanchez, J.; Contreras-Gámez, M.; Legeai-Mallet, L.; Fernández-Arroyo, S.; Segura-Carretero, A. Isolation, comprehensive characterization and antioxidant activities of theobroma cacao extract. J. Funct. Foods 2014, 10, 485–498. [Google Scholar] [CrossRef]
- Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res. 2017, 7, 108–123. [Google Scholar]
- Tourino, S.; Fuguet, E.; Jáuregui, O.; Saura-Calixto, F.; Cascante, M.; Torres, J.L. High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber. Rapid Commun. Mass Spectrom. 2008, 22, 3489–3500. [Google Scholar] [CrossRef] [PubMed]
- Flamini, R. Recent applications of mass spectrometry in the study of grape and wine polyphenols. Int. Sch. Res. Not. 2013, 2013, 813563. [Google Scholar] [CrossRef]
- Baskaran, R.; Pullencheri, D.; Somasundaram, R. Characterization of free, esterified and bound phenolics in custard apple (Annona squamosa L.) fruit pulp by UPLC-ESI-MS/MS. Food Res. Int. 2016, 82, 121–127. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Cai, Y.-Z.; Corke, H.; Sun, M. Survey of antioxidant capacity and nutritional quality of selected edible and medicinal fruit plants in hong kong. J. Food Compos. Anal. 2010, 23, 510–517. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, S.; Kumar, B. LC-MS identification of proanthocyanidins in bark and fruit of six terminalia species. Nat. Prod. Commun. 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Justino, A.B.; Pereira, M.N.; Vilela, D.D.; Peixoto, L.G.; Martins, M.M.; Teixeira, R.R.; Miranda, N.C.; da Silva, N.M.; de Sousa, R.M.; de Oliveira, A. Peel of araticum fruit (Annona crassiflora mart.) as a source of antioxidant compounds with α-amylase, α-glucosidase and glycation inhibitory activities. Bioorg. Chem. 2016, 69, 167–182. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, X.J.; Pan, Y.; Zhou, Z. Identification of the chemical compositions of ponkan peel by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Anal. Methods 2016, 8, 893–903. [Google Scholar] [CrossRef]
- Barreca, D.; Bellocco, E.; Caristi, C.; Leuzzi, U.; Gattuso, G. Flavonoid composition and antioxidant activity of juices from chinotto (citrus× myrtifolia raf.) fruits at different ripening stages. J. Agric. Food Chem. 2010, 58, 3031–3036. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. Uflc-q-tof-ms/ms-based screening and identification of flavonoids and derived metabolites in human urine after oral administration of exocarpium citri grandis extract. Molecules 2018, 23, 895. [Google Scholar] [CrossRef] [Green Version]
- Lin-Wei, C.; Qin, W.; Kun-Ming, Q.; Xiao-Li, W.; Bin, W.; Dan-Ni, C.; Bao-Chang, C.; Ting, C. Chemical profiling of qixue shuangbu tincture by ultra-performance liquid chromatography with electrospray ionization quadrupole-time-of-flight high-definition mass spectrometry (uplc-qtof/ms). Chin. J. Nat. Med. 2016, 14, 141–146. [Google Scholar]
- Santos, D.Y.A.C.; Salatino, M.F. Foliar flavonoids of annonaceae from brazil: Taxonomic significance. Phytochemistry 2000, 55, 567–573. [Google Scholar] [CrossRef]
