Determination and Chemometrics-Assisted Comparative Analysis of Active Components in Different Tissue of Rana chensinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. 1-Methyl Hydantoin Pre-Column Derivatization
2.1.1. Preparation of Standard Solution
2.1.2. Sample Preparation
2.1.3. Pre-Column Derivatization
2.1.4. Blank Control and Negative Control Solution Preparation
2.1.5. HPLC Chromatographic Analysis Conditions
2.1.6. Validation of the Method
2.2. Six Kind of PUFAs
2.2.1. Sample Preparation
2.2.2. HPLC Chromatographic Analysis Conditions
2.2.3. Validation of the Method
2.3. Date Analysis
2.3.1. Hierarchical Cluster Analysis (HCA)
2.3.2. Principal Component Analysis (PCA)
2.3.3. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA)
3. Results and Discussion
3.1. Results of 1-Methyl Hydantoin Pre-Column Derivatization
3.1.1. Methodology Validation
3.1.2. Results of Bzmh Content in Each Sample
3.2. Determination Results of PUFAs Content
3.2.1. Methodology Verification
3.2.2. Results of Contents of Six PUFAs in Each Sample
3.3. Hierarchical Cluster Analysis (HCA)
3.4. Principal Component Analysis (PCA)
3.5. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Xu, Y.; Wang, Y.; Yang, H.; Lv, Z.; Jin, X.; Wang, Y. Simultaneous Determination of Six Active Components in Oviductus Ranae via Quantitative Analysis of Multicomponents by Single Marker. J. Anal. Methods Chem. 2017, 2017, 9194847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, Y.S.; Xiao, Y.; Wang, S.H.; Guo, H.Y.; Liu, M.; Wang, Z.H.; Wang, Y.S. Protein-Based Fingerprint Analysis for the Identification of Ranae Oviductus Using RP-HPLC. Molecules 2019, 24, 1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Jia, X.-Y.; Ma, Y.-D.; Ma, J.Z. Genetic diversity and differentiation of the Dybowski’s frog (Rana dybowskii) in Northeast China. J. For. Res. 2010, 21, 239–245. [Google Scholar] [CrossRef]
- Wang, S.A.; Gan, Y.S.; Mao, X.X.; Kan, H.; Li, N.; Zhang, C.L.; Wang, Z.H.; Wang, Y.S. Antioxidant Activity Evaluation of Oviductus Ranae Protein Hydrolyzed by Different Proteases. Molecules 2021, 26, 1625. [Google Scholar]
- Xie, C.; Zhang, L.-J.; Zhang, W.-Y.; Yang, X.; Fan, L.; Li, X. Immunomodulatory effect of Oviductus Ranae on the mice. Chin. J. Gerontol. 2010, 30, 3132–3133. [Google Scholar]
- Xiao, Y.; Ni, S.L.; Wang, S.H.; Gan, Y.S.; Zhou, Y.; Guo, H.Y.; Liu, M.; Wang, Z.H.; Wang, Y.S. Environmental influences on quality features of Oviductus Ranae in the Changbai Mountains. RSC Adv. 2019, 9, 36050–36057. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, S.H.; Luo, Y.; Wang, Y.S.; Qu, X.B. Evaluation of the Merits of the New Method of Oviductus Ranae by HPLC-DAD. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1218–1222. [Google Scholar] [CrossRef]
