Enantioselective Chromatographic Separation and Lipase Catalyzed Asymmetric Resolution of Biologically Important Chiral Amines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enantioselective Chromatographic Separation
2.2. Lipase-Catalyzed Kinetic Resolution
3. Materials and Methods
3.1. General
3.2. Chromatographic System
3.3. Synthesis of Racemic 1a/b–4a/b
3.3.1. 2-Cyano-N-(1-(3-fluorophenyl)ethyl)acetamide (1a)
3.3.2. 2-Cyano-N-(1-(3,5-difluorophenyl)ethyl)acetamide (2a)
3.3.3. 2-Cyano-N-(1-(pyridin-3-yl)propan-2-yl)acetamide (3a)
3.3.4. 2-Cyano-N-(2,2-dimethyl-1-phenylpropyl)acetamide (4a)
3.3.5. N-(1-(3-Fluorophenyl)ethyl)-2-methoxyacetamide (1b)
3.3.6. N-(1-(3,5-Difluorophenyl)ethyl)-2-methoxyacetamide (2b)
3.4. General Procedure for Lipase-Catalyzed Amidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lakó, Á.; Molnár, Z.; Mendonça, R.; Poppe, L. Transaminase-mediated synthesis of enantiopure drug-like 1-(3′,4′-disubstituted phenyl) propan-2-amines. RSC Adv. 2020, 10, 40894–40903. [Google Scholar] [CrossRef]
- Ghislieri, D.; Turner, N.J. Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines. Top. Catal. 2014, 57, 284–300. [Google Scholar] [CrossRef]
- He, Y.; Song, H.; Chen, J.; Zhu, S. NiH-catalyzed asymmetric hydroarylation of N-acyl enamines to chiral benzylamines. Nat. Commun. 2021, 12, 638. [Google Scholar] [CrossRef] [PubMed]
- Glennon, R.A. Central serotonin receptors as targets for drug research. J. Med. Chem. 1987, 30, 1–12. [Google Scholar] [CrossRef]
- Vilches-Herrera, M.; Miranda-Sepúlveda, J.; Rebolledo-Fuentes, M.; Fierro, A.; Lühr, S.; Iturriaga-Vasquez, P.; Cassels, B.K.; Reyes-Parada, M. Naphthylisopropylamine and N-benzylamphetamine derivatives as monoamine oxidase inhibitors. Bioorg. Med. Chem. 2009, 17, 2452–2460. [Google Scholar] [CrossRef] [PubMed]
- Morini, G.; Grandi, D.; Bertaccini, G.; Leschke, C.; Schunack, W. Stereoselective Inhibition of Ethanol- Induced Gastric Lesions in the Rat by the H3-Receptor Agonist (R)-α-Methylhistamine and Its (S)-Configured Isomer. Pharmacology 1999, 59, 192–200. [Google Scholar] [CrossRef]
- Harada, H.; Hirokawa, Y.; Suzuki, K.; Hiyama, Y.; Oue, M.; Kawashima, H.; Yoshida, N.; Furutani, Y.; Kato, S. Novel and potent human and rat β3-Adrenergic receptor agonists containing substituted 3-indolylalkylamines. Bioorg. Med. Chem. Lett. 2003, 13, 1301–1305. [Google Scholar] [CrossRef]
- Royer, J. Chiral Amine Synthesis. Methods, Developments and Applications. Angew. Chem. Int. Ed. 2010, 49, 7841. [Google Scholar] [CrossRef]
- Dasgupta, S.; Morzhina, E.; Schäfer, C.; Mhadgut, S.C.; Prakash, G.K.S.; Török, B. Synthesis of Chiral Trifluoromethyl Benzylamines by Heterogeneous Catalytic Reductive Amination. Top. Catal. 2016, 59, 1207–1213. [Google Scholar] [CrossRef]
- Zhu, S.; Niljianskul, N.; Buchwald, S.L. Enantio-and regioselective CuH-catalyzed hydroamination of alkenes. J. Am. Chem. Soc. 2013, 135, 15746–15749. [Google Scholar] [CrossRef] [Green Version]
- Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Copper-Catalyzed Intermolecular Regioselective Hydroamination of Styrenes with Polymethylhydrosiloxane and Hydroxylamines. Angew. Chem. Int. Ed. 2013, 52, 10830–10834. [Google Scholar] [CrossRef]
- Yuanwei, C.; Aiqiao, M.; Xun, X.; Yaozhong, J. Asymmetric Synthesis VIII: Enantioselective Synthesis of (R) or (S)-α-Substituted Benzylamines VIA Chiral Pinanone Ketimine Template. Synth. Commun. 1989, 19, 1423–1430. [Google Scholar] [CrossRef]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. 2021, 60, 88–119. [Google Scholar] [CrossRef] [PubMed]
- Winkler, C.K.; Schrittwieser, J.H.; Kroutil, W. Power of Biocatalysis for Organic Synthesis. ACS Cent. Sci. 2021, 7, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Gill, I.I.; Das, J.; Patel, R.N. Enantioselective enzymatic acylation of 1-(3′-bromophenyl) ethylamine. Tetrahedron Asymmetry 2007, 18, 1330–1337. [Google Scholar] [CrossRef]
- Csuka, P.; Boros, Z.; Őrfi, L.; Dobos, J.; Poppe, L.; Hornyánszky, G. Chemoenzymatic route to Tyrphostins involving lipase-catalyzed kinetic resolution of 1-phenylethanamine with alkyl cyanoacetates as novel acylating agents. Tetrahedron Asymmetry 2015, 26, 644–649. [Google Scholar] [CrossRef]
- Sánchez, V.M.; Rebolledo-Vicente, F.; Gotor, V. CandidaantarcticaLipase-Catalyzed Doubly Enantioselective Aminolysis Reactions. Chemoenzymatic Synthesis of 3-Hydroxypyrrolidines and 4-(Silyloxy)-2-oxopyrrolidines with Two Stereogenic Centers. J. Org. Chem. 1999, 64, 1464–1470. [Google Scholar] [CrossRef]
- Chen, H.; Bao-wei, Z.; Liang, H.; He, Y.; Hao-yi, W. Study on optimum synthesis of ethyl cyanoacetate. E3S Web Conf. 2020, 213, 01010. [Google Scholar] [CrossRef]
- DeRosa, T.F. Nitro Derivatives. In Advances in Synthetic Organic Chemistry and Methods Reported in US Patents; Elsevier: Oxford, UK, 2006; pp. 410–419. [Google Scholar] [CrossRef]
- Ziarani, G.M.; Moradi, R.; Lashgari, N.; Kruger, H.G. Introduction and Importance of Synthetic Organic Dyes. In Metal-Free Synthetic Organic Dyes; Elsevier: Oxford, UK, 2018; pp. 1–7. [Google Scholar]
- Fadda, A.A.; Bondock, S.; Rabie, R.; Etman, H.A. Cyanoacetamide derivatives as synthons in heterocyclic synthesis. Turk. J. Chem. 2008, 32, 259–286. [Google Scholar]
- Ammar, Y.A.; Ali, M.M.; Mohamed, Y.A.; Thabet, H.K.; El-Gaby, M. Cyanoacetanilide intermediates in heterocyclic synthesis. Part 7: Preparation of some spiro[indoline-3,4′-pyridine] and chromeno[3,4-c] pyridine derivatives. Heterocycl. Commun. 2013, 19, 195–200. [Google Scholar] [CrossRef]
- Hermanson, D.; Tompkins, J.G.; Veliyath, R.; Ye, Z. The compensation committee process. Contemp. Account. Res. 2012, 29, 666–709. [Google Scholar] [CrossRef]
- Paprocki, D.; Berłożecki, S.; Ostaszewski, R. Environmental-friendly one-pot cascade synthesis of 3-cyanopiperidin-2,6-diones. Environ. Chem. Lett. 2020, 18, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Palanimuthu, A.; Chen, C.; Lee, G.-H. Synthesis of highly substituted tetrahydroquinolines using ethyl cyanoacetate via aza-Michael–Michael addition. RSC Adv. 2020, 10, 13591–13600. [Google Scholar]