- Kadam, D.; Palamthodi, S.; Lele, S. LC–ESI-Q-TOF–MS/MS profiling and antioxidant activity of phenolics from L. Sativum seedcake. J. Food Sci. Technol. 2018, 55, 1154–1163. [Google Scholar] [CrossRef]
- Anaya Esparza, L.M.; Montalvo-González, E. Bioactive compounds of soursop (Annona muricata L.) fruit. In Bioactive Compounds in Underutilized Fruits and Nuts; Springer: Berlin/Heidelberg, Germany, 2020; pp. 175–189. [Google Scholar]
- Wang, Y.; Vorsa, N.; Harrington, P.d.B.; Chen, P. Nontargeted metabolomic study on variation of phenolics in different cranberry cultivars using uplc-im–hrms. J. Agric. Food Chem. 2018, 66, 12206–12216. [Google Scholar] [CrossRef]
- Nebieridze, V.; Skhirtladze, A.; Kemertelidze, E.; Ganzera, M. New flavonoid glycosides from the leaves of tribulus terrestris. Nat. Prod. Commun. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gan, J.; Liu, W.; Zhang, X.; Xu, J.; Wu, Y.; Yang, Y.; Si, L.; Li, G.; Huang, J. Pharmacokinetics and novel metabolite identification of tartary buckwheat extracts in beagle dogs following co-administration with ethanol. Pharmaceutics 2019, 11, 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guijarro-Díez, M.; Nozal, L.; Marina, M.L.; Crego, A.L. Metabolomic fingerprinting of saffron by lc/ms: Novel authenticity markers. Anal. Bioanal. Chem. 2015, 407, 7197–7213. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, S.; Liu, D.; Yang, M.; Wei, J. Analysis of flavonoids in dalbergia odorifera by ultra-performance liquid chromatography with tandem mass spectrometry. Molecules 2020, 25, 389. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, X.; Liao, J.; Fan, X.; Cheng, Y. An ultra-robust fingerprinting method for quality assessment of traditional chinese medicine using multiple reaction monitoring mass spectrometry. J. Pharm. Anal. 2020, 11, 88–95. [Google Scholar] [CrossRef]
- Ono, E.; Kim, H.J.; Murata, J.; Morimoto, K.; Okazawa, A.; Kobayashi, A.; Umezawa, T.; Satake, H. Molecular and functional characterization of novel furofuran-class lignan glucosyltransferases from forsythia. Plant Biotechnol. 2010, 27, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, J.; Zhang, A.; Sun, H.; Zhang, Y. Systematic characterization of the absorbed components of acanthopanax senticosus stem. In Serum Pharmacochemistry of Traditional Chinese Medicine; Elsevier: Amsterdam, The Netherlands, 2017; pp. 313–336. [Google Scholar]
- Geng, C.-A.; Chen, H.; Chen, X.-L.; Zhang, X.-M.; Lei, L.-G.; Chen, J.-J. Rapid characterization of chemical constituents in saniculiphyllum guangxiense by ultra fast liquid chromatography with diode array detection and electrospray ionization tandem mass spectrometry. Int. J. Mass Spectrom. 2014, 361, 9–22. [Google Scholar] [CrossRef]
- Willför, S.; Reunanen, M.; Eklund, P.; Sjöholm, R.; Kronberg, L.; Fardim, P.; Pietarinen, S.; Holmbom, B. Oligolignans in norway spruce and scots pine knots and norway spruce stemwood. Holzforschung 2004, 58, 345–354. [Google Scholar] [CrossRef]
- Yang, S.; Shan, L.; Luo, H.; Sheng, X.; Du, J.; Li, Y. Rapid classification and identification of chemical components of schisandra chinensis by uplc-q-tof/ms combined with data post-processing. Molecules 2017, 22, 1778. [Google Scholar] [CrossRef] [Green Version]