- Wang, S.; Gan, Y.; Kan, H.; Mao, X.; Wang, Y. Exploitation of HPLC Analytical Method for Simultaneous Determination of Six Principal Unsaturated Fatty Acids in Oviductus Ranae Based on Quantitative Analysis of Multi-Components by Single-Marker (QAMS). Molecules 2021, 26, 479. [Google Scholar]
- Wang, D.H.; Wu, W.; Tian, J.M.; Wang, Z.H.; Wang, D.T.; Xiang, K.; Zhu, G.Y.; Han, T. Effect of Oviductus Ranae and Oviductus Ranae eggs on bone metabolism and osteoporosis. Chin. J. Integr. Med. 2013, 19, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.F.; Li, M.Z.; Liu, S.Y.; Yu, J.L.; Yan, Z.W.; Zhou, H.L. Traditional Uses, Bioactive Constituents, Biological Functions, and Safety Properties of Oviductus Ranae as Functional Foods in China. Oxidative Med. Cell. Longev. 2019, 2019, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Xu, D.; Zhang, J.; Wang, Z.; Wang, S.; Guo, H.; Zhang, K.; Li, Y.; Wang, Y. Rana chensinensis Ovum Oil Based on CO2 Supercritical Fluid Extraction: Response Surface Methodology Optimization and Unsaturated Fatty Acid Ingredient Analysis. Molecules 2020, 25, 4170. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, H.; Zhang, Y. Research Progress in Active Ingredient Extraction Methods and Pharmacological Effects of Skin and Eggs Derived from Rana chensinensis. J. Jilin Inst. Chem. Technol. 2019, 36, 15–20. [Google Scholar]
- Wang, Z.; Zhao, Y.; Su, T.; Zhang, J.; Wang, F. Characterization and antioxidant activity in vitro and in vivo of polysaccharide purified from Rana chensinensis skin. Carbohydr. Polym. 2015, 126, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Ling-Ling, L.; Jin, X.S.; Shi, S.Y. Development, Extraction of Rana chensinensis Skin Collagen by Papain and its Antioxidant Activity. Food Res. Dev. 2013, 34, 22–24+94. [Google Scholar]
- Miao, Z.; Zhou, Y.; Min, Z. Measurement of Collagen Protein Contents in the Skin of Rana dybowskii and Extraction Methods. J. Northeast For. Univ. 2008, 36, 81–83. [Google Scholar]
- Wang, Z.Y.; Zhao, Y.Y.; Su, T.T. Extraction and antioxidant activity of polysaccharides from Rana chensinensis skin. Carbohyd. Polym. 2015, 115, 25–31. [Google Scholar] [CrossRef]
- Zhao, G.H.; Liang, Y.; Wang, Y.; Shang, D. Analysis and Evaluation of the Nutritional Components of Frog Flesh of Rana chensinensis. Acta Nutr. Sin. 2007, 29, 623–624. [Google Scholar]
- Jing, Z.; Hu, T.; Yin, Y.; Qin, F.; Wei, C. Optimization of High Voltage Pulse Electric Field-Assisted Extraction Technology of Calcium from Rana Bone by Response Surface Methodology. Food Ind. 2018, 39, 52–56. [Google Scholar]
- Commission, N.P. Pharmacopoeia of the People’s Republic of China (2020); China Medical Science Press: Beijing, China, 2020. [Google Scholar]
- Bao, H.W.; Yang, X.U.; Wang, Y.S.; Wang, S.H. 1-Methyl Hydantoin Content Comparison between Oviductus Ranae and Wood Frogs Spawn through HPLC. Spec. Wild Econ. Anim. Plant Res. 2019, 41, 89–92. [Google Scholar]