- Dupont, P.; Védrine, J.C.; Paumard, E.; Hecquet, G.; Lefebvre, F. Heteropolyacids supported on activated carbon as catalysts for the esterification of acrylic acid by butanol. Appl. Catal. A Gen. 1995, 129, 217–227. [Google Scholar] [CrossRef]
- Gouda, M.A.; Sabah, M.A.; Aljuhani, W.K.; El-Gahani, A.S.; El-Enazi, S.A.E.-K.; Al Enizi, S.A.; Al-Balawi, M.M. Utility of 2-cyano-N-(2-hydroxyethyl) acetamide in heterocyclic synthesis. Eur. J. Chem. 2015, 6, 219–224. [Google Scholar]
- Fadda, A.A.; Rabie, R. Cyanoacetylation of amines: Recent advances in preparation methods and their synthetic uses in the formation of biologically active compounds. Res. Chem. Intermed. 2016, 42, 771–811. [Google Scholar] [CrossRef]
- Eremeev, A.V.; Piskunova, I.P. Synthesis of 2-amino-1-azirines and their reactions with carboxylic acids. Chem. Heterocycl. Compd. 1985, 21, 998–1002. [Google Scholar] [CrossRef]
- Elgemeie, G.H.; Elghandour, A.H.; Elzanate, A.M.; Ahmed, S.A. Synthesis of some novel α-cyanoketene S, S-acetals and their use in heterocyclic synthesis. J. Chem. Soc. Perkin Trans. 1 1997, 3285–3290. [Google Scholar] [CrossRef]
- Massoud, M. Cyanoacetamide derivatives as synthons in heterocyclic synthesis. Mansoura J. Pharm. Sci 1999, 15, 94. [Google Scholar]
- Elgemeie, G.H.; Mohamed, M.A. α-Cyanodithioic Acids and Their Corresponding Mono-and Dithiolate Salts as Building Blocks for the Synthesis of Novel Mercaptothiophenes. Synth. Commun. 2006, 36, 1025–1038. [Google Scholar] [CrossRef]
- Kurz, T.; Widyan, K.; Elgemeie, G.H. Novel Synthesis of Fluorinated Cyanoketene N, S-Acetals and Their Conversions to Fluorinated Pyrazole Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2006, 181, 299–304. [Google Scholar] [CrossRef]
- Elgemeie, G.H.; Elzanaty, A.M.; Elghandour, A.H.; Ahmed, S.A. Novel Alkylsulfanylisothiazoles and Alkylsulfanylthiophenes Using Sodium α-Cyanoketene Dithiolates as Starting Materials. Synth. Commun. 2006, 36, 825–834. [Google Scholar] [CrossRef]
- Elgemeie, G.H.; Elghandour, A.H.; Elaziz, G.W.A. Novel Synthesis of Heterocyclic Ketene N, N-, N, O-, and N, S-Acetals Using Cyanoketene Dithioacetals. Synth. Commun. 2003, 33, 1659–1664. [Google Scholar] [CrossRef]
- Farag, A.M.; Dawood, K.M.; Elmenoufy, H.A. A convenient route to pyridones, pyrazolo [2, 3-a] pyrimidines and pyrazolo [5, 1-c] triazines incorporating antipyrine moiety. Heteroat. Chem. Int. J. Main Group Elem. 2004, 15, 508–514. [Google Scholar] [CrossRef]
- Dankova, E.F.; Bakulev, V.A.; Grishakov, A.N.; Mokrushin, V.S. Rearrangement of 5-amino-1, 2, 3-thiadiazole-4-carbothioamides. Bull. Acad. Sci. USSR Div. Chem. Sci. 1988, 37, 987–989. [Google Scholar] [CrossRef]
- Gorecki, D.K.J.; Hawes, E.M. 2,3-Disubstituted 1,8-naphthyridines as potential diuretic agents. J. Med. Chem. 1977, 20, 124–128. [Google Scholar]
- Metwally, N.H.; Abdelrazek, F.M. Heterocyclic Synthesis with Nitriles: Synthesis of some novel pyrrolo [2,1-b] thiadiazoline, pyrrolo[2,1-b]thiadiazolo[3,2-a]pyrimidine and pyridine derivatives. J. Für Prakt. Chem. 1998, 340, 676–678. [Google Scholar] [CrossRef]