- Dutra, L.M.; Costa, E.V.; de Souza Moraes, V.R.; de Lima Nogueira, P.C.; Vendramin, M.E.; Barison, A.; do Nascimento Prata, A.P. Chemical constituents from the leaves of annona pickelii (annonaceae). Biochem. Syst. Ecol. 2012, 41, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Fan, P.; Hay, A.-E.; Marston, A.; Lou, H.; Hostettmann, K. Chemical variability of the invasive neophytes polygonum cuspidatum sieb. And zucc. And polygonum sachalinensis f. Schmidt ex maxim. Biochem. Syst. Ecol. 2009, 37, 24–34. [Google Scholar] [CrossRef]
- Goufo, P.; Singh, R.K.; Cortez, I. A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef]
- Roupe, K.A.; Remsberg, C.M.; Yáñez, J.A.; Davies, N.M. Pharmacometrics of stilbenes: Seguing towards the clinic. Curr. Clin. Pharmacol. 2006, 1, 81–101. [Google Scholar] [CrossRef]
- Ren, Z.; Nie, B.; Liu, T.; Yuan, F.; Feng, F.; Zhang, Y.; Zhou, W.; Xu, X.; Yao, M.; Zhang, F. Simultaneous determination of coumarin and its derivatives in tobacco products by liquid chromatography-tandem mass spectrometry. Molecules 2016, 21, 1511. [Google Scholar] [CrossRef] [Green Version]
- Inkoto, C.L.; Bongo, G.N.; Kapepula, P.; Masengo, C.; Gbolo, B.Z.; Tshiama, C.; Ngombe, N.K.; Iteku, J.B.; Fundu, T.M.; Mpiana, P.T. Microscopic features and chromatographic fingerprints of selected congolese medicinal plants: Aframomum alboviolaceum (Ridley) K. Schum, Annona senegalensis Pers. and Mondia whitei (Hook. f.) Skeels. Emergent Life Sci. Res. 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Sonkar, N.; Yadav, A.K.; Mishra, P.K.; Jain, P.; Rao, C.V. Evaluation of hepatoprotective activity of annona squamosa leaves and bark extract against carbon tetrachloride liver damage in wistar rats. World J. Pharm. Pharm. Sci. 2016, 5, 1353–1360. [Google Scholar]
- Jesionek, W.; Majer-Dziedzic, B.; Horváth, G.; Móricz, Á.M.; Choma, I.M. Screening of antibacterial compounds in Salvia officinalis L. Tincture using thin-layer chromatography—direct bioautography and liquid chromatography—Tandem mass spectrometry techniques. JPC J. Planar Chromatogr. Mod. TLC 2017, 30, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Khallouki, F.; Haubner, R.; Ulrich, C.M.; Owen, R.W. Ethnobotanical survey, chemical composition, and antioxidant capacity of methanolic extract of the root bark of annona cuneata oliv. J. Med. Food 2011, 14, 1397–1402. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora mart.) and its by-products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Alvionita, M.; Oktavia, I. Bioactivity of Flavonoid in Ethanol Extract of Annona Squamosa L. Fruit as Xanthine Oxidase Inhibitor; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; p. 062003. [Google Scholar]
Assays | Peel | Seed | Pulp | ||||||
---|---|---|---|---|---|---|---|---|---|
African Pride | Pink’s Mammoth | Soursop | African Pride | Pink’s Mammoth | Soursop | African Pride | Pink’s Mammoth | Soursop | |
