Phytochemical Responses to Salt Stress in Red and Green Baby Leaf Lettuce (Lactuca sativa L.) Varieties Grown in a Floating Hydroponic Module
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Morphological Analysis
2.3. Micro Mineral Content Analysis
2.4. Polyphenol Analysis
2.5. Statistical Analysis
3. Results
3.1. Effects on Leaf Biometric Parameters
3.2. Effects on Leaf Coloration
3.3. Effects on the K/Na Ratio in Leaves
3.4. Effects on Phytochemicals
3.5. Multivariate Analysis of the Lettuce Responses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mou, B. Lettuce. In Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae; Prohens, J., Nuez, F., Eds.; Springer: New York, NY, USA, 2008; pp. 75–116. [Google Scholar]
- De Corato, U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit. Rev. Food Sci. Nutr. 2020, 60, 940–975. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A. Pubchem substance and compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef] [PubMed]
- Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Romani, A.; Pinelli, P.; Galardi, C.; Sani, G.; Cimato, A.; Heimler, D. Polyphenols in greenhouse and open-air-grown lettuce. Food Chem. 2002, 79, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Materska, M.; Olszówka, K.; Chilczuk, B.; Stochmal, A.; Pecio, Ł.; Pacholczyk-Sienicka, B.; Piacente, S.; Pizza, C.; Masullo, M. Polyphenolic profiles in lettuce (Lactuca sativa L.) after CaCl2 treatment and cold storage. Eur. Food Res. Technol. 2019, 245, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; De Feo, V.; Battistelli, A.; Cruz, A.; Coppola, R. Polyphenols, the new frontiers of prebiotics. Adv. Food Nutr. Res. 2020, 94, 35–38. [Google Scholar] [PubMed]
- Cheng, D.M.; Pogrebnyak, N.; Kuhn, P.; Poulev, A.; Waterman, C.; Rojas-Silva, P.; Johnson, W.D.; Raskin, I. Polyphenol-rich rutgers scarlet lettuce improves glucose metabolism and liver lipid accumulation in diet-induced obese c57bl/6 mice. Nutrition 2014, 30, S52–S58. [Google Scholar] [CrossRef] [Green Version]
- Chon, S.-U.; Boo, H.-O.; Heo, B.-G.; Gorinstein, S. Anthocyanin content and the activities of polyphenol oxidase, peroxidase and phenylalanine ammonia-lyase in lettuce cultivars. Int. J. Food Sci. Nutr. 2012, 63, 45–48. [Google Scholar] [CrossRef]
- Spence, C.; Levitan, C.A.; Shankar, M.U.; Zampini, M. Does food color influence taste and flavor perception in humans? Chemosens. Percept. 2010, 3, 68–84. [Google Scholar] [CrossRef]
- Arce-Lopera, C.; Masuda, T.; Kimura, A.; Wada, Y.; Okajima, K. Model of vegetable freshness perception using luminance cues. Food Qual. Prefer. 2015, 40, 279–286. [Google Scholar] [CrossRef]
- Gazula, A.; Kleinhenz, M.D.; Scheerens, J.C.; Ling, P.P. Anthocyanin levels in nine lettuce (Lactuca sativa) cultivars: Influence of planting date and relations among analytic, instrumented, and visual assessments of color. HortScience 2007, 42, 232–238. [Google Scholar] [CrossRef]