- Xiong, N.; Li, Q.; Dong, Y.; Wei, S.; Hu, Z.C.; Xue, Y.P.; Zheng, Y.G. Development of a Simple and Sensitive Pre-column Derivatization HPLC Method for the Quantitative Analysis of Miglitol Intermediates. Chromatographia 2021, 5512, 347–358. [Google Scholar] [CrossRef]
- Burakham, R.; Grudpan, K. Flow Injection and Sequential Injection On-line Pre-column Derivatization for Liquid Chromatography. J. Chromatogr. Sci. 2009, 47, 631–635. [Google Scholar] [CrossRef] [Green Version]
- Gatti, R. Simultaneous Determination of Taurine, N-Acetylcysteine, Glycine and Methionine in Commercial Formulations by High-Performance Liquid Chromatography. Chromatographia 2019, 82, 1833–1837. [Google Scholar] [CrossRef]
- Guo, H.; Gan, Y.; Liu, M.; Wang, S.; Ni, S.; Zhou, Y.; Xiao, Y.; Wang, Z.; Wang, Y. Quality Evaluation of Oviductus Ranae Based on PUFAs Using HPLC Fingerprint Techniques Combined with Chemometric Methods. Foods 2019, 8, 322. [Google Scholar] [CrossRef] [Green Version]
- Racey, M.; MacFarlane, A.J.; Carlson, S.; Stark, K.D.; Plourde, M.; Field, C.J.; Yates, A.A.; Wells, G.A.; Grantham, A.; Bazinet, R.P.; et al. Dietary Reference Intakes Based on Chronic Disease Endpoints: Outcomes from a case study workshop for omega 3’s EPA and DHA. Appl. Physiol. Nutr. Metab. 2021, 46, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Kulzow, N.; Witte, A.V.; Kerti, L.; Grittner, U.; Schuchardt, J.P.; Hahn, A.; Floel, A. Impact of Omega-3 Fatty Acid Supplementation on Memory Functions in Healthy Older Adults. J. Alzheimer’s Dis. 2016, 51, 713–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, J.; Arita, M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J. Cardiol. 2016, 67, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Alcala, L.M.; Calvo, M.V.; Fontecha, J.; Alonso, L. Alterations in the Fatty Acid Composition in Infant Formulas and 3-PUFA Enriched UHT Milk during Storage. Foods 2019, 8, 163. [Google Scholar] [CrossRef] [Green Version]
- Gogus, U.; Smith, C. n-3 Omega fatty acids: A review of current knowledge. Int. J. Food Sci. Technol. 2010, 45, 417–436. [Google Scholar] [CrossRef]
- Liu, B.; Yan, W. Quantitative Polyunsaturated Fatty Acid Analysis of Chia Seed Oil by High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2021, 59, 120–127. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Wang, D.D. Dietary n-6 polyunsaturated fatty acids and cardiovascular disease: Epidemiologic evidence. Prostaglandis Leukot. Essent. Fat. Acids 2018, 135, 5–9. [Google Scholar] [CrossRef]
- You, J.S.; Shi, J.L.; Zhang, S.F.; Duan, H.H.; Shi, S.N.; Guo, J.Y. Antidepressant Effects of Petroleum Ether Extracts from Ranae Oviductus. Chin. J. Exp. Tradit. Med. Formulae 2013, 19, 271–274. [Google Scholar]