TPC (mg GAE/g) | 61.69 ± 1.48 a | 19.37 ± 0.27 b | 4.07 ± 0.20 c | 1.40 ± 0.07 a | 1.10 ± 0.04 a | 0.39 ± 0.01 b | 3.81 ± 0.17 a | 0.95 ± 0.01 b | 1.19 ± 0.06 b |
TFC (mg QE/g) | 0.42 ± 0.01 a | 0.27 ± 0.03 b | 0.06 ± 0.01 c | 0.09 ± 0.01 b | 0.21 ± 0.01 a | 0.09 ± 0.01 b | 0.38 ± 0.01 a | 0.06 ± 0.01 b | 0.04 ± 0.01 b |
TTC (mg CE/g) | 43.25 ± 6.70 a | 10.25 ± 1.13 b | 0.37 ± 0.01 c | 0.45 ± 0.01 a | - | 0.10 ± 0.01 b | 1.35 ± 0.06 a | 0.17 ± 0.01 b | 0.04 ± 0.01 c |
TAC (mg AAE/g) | 43.41 ± 1.66 a | 10.43 ± 0.20 b | 0.83 ± 0.01 c | 2.48 ± 0.05 b | 2.87 ± 0.07 a | 1.14 ± 0.01 c | 1.33 ± 0.04 a | 0.88 ± 0.02 b | 0.32 ± 0.01 c |
DPPH (mg AAE/g) | 1.87 ± 0.09 b | 16.09 ± 0.34 a | 0.70 ± 0.01 c | 1.39 ± 0.08 a | 0.68 ± 0.02 b | 0.42 ± 0.01 c | 6.76 ± 0.12 b | 13.75 ± 0.67 a | 0.03 ± 0.01 c |
FRAP (mg AAE/g) | 3.60 ± 0.14 a | 0.43 ± 0.01 b | 0.11 ± 0.01 b | 0.34 ± 0.01 a | 0.03 ± 0.01 c | 0.14 ± 0.01 b | 0.06 ± 0.01 a | 0.07 ± 0.01 a | 0.02 ± 0.01 a |
ABTS (mg AAE/g) | 127.67 ± 4.60 a | 33.40 ± 0.93 b | 1.08 ± 0.01 c | 2.22 ± 0.14 a | 1.21 ± 0.01 b | 0.73 ± 0.04 c | 7.02 ± 0.15 a | 1.86 ± 0.01 b | 0.49 ± 0.01 c |
RPA (mg AAE/g) | 4.75 ± 1.2 b | 5.32 ± 0.14 a | 1.73 ± 0.43 c | 5.63 ± 0.24 a | 4.96 ± 0.01 b | 1.24 ± 0.12 c | 6.47 ± 0.03 | 3.15 ± 0.09 | 1.45 ± 0.03 |
•OH-RSA (mg AAE/g) | 0.94 ± 0.31 b | 1.23 ± 0.25 a | 0.93 ± 0.39 b | 0.42 ± 0.15 b | 0.15 ± 0.09 c | 0.79 ± 0.07 a | 0.18 ± 0.04 b | 1.14 ± 0.04 a | 0.97 ± 0.07 a |
FICA (mg EDTA/g) | 1.11 ± 0.43 b | 3.17 ± 0.18 a | 0.75 ± 0.21 c | 2.14 ± 0.14 a | 1.58 ± 0.12 b | 2.17 ± 0.19 a | 0.98 ± 0.09 a | 0.13 ± 0.01 b | 1.28 ± 0.01 a |
No. | Proposed Compounds | Molecular Formula | RT (min) | Ionization (ESI+/ESI−) | Molecular Weight | Theoretical (m/z) | Precursor (m/z) | Error (ppm) | MS/MS Product Ions | Samples |
---|---|---|---|---|---|---|---|---|---|---|
Phenolic acid | ||||||||||
Hydroxybenzoic acids | ||||||||||
1 | 4-Hydroxybenzoic acid 4-O-glucoside | C13H16O8 | 14.564 | [M − H]− | 300.0845 | 299.0772 | 299.0778 | 2.01 | 255, 137 | ASE |
2 | 3,4-O-Dimethylgallic acid | C9H10O5 | 16.475 | ** [M + H]+ | 198.0528 | 199.0601 | 199.0605 | 2.01 | 153, 139, 125, 111 | ASE, * PPE |
3 | Gallic acid 4-O-glucoside | C13H16O10 | 84.878 | [M − H]− | 332.0740 | 331.0670 | 331.0660 | −2.42 | 169, 125 | SSE |
Hydroxycinnamic acids | ||||||||||
4 | Rosmarinic acid | C18H16O8 | 7.130 | [M − H]− | 360.0845 | 359.0772 | 359.0788 | 4.46 | 197, 179, 161 | APE |
5 | 3-p-Coumaroylquinic acid | C16H18O8 | 13.656 | ** [M − H]− | 338.1002 | 337.0929 | 337.0941 | 3.56 | 265, 173, 162, 127 | APE, * PSE |
6 | 3-Sinapoylquinic acid | C18H22O10 | 14.204 | ** [M − H]− | 398.1213 | 397.1140 | 397.1143 | 0.76 | 223, 179 | * APE, APU, PPU |
7 | Caffeic acid 3-O-glucuronide | C15H16O10 | 14.339 | ** [M − H]− | 356.0743 | 355.0670 | 355.0660 | −2.80 | 179 | APE, * PPE |
8 | Sinapic acid | C11H12O5 | 17.036 | ** [M − H]− | 224.0685 | 223.0612 | 223.0602 | −4.50 | 205, 179, 163 | ASE, * PSE |
9 | Ferulic acid 4-O-glucuronide | C16H18O10 | 18.378 | ** [M − H]− | 370.0900 | 369.0827 | 369.0844 | 4.61 | 193, 178 | * APE, ASE |