- Jaakola, L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013, 18, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, microgreens and “baby leaf” vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Springer: Berlin/Heidelberg, Germany, 2017; pp. 403–432. [Google Scholar]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Choe, U.; Yu, L.L.; Wang, T.T. The science behind microgreens as an exciting new food for the 21st century. J. Agric. Food Chem. 2018, 66, 11519–11530. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Luna, M.C.; Selma, M.V.; Tudela, J.A.; Abad, J.; Gil, M.I. Baby-leaf and multi-leaf of green and red lettuces are suitable raw materials for the fresh-cut industry. Postharvest Biol. Technol. 2012, 63, 1–10. [Google Scholar] [CrossRef]
- Subhasree, B.; Baskar, R.; Keerthana, R.L.; Susan, R.L.; Rajasekaran, P. Evaluation of antioxidant potential in selected green leafy vegetables. Food Chem. 2009, 115, 1213–1220. [Google Scholar] [CrossRef]
- Vázquez-Hernández, M.; Parola-Contreras, I.; Montoya-Gómez, L.; Torres-Pacheco, I.; Schwarz, D.; Guevara-González, R. Eustressors: Chemical and physical stress factors used to enhance vegetables production. Sci. Hortic. 2019, 250, 223–229. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: Highly generalizable and beyond laboratory. Trends Plant Sci. 2020, 25, 1076–1086. [Google Scholar] [CrossRef]
- Belz, R.G.; Sinkkonen, A. Low toxin doses change plant size distribution in dense populations–glyphosate exposed Hordeum vulgare as a greenhouse case study. Environ. Int. 2019, 132, 105072. [Google Scholar] [CrossRef] [PubMed]
- Belz, R.G.; Farooq, M.B.; Wagner, J. Does selective hormesis impact herbicide resistance evolution in weeds? Accase-resistant populations of Alopecurus myosuroides huds. As a case study. Pest Manag. Sci. 2018, 74, 1880–1891. [Google Scholar] [CrossRef] [PubMed]
- Hooker, A.M.; Bhat, M.; Day, T.K.; Lane, J.M.; Swinburne, S.J.; Morley, A.A.; Sykes, P.J. The linear no-threshold model does not hold for low-dose ionizing radiation. Radiat. Res. 2004, 162, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Kong, E.Y.; Cheng, S.H.; Yu, K.N. Biphasic and triphasic dose responses in zebrafish embryos to low-dose 150 kv x-rays with different levels of hardness. J. Radiat. Res. 2016, 57, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Riga, P.; Benedicto, L.; Gil-Izquierdo, Á.; Collado-González, J.; Ferreres, F.; Medina, S. Diffuse light affects the contents of vitamin C, phenolic compounds and free amino acids in lettuce plants. Food Chem. 2019, 272, 227–234. [Google Scholar] [CrossRef]
- Carillo, P.; Cirillo, C.; De Micco, V.; Arena, C.; De Pascale, S.; Rouphael, Y. Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. trained to different canopy shapes. Agric. Water Manag. 2019, 212, 12–22. [Google Scholar] [CrossRef]
- Yang, X.; Wei, S.; Liu, B.; Guo, D.; Zheng, B.; Feng, L.; Liu, Y.; Tomás-Barberán, F.A.; Luo, L.; Huang, D. A novel integrated non-targeted metabolomic analysis reveals significant metabolite variations between different lettuce (Lactuca sativa L) varieties. Hortic. Res. 2018, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mampholo, B.M.; Maboko, M.M.; Soundy, P.; Sivakumar, D. Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in closed hydroponic system. J. Food Qual. 2016, 39, 805–815. [Google Scholar] [CrossRef]
- Miras-Moreno, B.; Corrado, G.; Zhang, L.; Senizza, B.; Righetti, L.; Bruni, R.; El-Nakhel, C.; Sifola, M.I.; Pannico, A.; Pascale, S.D. The metabolic reprogramming induced by sub-optimal nutritional and light inputs in soilless cultivated green and red butterhead lettuce. Int. J. Mol. Sci. 2020, 21, 6381. [Google Scholar] [CrossRef] [PubMed]