- Wang, S. Study on the Quality Evalutation and the Active Components Derivatives of Oviductus ranae. Ph.D. Thesis, Jilin University, Changchun, China, 2017. [Google Scholar]
- Yu, G.; Qin, J.; Li, J.; Wang, W.; Bi, Y.; Wang, Z.; Xiao, W. Determination of α-linolenic acid, linoleic acid and oleic acid in Oviductus ranae by HPLC. Chin. J. Exp. Tradit. Med. 2013, 19, 82–85. [Google Scholar]
- Liu, Y.H.; Wang, Z.Y.; Wang, C.X.; Si, H.R.; Yu, H.; Li, L.; Fu, S.Z.; Tan, L.Y.; Li, P.Y.; Liu, J.P.; et al. Comprehensive phytochemical analysis and sedative-hypnotic activity of two Acanthopanax species leaves. Food Funct. 2021, 12, 2292–2311. [Google Scholar] [CrossRef] [PubMed]
- Fraige, K.; Pereira, E.R.; Carrilho, E. Fingerprinting of anthocyanins from grapes produced in Brazil using HPLC-DAD-MS and exploratory analysis by principal component analysis. Food Chem. 2014, 145, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Lee, J.W.; Choi, B.R.; Kim, Y.C.; Choi, D.J.; Lee, Y.S.; Kim, G.S.; Baek, N.I.; Kim, S.Y.; Lee, D.Y. Comprehensive Profiling and Quantification of Ginsenosides in the Root, Stem, Leaf, and Berry of Panax ginseng by UPLC-QTOF/MS. Molecules 2017, 22, 2147. [Google Scholar] [CrossRef] [Green Version]
- Ragusa, A.; Centonze, C.; Grasso, M.E.; Latronico, M.F.; Mastrangelo, P.F.; Sparascio, F.; Fanizzi, F.P.; Maffia, M. A Comparative Study of Phenols in Apulian Italian Wines. Foods 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.M.; Li, S.L.; Zhang, H.; Wang, Y.; Zhao, Z.L.; Chen, S.L.; Xu, H.X. Holistic quality evaluation of commercial white and red ginseng using a UPLC-QTOF-MS/MS-based metabolomics approach. J. Pharm. Biomed. Anal. 2012, 62, 258–273. [Google Scholar] [CrossRef]
- Huang, B.M.; Chen, T.B.; Xiao, S.Y.; Zha, Q.L.; Luo, P.; Wang, Y.P.; Cui, X.M.; Liu, L.; Zhou, H. A new approach for authentication of four ginseng herbs and their related products based on the simultaneous quantification of 19 ginseng saponins by UHPLC-TOF/MS coupled with OPLS-DA. RSC Adv. 2017, 7, 46839–46851. [Google Scholar] [CrossRef] [Green Version]
- Rohman, A.; Wijayanti, T.; Windarsih, A.; Riyanto, S. The Authentication of Java Turmeric (Curcuma xanthorrhiza) Using Thin Layer Chromatography and(1)H-NMR Based-Metabolite Fingerprinting Coupled with Multivariate Analysis. Molecules 2020, 25, 3928. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.F.; Liang, W.Y.; Chen, W.J.; Li, S.; Cui, Y.P.; Qi, Q.; Zhang, L.Z. Screening and Analysis of the Marker Components in Ganoderma lucidum by HPLC and HPLC-MSn with the Aid of Chemometrics. Molecules 2017, 22, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bylesjo, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J Chemom. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Lin, H.Q.; Zhu, H.L.; Tan, J.; Wang, H.; Wang, Z.Y.; Li, P.Y.; Zhao, C.F.; Liu, J.P. Comparative Analysis of Chemical Constituents of Moringa oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry. Molecules 2019, 24, 942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Zhang, C.X.; Shao, C.F.; Li, C.W.; Liu, S.H.; Peng, X.P.; Xu, Y.Q. Chemical Fingerprint Analysis for the Quality Evaluation of Deepure Instant Pu-erh Tea by HPLC Combined with Chemometrics. Food Anal. Methods 2016, 9, 3298–3309. [Google Scholar] [CrossRef]