- Zhuravel, I.O.; Kovalenko, S.M.; Ivachtchenko, A.V.; Balakin, K.V.; Kazmirchuk, V.V. Synthesis and antimicrobial activity of 5-hydroxymethyl-8-methyl-2-(N-arylimino)-pyrano [2, 3-c] pyridine-3-(N-aryl)-carboxamides. Bioorg. Med. Chem. Lett. 2005, 15, 5483–5487. [Google Scholar] [CrossRef]
- El Rady, E.A.; Barsy, M.A. A convenient and facile synthesis of pyridine, pyridazine, pyrimido-[4,5-c] pyridazine, pyrido[3,4-c]pyridazine, 1,6-naphthyridine and phthalazine derivatives. J. Heterocycl. Chem. 2006, 43, 243–248. [Google Scholar] [CrossRef]
- Liepa, A.J.; Saubern, S. 2-Substituted 5, 6-dihydro-1, 3-thiazines from nitriles and thiocyanates: A modification of Meyers’s method. Aust. J. Chem. 1997, 50, 755–758. [Google Scholar] [CrossRef]
- Chankvetadze, B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC Trends Anal. Chem. 2020, 122, 115709. [Google Scholar] [CrossRef]
- Okamoto, Y.; Ikai, T. Chiral HPLC for efficient resolution of enantiomers. Chem. Soc. Rev. 2008, 37, 2593–2608. [Google Scholar] [CrossRef] [PubMed]
- Vojtylová-Jurkovičová, T.; Vaňkátová, P.; Urbańska, M.; Hamplová, V.; Sýkora, D.; Bubnov, A. Effective control of optical purity by chiral HPLC separation for ester-based liquid crystalline materials forming anticlinic smectic phases. Liq. Cryst. 2021, 48, 43–53. [Google Scholar] [CrossRef]
- El-Behairy, M.F.; El-Azzouny, A.A. Enantioselective HPLC separation of bioactive C5-chiral 2-pyrazolines on lux amylose-2 and lux cellulose-2: Comparative and mechanistic approaches. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 346–353. [Google Scholar] [CrossRef]
- El-Behairy, M.F.; Sundby, E. One-step lipase-catalysed preparation of eslicarbazepine. RSC Adv. 2016, 6, 98730–98736. [Google Scholar] [CrossRef]
- El-Behairy, M.F.; Sundby, E. Synthesis of the antiepileptic (R)-Stiripentol by a combination of lipase catalyzed resolution and alkene metathesis. Tetrahedron Asymmetry 2013, 24, 285–289. [Google Scholar] [CrossRef]
- Yara-Varon, E.; Fabiano-Tixier, A.S.; Balcells, M.; Canela-Garayoa, R.; Bily, A.; Chemat, F. Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv. 2016, 6, 27750–27759. [Google Scholar] [CrossRef] [Green Version]
- Gogaladze, K.; Chankvetadze, L.; Tsintsadze, M.; Farkas, T.; Chankvetadze, B. Effect of basic and acidic additives on the separation of some basic drug enantiomers on polysaccharide-based chiral columns with acetonitrile as mobile phase. Chirality 2015, 27, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Mosiashvili, L.; Chankvetadze, L.; Farkas, T.; Chankvetadze, B. On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases. J. Chromatogr. A 2013, 1317, 167–174. [Google Scholar] [CrossRef]
- DeRuiter, J. Amides and related functional groups. Princ. Drug Action 2005, 1, 1–16. [Google Scholar]
- Sheldon, R.A.; Woodley, J.M. Role of Biocatalysis in Sustainable Chemistry. Chem. Rev. 2018, 118, 801–838. [Google Scholar] [CrossRef]
- Abdelraheem, E.M.M.; Busch, H.; Hanefeld, U.; Tonin, F. Biocatalysis explained: From pharmaceutical to bulk chemical production. React. Chem. Eng. 2019, 4, 1878–1894. [Google Scholar] [CrossRef] [Green Version]