10 | Cinnamic acid | C9H8O2 | 20.992 | ** [M − H]− | 148.0524 | 147.0451 | 147.0456 | 3.40 | 103 | * APE, APU, ASE, PPE, PSE |
11 | m-Coumaric acid | C9H8O3 | 23.994 | ** [M − H]− | 164.0473 | 163.0400 | 163.0406 | 3.68 | 195, 177, 145, 117 | * APE, PPE |
12 | 1,5-Dicaffeoylquinic acid | C25H24O12 | 24.236 | ** [M − H]− | 516.1268 | 515.1195 | 515.1176 | −3.70 | 353, 335, 191, 179 | APE, PPE, * PSE |
13 | 3-Caffeoylquinic acid | C16H18O9 | 24.856 | ** [M − H]− | 354.0951 | 353.0878 | 353.0867 | −3.10 | 253, 190, 144 | APE, ASE, PPE, * SPE |
14 | 3-Feruloylquinic acid | C17H20O9 | 25.237 | ** [M − H]− | 368.1107 | 367.1034 | 367.1045 | 3.00 | 298, 288, 192, 191 | APE, * PPE, PSE |
15 | p-Coumaric acid 4-O-glucoside | C15H18O8 | 25.266 | [M − H]− | 326.1002 | 325.0929 | 325.0935 | 1.85 | 169 | APE, * ASE |
16 | Caffeic acid | C9H8O4 | 31.284 | [M − H]− | 180.0423 | 179.0350 | 179.0349 | −0.56 | 151, 143, 133 | APE |
17 | p-Coumaroyl tyrosine | C18H17NO5 | 44.401 | ** [M − H]- | 327.1107 | 326.1034 | 326.1046 | 3.68 | 282 | * ASE, PPE, PSE |
Hydroxyphenylacetic acids | ||||||||||
18 | 3,4-Dihydroxyphenylacetic acid | C8H8O4 | 31.930 | ** [M − H]− | 168.0423 | 167.0350 | 167.0353 | 1.80 | 149, 123 | * APE, ASE, PPE, PSE |
19 | 2-Hydroxy-2-phenylacetic acid | C8H8O3 | 36.283 | ** [M − H]− | 152.0473 | 151.0400 | 151.0404 | 2.65 | 125 | APE, * ASE, PPE |
Hydroxyphenylpropanoic acids | ||||||||||
20 | Dihydroferulic acid 4-O-glucuronide | C16H20O10 | 23.531 | [M − H]− | 372.1056 | 371.0983 | 371.0980 | −0.81 | 175 | APE |
Flavonoids | ||||||||||
Anthocyanins | ||||||||||
21 | Cyanidin 3-O-(6″-p-coumaroyl-glucoside) | C30H27O13 | 16.724 | [M + H]+ | 595.1452 | 596.1525 | 596.1554 | 4.86 | 287 | * PPE, PPU |
22 | Cyanidin 3-O-diglucoside-5-O-glucoside | C33H41O21 | 27.059 | [M + H]+ | 773.2140 | 774.2213 | 774.2200 | −1.68 | 610, 464 | PPE |
23 | Isopeonidin 3-O-arabinoside | C21H21O10 | 30.284 | ** [M + H]+ | 433.1135 | 434.1208 | 434.1209 | 0.23 | 271, 253, 243 | PPE, * SPE |
24 | Delphinidin 3-O-glucoside | C21H21O12 | 42.731 | ** [M + H]+ | 465.1033 | 466.1106 | 466.1116 | 2.15 | 303 | * APE, PPE, PSE |
25 | Cyanidin 3,5-O-diglucoside | C27H31O16 | 42.927 | ** [M + H]+ | 611.1612 | 612.1685 | 612.1694 | 1.47 | 449, 287 | APE, ASE, * PPE |
26 | Petunidin 3-O-(6″-acetyl-glucoside) | C24H25O13 | 59.402 | [M + H]+ | 521.1295 | 522.1368 | 522.1373 | 0.96 | 317 | SPE |
Dihydrochalcones | ||||||||||
27 | Phloridzin | C21H24O10 | 17.951 | ** [M − H]− | 436.1369 | 435.1296 | 435.1289 | −1.61 | 273 | APE, PPE, *PPU |
28 | 3-Hydroxyphloretin 2′-O-glucoside | C21H24O11 | 22.371 | ** [M − H]− | 452.1319 | 451.1246 | 451.1247 | 0.20 | 289, 273 | APE, ASE, * PPE, PSE |
Dihydroflavonols | ||||||||||
29 | Dihydroquercetin | C15H12O7 | 44.268 | [M − H]− | 304.0583 | 303.0510 | 303.0520 | 3.30 | 151,125 | APE, * ASE |
Flavonols | ||||||||||
30 | Procyanidin trimer C1 | C45H38O18 | 23.564 | ** [M − H]− | 866.2058 | 865.1985 | 865.1992 | 0.81 | 739, 713, 695 | * APE, APU, ASE, PPE, PPU, PSE |
31 | Cinnamtannin A2 | C60H50O24 | 23.696 | ** [M − H]− | 1154.2692 | 1153.2620 | 1153.2600 | −1.91 | 1027, 1001 | * APE, ASE, PPE, PPU |