NO. | Origin | Weight (g) | Determination of Composition |
---|---|---|---|
S1 | Baishan, Jinlin | 12.75 | bzmh |
S2 | Baishan, Jinlin | 14.57 | bzmh |
S3 | Baishan, Jinlin | 11.58 | bzmh |
S4 | Baishan, Jinlin | 13.27 | bzmh |
S5 | Baishan, Jinlin | 13.63 | bzmh |
S6 | Baishan, Jinlin | 13.27 | PUFAs |
S7 | Baishan, Jinlin | 14.74 | PUFAs |
S8 | Baishan, Jinlin | 11.98 | PUFAs |
S9 | Baishan, Jinlin | 14.53 | PUFAs |
S10 | Baishan, Jinlin | 13.02 | PUFAs |
S11 | Baishan, Jinlin | 12.37 | PUFAs |
S12 | Baishan, Jinlin | 11.98 | PUFAs |
S13 | Baishan, Jinlin | 14.33 | PUFAs |
S14 | Baishan, Jinlin | 12.52 | PUFAs |
S15 | Baishan, Jinlin | 14.88 | PUFAs |
S16 | Baishan, Jinlin | 12.03 | PUFAs |
Parameter | Retention Time | Peak Area | |
---|---|---|---|
Precision RSD | 0.14% | 0.31% | |
Repeatability RSD | 2.98% | 4.79% | |
Stability RSD | 0.97% | 1.18% | |
Concentration (μg/mL) | |||
LOD | 0.08 | ||
LOQ | 0.28 | ||
Accuracy | Sample | Recovery | RSD |
OR | 104.96% | 4.06% | |
RCO | 104.76% | 2.24% | |
RCM | 98.00% | 2.71% | |
RCS | 104.71% | 1.46% |
Sample | OR (μg/g) | RCO (μg/g) | RCM (μg/g) | RCS (μg/g) | RCB (μg/g) | Total Content (μg/g) |
---|---|---|---|---|---|---|
S1 | 10.90 ± 0.16 | 2.50 ± 0.03 | 6.34 ± 0.04 | 104.91 ± 1.80 | - | 124.65 ± 0.62 |
S2 | 9.93 ± 0.09 | 2.16 ± 0.03 | 12.43 ± 0.13 | 103.86 ± 1.14 | - | 128.37 ± 0.35 |
S3 | 4.93 ± 0.09 | 1.41 ± 0.02 | 0.99 ± 0.01 | 19.01 ± 0.69 | - | 26.34 ± 0.20 |
S4 | 4.11 ± 0.21 | 3.16 ± 0.13 | 2.77 ± 0.03 | 4.80 ± 0.19 | - | 14.84 ± 0.59 |
S5 | 4.79 ± 0.10 | 3.98 ± 0.16 | 4.02 ± 0.16 | 6.12 ± 0.24 | - | 18.91 ± 0.38 |
Compounds | Rgression Equation | R2 | Linearity Range (µg/mL) |
---|---|---|---|
EPA | Y = 11,198X + 94.40 | 0.9999 | 14.59–116.74 |
ALA | Y = 6244X + 91.95 | 0.9999 | 21.76–174.07 |
DHA | Y = 14,151X + 34.20 | 1.0000 | 7.20–57.57 |
ARA | Y = 10,379X + 505.69 | 0.9996 | 38.34–306.73 |
LA | Y = 4221X + 522.27 | 0.9994 | 68.35–546.82 |
OA | Y = 817X + 866.82 | 0.9982 | 303.56–2428.48 |
Sample | EPA (μg/g) | ALA (μg/g) | DHA (μg/g) | ARA (μg/g) | LA (μg/g) | OA (μg/g) | |
---|---|---|---|---|---|---|---|
OR | S6 | 225.83 ± 11.41 | 542.64 ± 27.16 | 476.66 ± 19.22 | 337.15 ± 13.76 | 1125.04 ± 56.31 | 3689.21 ± 111.79 |
S7 | 201.97 ± 10.20 | 113.19 ± 5.65 | 419.26 ± 16.91 | 393.20 ± 15.85 | 539.99 ± 27.24 | 1991.06 ± 50.61 | |
S8 | 111.22 ± 5.56 | 290.79 ± 14.54 | 116.78 ± 4.67 | 186.82 ± 7.47 | 502.78 ± 25.14 | 3573.89 ± 89.94 | |