- Bassanini, I.; Ferrandi, E.; Riva, S.; Monti, D. Biocatalysis with Laccases: An Updated Overview. Catalysts 2020, 11, 26. [Google Scholar] [CrossRef]
- Albarrán-Velo, J.; Lavandera, I.; Gotor-Fernández, V. Sequential Two-Step Stereoselective Amination of Allylic Alcohols through the Combination of Laccases and Amine Transaminases. ChemBioChem 2020, 21, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Komeda, H.; Harada, H.; Washika, S.; Sakamoto, T.; Ueda, M.; Asano, Y. A novel R-stereoselective amidase from Pseudomonas sp. MCI3434 acting on piperazine-2-tert-butylcarboxamide. JBIC J. Biol. Inorg. Chem. 2004, 271, 1580–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobsen, E.E.; Anthonsen, T.; El-Behairy, M.F.M.A.; Sundby, E.; Aboul-Enein, M.N.; Attia, M.I.; El-Azzouny, A.A.E.-S.; Amin, K.M.; Abdel-Rehim, M. Lipase Catalysed Kinetic Resolution of Stiripentol. Int. J. Chem. 2012, 4, 7. [Google Scholar]
- Sun, M.; Nie, K.; Wang, F.; Deng, L. Optimization of the Lipase-Catalyzed Selective Amidation of Phenylglycinol. Front. Bioeng. Biotechnol. 2020, 7, 486. [Google Scholar] [CrossRef]
- Kazlauskas, R.J.; Weissfloch, A.N.; Rappaport, A.T.; Cuccia, L.A. A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem. 1991, 56, 2656–2665. [Google Scholar] [CrossRef]
- Jacobsen, E.E.; Anthonsen, T. Enantiopure derivatives of 1,2-alkanediols: Substrate requirements of lipase B fromCandida antarctica. Chirality 2000, 12, 654–659. [Google Scholar] [CrossRef]
- Martínez-Montero, L.; Gotor, V.; Gotor-Fernández, V.; Lavandera, I. Stereoselective amination of racemic sec-alcohols through sequential application of laccases and transaminases. Green Chem. 2017, 19, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.-L.; Zhang, Q.-W.; Li, Y.-P.; Yan, R.; Wang, Y.-T. Enantioseparation and Absolute Configuration Determination of Angular-Type Pyranocoumarins from Peucedani Radix Using Enzymatic Hydrolysis and Chiral HPLC-MS/MS Analysis. Molecules 2012, 17, 4236–4251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthonsen, H.W.; Hoff, B.; Anthonsen, T. Calculation of enantiomer ratio and equilibrium constants in biocatalytic ping-pong bi-bi resolutions. Tetrahedron Asymmetry 1996, 7, 2633–2638. [Google Scholar] [CrossRef]
- Rakels, J.L.L.; Romein, B.; Straathof, A.J.J.; Heijnen, J.J. Kinetic analysis of enzymatic chiral resolution by progress curve evaluation. Biotechnol. Bioeng. 1994, 43, 411–422. [Google Scholar] [CrossRef]
- Chen, C.S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982, 104, 7294–7299. [Google Scholar] [CrossRef]
- Kumar, M.; Madhukar, B.S.; Sridhar, M.A.; Bhadregowda, D.G.; Kapoor, K.; Gupta, V.K.; Kant, R. (R)-2-Cyano-N-(1-phenylethyl) acetamide. Acta Crystallogr. Sect. E Struct. Rep. Online 2013, 69, o653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Entry | Cpd | Column | Mobile Phase | Total Run Time (Min) | Mobile Phase Composition | Flow Rate mL/min | Resolution(Rs) |
---|---|---|---|---|---|---|---|
1 | 1 | OD-H | n-hex/MtBE/i-PrOH/DEA | 14 | 95/5/0.5/0.1 | 1.5 | 3.19 |
2 | OD-H | n-hex/MtBE/i-PrOH/DEA | 22 | 95/5/0.5/0.1 | 1.0 | 3.63 | |