- Shannon, M.; Grieve, C. Tolerance of vegetable crops to salinity. Sci. Hortic. 1998, 78, 5–38. [Google Scholar] [CrossRef]
- Ozgen, S.; Sekerci, S. Effect of leaf position on the distribution of phytochemicals and antioxidant capacity among green and red lettuce cultivars. Span. J. Agric. Res. 2011, 3, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, N.D.; Simko, I.; Mou, B. Phenomic and physiological analysis of salinity effects on lettuce. Sensors 2019, 19, 4814. [Google Scholar] [CrossRef] [Green Version]
- Senizza, B.; Zhang, L.; Miras-Moreno, B.; Righetti, L.; Zengin, G.; Ak, G.; Bruni, R.; Lucini, L.; Sifola, M.I.; El-Nakhel, C. The strength of the nutrient solution modulates the functional profile of hydroponically grown lettuce in a genotype-dependent manner. Foods 2020, 9, 1156. [Google Scholar] [CrossRef]
- Carillo, P.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Kyriacou, M.C.; Sifola, M.I.; Rouphael, Y. Physiological and nutraceutical quality of green and red pigmented lettuce in response to NaCl concentration in two successive harvests. Agronomy 2020, 10, 1358. [Google Scholar] [CrossRef]
- Corrado, G.; Lucini, L.; Miras-Moreno, B.; Zhang, L.; El-Nakhel, C.; Colla, G.; Rouphael, Y. Intraspecific variability largely affects the leaf metabolomics response to isosmotic macrocation variations in two divergent lettuce (Lactuca sativa L.) varieties. Plants 2021, 10, 91. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Ripoll, J.; Urban, L.; Staudt, M.; Lopez-Lauri, F.; Bidel, L.P.; Bertin, N. Water shortage and quality of fleshy fruits—making the most of the unavoidable. J. Exp. Bot. 2014, 65, 4097–4117. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Kyriacou, M.C. Enhancing quality of fresh vegetables through salinity eustress and biofortification applications facilitated by soilless cultivation. Front. Plant Sci. 2018, 9, 1254. [Google Scholar] [CrossRef]
- Llorach, R.; Martínez-Sánchez, A.; Tomás-Barberán, F.A.; Gil, M.I.; Ferreres, F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008, 108, 1028–1038. [Google Scholar] [CrossRef]
- Nicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.L.; Rock, E.; Michel, H.; Amouroux, P.; Remesy, C. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J. Sci. Food Agric. 2004, 84, 2061–2069. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Muzolf-Panek, M.; Goliński, P. Phenolic content changes in plants under salt stress. In Ecophysiology and Responses of Plants under Salt Stress; Springer: Berlin/Heidelberg, Germany, 2013; pp. 283–314. [Google Scholar]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Carillo, P.; Soteriou, G.A.; Kyriacou, M.C.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Mola, I.D.; Mori, M.; Rouphael, Y. Regulated salinity eustress in a floating hydroponic module of sequentially harvested lettuce modulates phytochemical constitution, plant resilience, and post-harvest nutraceutical quality. Agronomy 2021, 11, 1040. [Google Scholar] [CrossRef]
- Campagna-Fernandes, A.F.; Marin, E.B.; Penha, T.H.F.L. Application of root growth endpoint in toxicity tests with lettuce (Lactuca sativa). Ecotoxicol. Environ. Contam. 2016, 11, 27–32. [Google Scholar]