S9 | 42.82 ± 0.86 | 139.38 ± 6.97 | 30.93 ± 0.62 | 111.14 ± 2.22 | 392.40 ± 19.62 | 2143.12 ± 53.93 | |
S10 | 181.06 ± 3.66 | 423.00 ± 21.17 | 433.85 ± 17.49 | 236.41 ± 9.53 | 969.03 ± 48.89 | 2102.18 ± 53.44 | |
S11 | 207.32 ± 4.15 | 498.06 ± 4.98 | 115.18 ± 4.61 | 404.83 ± 16.19 | 1149.15 ± 26.43 | 5014.37 ± 126.19 | |
S12 | 223.39 ± 2.26 | 534.47 ± 26.75 | 467.10 ± 23.54 | 330.62 ± 13.33 | 1104.73 ± 55.74 | 3697.23 ± 74.32 | |
S13 | 180.86 ± 9.13 | 636.19 ± 31.84 | 871.61 ± 43.93 | 236.82 ± 7.16 | 971.12 ± 49.00 | 2112.26 ± 42.46 | |
S14 | 44.40 ± 1.33 | 138.86 ± 6.94 | 31.46 ± 1.26 | 123.05 ± 6.15 | 390.97 ± 19.55 | 2135.13 ± 106.76 | |
S15 | 115.37 ± 5.77 | 301.15 ± 15.06 | 121.18 ± 4.85 | 196.38 ± 7.86 | 524.04 ± 26.20 | 3718.30 ± 74.37 | |
S16 | 208.57 ± 10.43 | 501.09 ± 25.05 | 115.75 ± 4.63 | 407.31 ± 16.29 | 1155.34 ± 57.77 | 5045.92 ± 100.92 | |
RCO | S6 | 825.56 ± 33.02 | 5100.82 ± 255.3 | 796.54 ± 32.12 | 1069.00 ± 43.10 | 4310.01 ± 215.69 | 9253.38 ± 186.00 |
S7 | 759.89 ± 30.4 | 1808.01 ± 90.49 | 758.59 ± 30.59 | 943.77 ± 38.06 | 3635.89 ± 181.43 | 11,600.39 ± 233.17 | |
S8 | 2240.64 ± 112.03 | 8505.59 ± 425.28 | 1726.53 ± 34.53 | 2844.73 ± 113.79 | 8199.74 ± 409.99 | 20,720.18 ± 828.81 | |
S9 | 1047.18 ± 52.36 | 5570.74 ± 278.54 | 739.76 ± 29.59 | 1550.81 ± 62.03 | 6004.35 ± 300.22 | 12,397.68 ± 495.91 | |
S10 | 1566.04 ± 46.98 | 6756.78 ± 67.64 | 1505.67 ± 60.71 | 2056.31 ± 82.92 | 7965.35 ± 397.47 | 18,732.50 ± 753.07 | |
S11 | 3534.77 ± 106.04 | 6566.32 ± 328.32 | 2856.62 ± 85.70 | 4824.90 ± 193.00 | 9668.09 ± 483.40 | 23,000.60 ± 920.02 | |
S12 | 832.58 ± 24.98 | 5154.62 ± 257.99 | 804.11 ± 24.32 | 1083.91 ± 43.71 | 4386.50 ± 218.89 | 9317.74 ± 374.58 | |
S13 | 748.15 ± 22.44 | 1786.60 ± 89.42 | 743.21 ± 29.97 | 919.81 ± 37.09 | 3588.02 ± 179.04 | 11,602.38 ± 466.43 | |
S14 | 1067.39 ± 53.37 | 5677.68 ± 283.88 | 752.51 ± 30.10 | 1580.56 ± 63.22 | 6109.49 ± 305.47 | 12697.18 ± 253.94 | |
S15 | 2250.84 ± 112.54 | 8193.74 ± 163.87 | 1713.56 ± 68.54 | 2978.80 ± 119.15 | 8400.76 ± 420.04 | 23,692.28 ± 947.69 | |
S16 | 1395.72 ± 69.79 | 6750.53 ± 337.53 | 3997.29 ± 159.89 | 3372.08 ± 134.88 | 21,895.14 ± 1094.76 | 93,702.41 ± 3748.10 | |
RCM | S6 | 348.69 ± 3.14 | 1736.20 ± 86.90 | 909.99 ± 36.69 | 959.92 ± 38.71 | 2263.52 ± 45.18 | 4106.43 ± 163.77 |
S7 | 421.28 ± 12.64 | 938.12 ± 46.95 | 571.44 ± 23.04 | 773.61 ± 31.19 | 2428.87 ± 96.96 | 4283.92 ± 85.42 | |
S8 | 204.72 ± 10.24 | 634.45 ± 31.72 | 341.84 ± 13.67 | 333.28 ± 3.33 | 1212.97 ± 60.65 | 505.51 ± 25.28 | |
S9 | 716.34 ± 35.82 | 2774.61 ± 138.73 | 1367.37 ± 54.69 | 1672.72 ± 66.91 | 4682.82 ± 234.14 | 9672.03 ± 193.44 | |
S10 | 348.63 ± 10.46 | 1662.99 ± 83.23 | 912.73 ± 36.80 | 962.42 ± 38.81 | 2309.19 ± 115.23 | 4455.37 ± 88.84 | |