32 | Procyanidin dimer B1 | C30H26O12 | 28.103 | ** [M − H]− | 578.1424 | 577.1351 | 577.1324 | −4.68 | 451 | * APE, ASE, PPE, PPU, PSE |
33 | (-)-Epicatechin | C15H14O6 | 31.218 | ** [M − H]− | 290.0790 | 289.0717 | 289.0715 | −0.69 | 245, 205, 179 | * APE, ASE, PPU, PSE |
34 | (-)-Epigallocatechin | C15H14O7 | 84.626 | ** [M + H]+ | 306.0740 | 307.0813 | 307.0815 | 0.65 | 167, 137 | ASE, * PSE |
Flavanones | ||||||||||
35 | Eriocitrin | C27H32O15 | 39.899 | ** [M − H]− | 596.1741 | 595.1668 | 595.1684 | 2.69 | 431, 287 | * APE, ASE, PPE, PPU, PSE |
36 | Naringin 4′-O-glucoside | C33H42O19 | 53.036 | [M − H]− | 742.2320 | 741.2247 | 741.2251 | 0.54 | 433, 271 | APE |
Flavones | ||||||||||
37 | Apigenin 7-O-glucuronide | C21H18O11 | 20.967 | [M + H]+ | 446.0849 | 447.0922 | 447.0910 | −2.68 | 271, 253 | * APE, PPE, PPU |
38 | Isorhoifolin | C27H30O14 | 26.135 | [M − H]− | 578.1636 | 577.1563 | 577.1588 | 4.33 | 433, 415, 397, 271 | PPU |
39 | Apigenin 6,8-di-C-glucoside | C27H30O15 | 42.844 | ** [M − H]− | 594.1585 | 593.1512 | 593.1535 | 3.88 | 575, 503, 473 | APE, * ASE, PPE, PSE |
40 | Apigenin 6-C-glucoside | C21H20O10 | 55.256 | [M − H]+ | 432.1056 | 431.0983 | 431.0984 | 0.20 | 413, 341, 311 | PPE |
41 | 6-Hydroxyluteolin 7-O-rhamnoside | C21H20O11 | 57.850 | [M − H]− | 448.1006 | 447.0933 | 447.0931 | −0.45 | 285 | ASE, * PPE |
Flavonols | ||||||||||
42 | Myricetin 3-O-arabinoside | C20H18O12 | 10.012 | ** [M − H]− | 450.0798 | 449.0725 | 449.0722 | −0.67 | 316 | *APU, PSE |
43 | Myricetin 3-O-rutinoside | C27H30O17 | 32.049 | [M − H]− | 626.1483 | 625.1410 | 625.1382 | −4.50 | 301 | PSE |
44 | Myricetin 3-O-glucoside | C21H20O13 | 34.017 | [M − H]− | 480.0904 | 479.0831 | 479.0833 | 0.40 | 317 | APU |
45 | Quercetin 3-O-xylosyl-rutinoside | C32H38O20 | 39.018 | ** [M + H]+ | 742.1956 | 743.2029 | 743.2060 | 4.17 | 479, 317 | * ASE, PPE |
46 | Quercetin 3-O-xylosyl-glucuronide | C26H26O17 | 39.195 | [M + H]+ | 610.1170 | 611.1243 | 611.1241 | −0.33 | 479, 303, 285, 239 | ASE |
47 | Quercetin 3-O-arabinoside | C20H18O11 | 42.798 | [M − H]− | 434.0849 | 433.0776 | 433.0772 | −0.90 | 301 | * ASE, PPE |
48 | Kaempferol 3,7-O-diglucoside | C27H30O16 | 43.092 | [M − H]− | 610.1534 | 609.1461 | 609.1478 | 2.79 | 449, 287 | APE, * ASE |
49 | Kaempferol 3-O-glucosyl-rhamnosyl-galactoside | C33H40O20 | 43.311 | [M − H]− | 756.2113 | 755.2040 | 755.2038 | −0.26 | 285 | * APE, ASE |
50 | Myricetin 3-O-rhamnoside | C21H20O12 | 45.428 | ** [M − H]− | 464.0955 | 463.0882 | 463.0877 | −1.08 | 316, 271, 221 | * ASE, PPE, PSE |
51 | 3-Methoxynobiletin | C22H24O9 | 61.305 | [M + H]+ | 432.1420 | 433.1493 | 433.1505 | 2.77 | 403, 385, 373, 345 | PPE, * PSE |
52 | 3-Methoxysinensetin | C21H22O8 | 66.632 | [M + H]+ | 402.1315 | 403.1388 | 403.1380 | −1.98 | 388, 373, 355, 327 | APE |
Isoflavonoids | ||||||||||
53 | 6″-O-Acetyldaidzin | C23H22O10 | 4.413 | [M − H]− | 458.1213 | 457.1140 | 457.1125 | −3.30 | 221 | PPE |
54 | Sativanone | C17H16O5 | 9.250 | [M − H]− | 300.0998 | 299.0925 | 299.0914 | −3.68 | 284, 269, 225 | APE |