- Lisanti, M.T.; Mataffo, A.; Scognamiglio, P.; Teobaldelli, M.; Iovane, M.; Piombino, P.; Rouphael, Y.; Kyriacou, M.C.; Corrado, G.; Basile, B. 1-methylcyclopropene improves postharvest performances and sensorial attributes of annurca-type apples exposed to the traditional reddening in open-field melaio. Agronomy 2021, 11, 1056. [Google Scholar] [CrossRef]
- Kassambara, A. Practical Guide to Principal Component Methods in R; Datanovia: Montpellier, FR, USA, 2017; Volume 2, p. 264. [Google Scholar]
- Neocleous, D.; Koukounaras, A.; Siomos, A.; Vasilakakis, M. Assessing the salinity effects on mineral composition and nutritional quality of green and red “baby” lettuce. J. Food Qual. 2014, 37, 1–8. [Google Scholar] [CrossRef]
- Zhang, M.; Whitman, C.M.; Runkle, E.S. Manipulating growth, color, and taste attributes of fresh cut lettuce by greenhouse supplemental lighting. Sci. Hortic. 2019, 252, 274–282. [Google Scholar] [CrossRef]
- Su, W.; Tao, R.; Liu, W.; Yu, C.; Yue, Z.; He, S.; Lavelle, D.; Zhang, W.; Zhang, L.; An, G. Characterization of four polymorphic genes controlling red leaf colour in lettuce that have undergone disruptive selection since domestication. Plant Biotechnol. J. 2020, 18, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Belz, R.G.; Patama, M.; Sinkkonen, A. Low doses of six toxicants change plant size distribution in dense populations of lactuca sativa. Sci. Total. Environ. 2018, 631, 510–523. [Google Scholar] [CrossRef]
- Galli, V.; da Silva Messias, R.; Perin, E.C.; Borowski, J.M.; Bamberg, A.L.; Rombaldi, C.V. Mild salt stress improves strawberry fruit quality. LWT 2016, 73, 693–699. [Google Scholar] [CrossRef]
- Liobikas, J.; Skemiene, K.; Trumbeckaite, S.; Borutaite, V. Anthocyanins in cardioprotection: A path through mitochondria. Pharmacol. Res. 2016, 113, 808–815. [Google Scholar] [CrossRef]
- Bendokas, V.; Skemiene, K.; Trumbeckaite, S.; Stanys, V.; Passamonti, S.; Borutaite, V.; Liobikas, J. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit. Rev. Food Sci. Nutr. 2020, 60, 3352–3365. [Google Scholar] [CrossRef]
- Cedergreen, N.; Ritz, C.; Streibig, J.C. Improved empirical models describing hormesis. Environ. Toxicol. Chem. Int. J. 2005, 24, 3166–3172. [Google Scholar] [CrossRef]
Source of Variance | LFW | WTC | LA | LN | SLA | LSH |
---|---|---|---|---|---|---|
(g FW/Plant) | (%) | (cm2) | (no./Plant) | (m2/g DW) | (mg H2O/cm2) | |
Cultivar (C) | ||||||
GSB | 5.04 ± 0.14 b | 95.94 ± 0.05 a | 16.68 ± 0.92 b | 4.66 ± 0.08 b | 3.52 ± 0.11 a | 0.32 ± 0.01 a |
RSB | 5.67 ± 0.20 a | 95.51 ± 0.05 b | 19.23 ± 1.17 a | 5.31 ± 0.10 a | 4.39 ± 0.10 b | 0.25 ± 0.01 b |
Salt (S) | ||||||
1 | 5.72 ± 0.33 | 95.74 ± 0.15 a | 19.29 ± 1.00 a | 4.95 ± 0.22 | 3.98 ± 0.29 | 0.29 ± 0.02 |
10 | 5.43 ± 0.18 | 95.76 ± 0.10 a | 18.56 ± 1.53 a | 5.03 ± 0.25 | 4.05 ± 0.23 | 0.29 ± 0.02 |
20 | 5.36 ± 0.32 | 95.84 ± 0.09 a | 17.80 ± 1.08 ab | 4.98 ± 0.16 | 4.03 ± 0.25 | 0.29 ± 0.03 |
30 | 4.91 ± 0.12 | 95.57 ± 0.10 b | 16.39 ± 0.96 b | 4.97 ± 0.14 | 3.75 ± 0.19 | 0.29 ± 0.02 |
Significance | ||||||
C | * | *** | *** | *** | *** | *** |
S | ns | * | * | ns | ns | ns |
S × C | ns | ns | ns | ns | ns | ns |
Source of Variance | L* | a* | b* | Chroma | Hue |
---|---|---|---|---|---|
Cultivar (C) | |||||
GSB | 54.34 ± 0.70 a | −7.41 ± 0.14 b | 26.99 ± 0.32 a | 5.31 ± 0.10 a | 1.3 ± 0.01 a |
RSB | 49.37 ± 1.10 b | 6.22 ± 0.26 a | 22.71 ± 0.67 b | 4.66 ± 0.08 b | −1.3 ± 0.00 b |