3 | OD-H | c-hex/MtBE/i-PrOH/DEA | 10 | 93/5/2/0.1 | 1.0 | 0.95 | |
4 | OD-H | c-hex/MtBE/i-PrOH/DEA | 13 | 94/5/1/0.1 | 1.0 | 1.18 | |
5 | OD-H | c-hex/i-PrOH/DEA | 12 | 98/2/0.1 | 1.0 | 1.25 | |
6 | OD-H | c-hex/i-PrOH/DEA | 9 | 95/5/0.1 | 1.0 | 1.11 | |
7 | 2 | OD-H | n-hex/MtBE/i-PrOH/DEA | 12 | 95/5/0.5/0.1 | 1.5 | 1.21 |
8 | OD-H | c-hex/MtBE/i-PrOH/DEA | 10 | 93/5/2/0.1 | 1.0 | 0.84 | |
9 | OD-H | c-hex/MtBE/i-PrOH/DEA | 12 | 94/5/1/0.1 | 1.0 | 1.0 | |
10 | 3 | / | / | / | / | / | / |
11 | 4 | OD-H | n-hex/MtBE/i-PrOH/DEA | 12 | 95/5/0.5/0.1 | 1.5 | 11.14 |
12 | OD-H | n-hex/EtOH/DEA | 6 | 95/5/0.1 | 1.5 | 7.23 | |
13 | Lux-3 | c-hex/EtOH/DEA | 5 | 9/1/0.1 | 1.0 | 0.66 | |
14 | OD-H | c-hex/EtOH/DEA | 6 | 9/1/0.1 | 1.0 | 2.4 | |
15 | OD-H | n-hex/EtOH/DEA | 8 | 9/1/0.1 | 1.0 | 4.6 | |
16 | OD-H | c-hex/MtBE/i-PrOH/DEA | 10 | 94/5/1/0.1 | 1.0 | 11.6 | |
17 | OD-H | c-hex/MtBE/i-PrOH/DEA | 9 | 93/5/2/0.1 | 1.0 | 5.9 | |
18 | OD-H | c-hex/i-PrOH/DEA | 10 | 98/2/0.1 | 1.0 | 9.14 | |
19 | OD-H | c-hex/i-PrOH/DEA | 8 | 95/5/0.1 | 1.0 | 4.28 | |
20 | 1a | Lux 3 | n-hex/EtOH/DEA | 12 | 9/1/0.2 | 2.0 | 2.08 |
21 | 2a | Lux 3 | n-hex/EtOH/DEA | 12 | 9/1/0.2 | 2.0 | 3.03 |
22 | 3a | Lux 3 | n-hex/EtOH/DEA | 30 | 9/1/0.2 | 2.0 | 1.58 |
23 | 4a | OD-H | n-hex/EtOH/DEA | 13 | 95/5/0.1 | 1.5 | 1.59 |
24 | 1b | Lux 3 | c-hex/EtOH/DEA | 12 | 95/5/0.1 | 1.0 | 1.04 |
25 | 2b | Lux 3 | c-hex/EtOH/DEA | 13 | 95/5/0.1 | 1.0 | 1.78 |
26 | 3b | OD-H | n-hex/EtOH/DEA | 16 | 95/5/0.2 | 1.5 | 1.2 |
27 | 4b | Lux 3 | c-hex/EtOH/DEA | 16 | 95/5/0.1 | 1.5 | 16 |
28 | Lux 3 | n-hex/EtOH/DEA | 8 | 9/1/0.2 | 2.0 | 2.13 |
Compound | Yield | (ee) * | Reaction |
---|---|---|---|
S-1 | 49% | >99% | methoxyacetamide |
S-2 | 49% | >99% | methoxyacetamide |
3 | / | / | / |
S-4 | 83% | 9% | cyanoacetamide |
R-1a | 10% | >99% | cyanoacetamide |
R-2a | 25% | 80% | cyanoacetamide |
3a | / | / | / |
R-4a | 16% | 76% | cyanoacetamide |
R-1b | 49% | >99% | methoxyacetamide |
R-2b | 49% | >99% | methoxyacetamide |
3b | / | / | / |
4b | / | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Behairy, M.F.; Hassan, R.M.; Sundby, E. Enantioselective Chromatographic Separation and Lipase Catalyzed Asymmetric Resolution of Biologically Important Chiral Amines. Separations 2021, 8, 165. https://doi.org/10.3390/separations8100165
El-Behairy MF, Hassan RM, Sundby E. Enantioselective Chromatographic Separation and Lipase Catalyzed Asymmetric Resolution of Biologically Important Chiral Amines. Separations. 2021; 8(10):165. https://doi.org/10.3390/separations8100165
Chicago/Turabian StyleEl-Behairy, Mohammed Farrag, Rasha M. Hassan, and Eirik Sundby. 2021. "Enantioselective Chromatographic Separation and Lipase Catalyzed Asymmetric Resolution of Biologically Important Chiral Amines" Separations 8, no. 10: 165. https://doi.org/10.3390/separations8100165
APA StyleEl-Behairy, M. F., Hassan, R. M., & Sundby, E. (2021). Enantioselective Chromatographic Separation and Lipase Catalyzed Asymmetric Resolution of Biologically Important Chiral Amines. Separations, 8(10), 165. https://doi.org/10.3390/separations8100165