55 | Dihydrobiochanin A | C16H14O5 | 11.267 | [M + H]+ | 286.0841 | 287.0914 | 287.0905 | −3.13 | 270 | PSE |
56 | 3′-O-Methylviolanone | C18H18O6 | 16.973 | [M − H]− | 330.1103 | 329.1030 | 329.1030 | 0.00 | 314, 299, 284, 256 | PPU |
57 | Violanone | C17H16O6 | 20.267 | [M − H]− | 316.0947 | 315.0874 | 315.0868 | −1.90 | 300, 285, 135 | PPE |
58 | 3′,4′,7-Trihydroxyisoflavanone | C15H12O5 | 24.011 | ** [M − H]− | 272.0685 | 271.0612 | 271.0623 | 4.06 | 177, 151, 119, 107 | * APE, PPE, PPU |
59 | 5,6,7,3′,4′-Pentahydroxyisoflavone | C15H10O7 | 39.465 | ** [M + H]+ | 302.0427 | 303.0500 | 303.0491 | −3.00 | 285, 257 | * APE, PPE, PSE |
60 | 3′-Hydroxygenistein | C15H10O6 | 42.565 | [M + H]+ | 286.0477 | 287.0550 | 287.0560 | 3.48 | 269, 259 | APE |
61 | 6″-O-Acetylglycitin | C24H24O11 | 43.656 | [M + H]+ | 488.1319 | 489.1392 | 489.1413 | 4.29 | 285, 270 | PPE |
62 | 6″-O-Malonyldaidzin | C24H22O12 | 45.321 | [M + H]+ | 502.1111 | 503.1184 | 503.1189 | 0.99 | 255 | PSE |
Lignans | ||||||||||
63 | Episesamin | C20H18O6 | 20.860 | ** [M − H]− | 354.1103 | 353.1030 | 353.1029 | −0.28 | 338, 163 | * ASE, PPU |
64 | Matairesinol | C20H22O6 | 24.760 | [M − H]− | 358.1416 | 357.1343 | 357.1343 | 0.00 | 342, 327, 313, 221 | PPU |
65 | Enterolactone | C18H18O4 | 35.010 | [M + H]+ | 298.1205 | 299.1278 | 299.1292 | 4.68 | 281, 165 | * PPE, PSE |
66 | Schisanhenol | C23H30O6 | 35.468 | [M + H]+ | 402.2042 | 403.2115 | 403.2128 | 3.22 | 385, 354, 331 | SPE |
67 | Schisandrin | C24H32O7 | 52.095 | [M + H]+ | 432.2148 | 433.2221 | 433.2230 | 2.08 | 415, 384, 361 | PSE |
68 | Secoisolariciresinol-sesquilignan | C30H38O10 | 58.039 | [M − H]− | 558.2465 | 557.2392 | 557.2391 | −0.18 | 539, 521, 509, 361 | * APE, SPE |
Stilbenes | ||||||||||
69 | Piceatannol 3-O-glucoside | C20H22O9 | 8.335 | ** [M − H]− | 406.1264 | 405.1191 | 405.1172 | −4.69 | 243 | * ASE, PPU |
70 | 4′-Hydroxy-3,4,5-trimethoxystilbene | C17H18O4 | 29.576 | [M + H]+ | 286.1205 | 287.1278 | 287.1270 | −2.79 | 271, 241, 225 | *APU, ASE, PPE, PSE |
71 | Resveratrol | C14H12O3 | 31.267 | [M − H]− | 228.0786 | 227.0713 | 227.0709 | −1.76 | 185, 157, 143 | APE |
72 | 3′-Hydroxy-3,4,5,4′-tetramethoxystilbene | C17H18O5 | 43.904 | [M + H]+ | 302.1154 | 303.1227 | 303.1221 | −1.98 | 229, 201, 187, 175 | * PPE, PPU |
Other polyphenols | ||||||||||
Curcuminoids | ||||||||||
73 | Bisdemethoxycurcumin | C19H16O4 | 77.677 | [M + H]+ | 308.1049 | 309.1122 | 309.1137 | 4.85 | 291, 263 | APE, * PPE |
Furanocoumarins | ||||||||||
74 | Isopimpinellin | C13H10O5 | 17.193 | [M + H]+ | 246.0528 | 247.0601 | 247.0595 | −2.43 | 232, 217, 205, 203 | APE, APU, PPE, *PPU, PSE |
Hydroxybenzaldehydes | ||||||||||
75 | p-Anisaldehyde | C8H8O2 | 6.041 | ** [M + H]+ | 136.0524 | 137.0597 | 137.0601 | 2.92 | 122, 109 | APE, ASE, * PPE, PPU, PSE |
76 | 4-Hydroxybenzaldehyde | C7H6O2 | 30.767 | ** [M − H]− | 122.0368 | 121.0295 | 121.0293 | −1.65 | 92, 77 | APE, * ASE, PPE, PPU |
Hydroxybenzoketones | ||||||||||
77 | Scopoletin | C10H8O4 | 7.554 | [M − H]− | 192.0423 | 191.0350 | 191.0347 | −1.60 | 176, 147 | APE, APU, * PPE, PSE |