Salt (S) | |||||
1 | 51.92 ± 1.18 | −0.61 ± 2.98 | 24.71 ± 0.81 | 4.95 ± 0.22 | 0.01 ± 0.59 |
10 | 51.45 ± 2.22 | −0.45 ± 3.22 | 25.20 ± 1.25 | 5.03 ± 0.25 | −0.01 ± 0.58 |
20 | 51.26 ± 1.99 | −0.73 ± 3.04 | 25.37 ± 1.42 | 4.98 ± 0.16 | 0.01 ± 0.59 |
30 | 52.79 ± 1.68 | −0.59 ± 3.02 | 24.13 ± 1.28 | 4.97 ± 0.14 | 0.00 ± 0.58 |
Significance | |||||
C | *** | *** | *** | *** | *** |
S | ns | ns | ns | ns | ns |
S × C | ns | ns | ns | ns | ns |
Source of Variance | K/Na |
---|---|
Cultivar (C) | |
GSB | 5.01 ± 0.97 b |
RSB | 9.09 ± 1.85 a |
Salt (S) | |
1 | 16.70 ± 3.50 a |
10 | 6.19 ± 0.88 b |
20 | 4.06 ± 0.45 b |
30 | 2.90 ± 0.46 b |
Significance | |
C | *** |
S | *** |
S × C | ** |
Source of Variance | 3,5-CQA (mg/100 g DW) | 5-CQA (mg/100 g DW) | CMA (mg/100 g DW) | CTA (mg/100 g DW) | DCTA (mg/100 g DW) | m-DCTA (mg/100 g DW) |
---|---|---|---|---|---|---|
Cultivar (C) | ||||||
GSB | 115.08 ± 8.16 | 475.1 ± 44.65 b | 64.26 ± 4.16 b | 27.37 ± 1.58 a | 515.98 ± 35.28 | 41.55 ± 3.25 |
RSB | 125.31 ± 8.62 | 972.14 ± 45.51 a | 80.63 ± 3.65 a | 22.3 ± 1.58 b | 526.11 ± 29.42 | 43.55 ± 2.57 |
Salt (S) | ||||||
1 | 148.68 ± 7.95 a | 879.74 ± 99.8 a | 76.81 ± 5.44 ab | 29.19 ± 1.18 a | 637.75 ± 12.84 a | 52.9 ± 1.38 a |
10 | 118.44 ± 10.83 b | 678.04 ± 100.32 bc | 65.91 ± 3.41 bc | 22.37 ± 2.83 b | 489.66 ± 31.43 b | 39.17 ± 2.52 b |
20 | 121.95 ± 9.35 b | 774.3 ± 131.04 ab | 84.18 ± 3.18 a | 27.93 ± 1.9 a | 565.17 ± 25.16 a | 47.07 ± 2.02 a |
30 | 91.71 ± 6.88 c | 562.4 ± 138.2 c | 62.88 ± 8.88 c | 19.84 ± 1.49 b | 391.59 ± 29.26 c | 31.06 ± 3.16 c |
Significance | ||||||
C | ns | *** | ** | ** | ns | ns |
S | ** | *** | ** | ** | *** | *** |
S × C | ns | *** | ns | ns | ns | ns |
Source of Variance | CMG |
---|---|
(mg/100 g DW) | |
Salt (S) | |
1 | 80.22 ± 11.11 b |
10 | 121.77 ± 5.22 a |
20 | 125.12 ± 11.3 a |
30 | 85.12 ± 6.43 b |
Significance | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrado, G.; Vitaglione, P.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Di Mola, I.; Mori, M.; Rouphael, Y. Phytochemical Responses to Salt Stress in Red and Green Baby Leaf Lettuce (Lactuca sativa L.) Varieties Grown in a Floating Hydroponic Module. Separations 2021, 8, 175. https://doi.org/10.3390/separations8100175
Corrado G, Vitaglione P, Giordano M, Raimondi G, Napolitano F, Di Stasio E, Di Mola I, Mori M, Rouphael Y. Phytochemical Responses to Salt Stress in Red and Green Baby Leaf Lettuce (Lactuca sativa L.) Varieties Grown in a Floating Hydroponic Module. Separations. 2021; 8(10):175. https://doi.org/10.3390/separations8100175
Chicago/Turabian StyleCorrado, Giandomenico, Paola Vitaglione, Maria Giordano, Giampaolo Raimondi, Francesco Napolitano, Emilio Di Stasio, Ida Di Mola, Mauro Mori, and Youssef Rouphael. 2021. "Phytochemical Responses to Salt Stress in Red and Green Baby Leaf Lettuce (Lactuca sativa L.) Varieties Grown in a Floating Hydroponic Module" Separations 8, no. 10: 175. https://doi.org/10.3390/separations8100175
APA StyleCorrado, G., Vitaglione, P., Giordano, M., Raimondi, G., Napolitano, F., Di Stasio, E., Di Mola, I., Mori, M., & Rouphael, Y. (2021). Phytochemical Responses to Salt Stress in Red and Green Baby Leaf Lettuce (Lactuca sativa L.) Varieties Grown in a Floating Hydroponic Module. Separations, 8(10), 175. https://doi.org/10.3390/separations8100175