78 | 2,3-Dihydroxy-1-guaiacylpropanone | C10H12O5 | 16.950 | ** [M − H]− | 212.0685 | 211.0612 | 211.0605 | −3.32 | 167, 123, 105, 93 | APE, * ASE, PPE |
79 | Coumarin | C9H6O2 | 63.127 | [M + H]+ | 146.0368 | 147.0441 | 147.0442 | 0.68 | 103, 91 | PPE, PPU, * PSE |
Hydroxyphenylpropenes | ||||||||||
80 | 2-Methoxy-5-prop-1-enylphenol | C10H12O2 | 8.404 | [M + H]+ | 164.0837 | 165.0910 | 165.0910 | 0.00 | 149, 137, 133, 124 | * SPE, SPU |
Phenolic terpenes | ||||||||||
81 | Rosmanol | C20H26O5 | 34.541 | [M + H]+ | 346.1780 | 347.1853 | 347.1844 | −2.59 | 301, 231 | PPU, * SPE |
82 | Carnosic acid | C20H28O4 | 80.860 | [M − H]− | 332.1988 | 331.1915 | 331.1922 | 2.10 | 287, 269 | ASE, * PSE |
Tyrosols | ||||||||||
83 | Hydroxytyrosol 4-O-glucoside | C14H20O8 | 14.283 | ** [M − H]− | 316.1158 | 315.1085 | 315.1098 | 4.13 | 153, 123 | ASE, * PSE |
84 | 3,4-DHPEA-AC | C10H12O4 | 19.522 | [M − H]− | 196.0736 | 195.0663 | 195.0667 | 2.10 | 135 | APE, * PPE, PSE |
85 | Demethyloleuropein | C24H30O13 | 38.557 | ** [M − H]− | 526.1686 | 525.1613 | 525.1627 | 2.67 | 495 | * APE, SPE |
Variables | TPC | TFC | TTC | DPPH | FRAP | ABTS | RPA | •OH-RSA | FICA | TAC | Phenolic Acids | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TFC | 0.702 * | |||||||||||
TTC | 0.997 ** | 0.690 * | ||||||||||
DPPH | 0.036 | 0.204 | −0.002 | |||||||||
FRAP | 0.974 ** | 0.627 | 0.986 ** | −0.116 | ||||||||
ABTS | 0.998 ** | 0.706 * | 1.000 ** | 0.019 | 0.983 ** | |||||||
RPA | 0.262 | 0.709 * | 0.249 | 0.341 | 0.213 | 0.269 | ||||||
•OH-RSA | 0.295 | −0.233 | 0.269 | 0.444 | 0.209 | 0.266 | −0.492 | |||||
FICA | 0.034 | 0.110 | 0.005 | 0.119 | −0.059 | 0.015 | 0.228 | 0.025 | ||||
TAC | 0.993 ** | 0.685 * | 0.998 ** | −0.027 | 0.989 ** | 0.997 ** | 0.264 | 0.235 | 0.017 | |||
Phenolic acids | 0.994 ** | 0.689 * | 0.990 ** | 0.076 | 0.960 ** | 0.991 ** | 0.281 | 0.316 | 0.115 | 0.988 ** | ||
Flavonoids | 0.954 ** | 0.682 * | 0.933 ** | 0.213 | 0.874 ** | 0.939 ** | 0.305 | 0.401 | 0.265 | 0.927 ** | 0.973 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Zhong, B.; Subbiah, V.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS Profiling and Antioxidant Activity of Phenolics from Custard Apple Fruit and By-Products. Separations 2021, 8, 62. https://doi.org/10.3390/separations8050062
Du J, Zhong B, Subbiah V, Barrow CJ, Dunshea FR, Suleria HAR. LC-ESI-QTOF-MS/MS Profiling and Antioxidant Activity of Phenolics from Custard Apple Fruit and By-Products. Separations. 2021; 8(5):62. https://doi.org/10.3390/separations8050062
Chicago/Turabian StyleDu, Junxi, Biming Zhong, Vigasini Subbiah, Colin J. Barrow, Frank R. Dunshea, and Hafiz A. R. Suleria. 2021. "LC-ESI-QTOF-MS/MS Profiling and Antioxidant Activity of Phenolics from Custard Apple Fruit and By-Products" Separations 8, no. 5: 62. https://doi.org/10.3390/separations8050062
APA StyleDu, J., Zhong, B., Subbiah, V., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2021). LC-ESI-QTOF-MS/MS Profiling and Antioxidant Activity of Phenolics from Custard Apple Fruit and By-Products. Separations, 8(5), 62. https://doi.org/10.3390/separations8050062