S11 | 824.02 ± 41.20 | 1798.85 ± 35.98 | 862.68 ± 34.51 | 1550.67 ± 62.03 | 3131.73 ± 156.59 | 6437.01 ± 128.74 | |
S12 | 352.13 ± 10.56 | 1757.65 ± 87.97 | 919.85 ± 37.09 | 974.26 ± 39.28 | 2300.42 ± 114.79 | 4132.64 ± 82.57 | |
S13 | 422.49 ± 12.67 | 940.12 ± 47.05 | 575.37 ± 23.20 | 779.91 ± 31.45 | 2434.41 ± 121.48 | 4292.62 ± 85.68 | |
S14 | 646.00 ± 32.30 | 2348.95 ± 117.45 | 1246.74 ± 49.87 | 1446.62 ± 57.86 | 3631.48 ± 181.57 | 5696.12 ± 284.81 | |
S15 | 197.44 ± 9.87 | 824.88 ± 41.24 | 340.11 ± 13.60 | 333.82 ± 13.35 | 1205.29 ± 60.26 | 504.12 ± 10.08 | |
S16 | 825.50 ± 41.28 | 1800.29 ± 90.01 | 863.79 ± 34.55 | 1551.54 ± 62.06 | 3133.90 ± 156.69 | 6447.32 ± 128.95 | |
RCS | S6 | 204.53 ± 6.14 | 2209.88 ± 110.60 | 259.36 ± 10.46 | 584.89 ± 23.40 | 2763.46 ± 55.16 | 7083.24 ± 282.76 |
S7 | 235.6 ± 1.65 | 1113.35 ± 55.72 | 391.03 ± 15.77 | 639.78 ± 25.80 | 3029.24 ± 151.16 | 5709.62 ± 227.93 | |
S8 | 139.52 ± 6.98 | 1371.44 ± 68.57 | 150.22 ± 6.01 | 439.79 ± 17.59 | 5553.63 ± 277.68 | 8981.99 ± 359.28 | |
S9 | 343.55 ± 17.18 | 2434.91 ± 121.75 | 458.84 ± 18.35 | 1057.25 ± 42.29 | 4381.97 ± 219.10 | 10,704.83 ± 428.19 | |
S10 | 203.72 ± 6.11 | 2232.03 ± 111.71 | 259.46 ± 2.62 | 582.77 ± 23.50 | 2824.10 ± 84.55 | 7478.00 ± 149.26 | |
S11 | 350.25 ± 17.51 | 1204.20 ± 12.04 | 327.00 ± 13.08 | 819.97 ± 32.80 | 2460.94 ± 73.83 | 7595.86 ± 75.96 | |
S12 | 205.69 ± 6.17 | 2223.92 ± 111.31 | 260.91 ± 13.15 | 585.03 ± 17.69 | 2793.43 ± 139.39 | 7128.14 ± 142.28 | |
S13 | 233.37 ± 70 | 1089.46 ± 54.53 | 384.29 ± 15.50 | 623.46 ± 25.14 | 3005.11 ± 149.96 | 5710.49 ± 113.98 | |
S14 | 307.78 ± 15.39 | 2064.27 ± 103.21 | 419.87 ± 16.79 | 893.48 ± 44.67 | 3393.44 ± 169.67 | 6351.36 ± 127.03 | |
S15 | 140.34 ± 7.02 | 1377.92 ± 68.90 | 154.23 ± 6.17 | 441.79 ± 17.67 | 5569.99 ± 278.50 | 8993.90 ± 89.94 | |
S16 | 350.11 ± 17.51 | 1203.86 ± 60.19 | 326.73 ± 16.34 | 819.07 ± 32.76 | 2459.47 ± 122.97 | 7587.99 ± 151.76 | |
RCB | S6 | 222.99 ± 6.69 | 3359.15 ± 168.13 | 244.50 ± 9.86 | 500.01 ± 10.08 | 3497.73 ± 69.81 | 8556.51 ± 170.79 |
S7 | 224.95 ± 1.75 | 1247.84 ± 62.45 | 167.31 ± 6.75 | 415.40 ± 20.94 | 2709.34 ± 135.20 | 6461.54 ± 128.97 | |
S8 | 43.86 ± 2.19 | 552.84 ± 27.64 | 80.61 ± 3.22 | 177.81 ± 7.11 | 1074.99 ± 53.75 | 4869.36 ± 194.77 | |
S9 | 215.01 ± 10.75 | 3104.32 ± 93.13 | 231.66 ± 9.27 | 603.65 ± 30.18 | 4219.13 ± 210.96 | 11372.96 ± 227.46 | |
S10 | 221.44 ± 10.64 | 3346.48 ± 40.20 | 246.51 ± 12.42 | 495.29 ± 24.96 | 3551.38 ± 35.44 | 9149.18 ± 182.62 | |
S11 | 492.71 ± 24.64 | 3040.10 ± 152.00 | 266.45 ± 10.66 | 955.27 ± 47.76 | 4359.53 ± 217.98 | 11,842.86 ± 236.86 | |
S12 | 223.34 ± 1.70 | 3363.19 ± 168.33 | 244.84 ± 9.87 | 500.76 ± 25.24 | 3496.97 ± 69.80 | 8585.60 ± 171.37 | |
S13 | 221.4 ± 6.64 | 1215.10 ± 60.82 | 162.34 ± 6.55 | 396.14 ± 15.97 | 2663.43 ± 132.91 | 6342.98 ± 126.75 | |
S14 | 216.16 ± 10.81 | 3138.44 ± 156.92 | 236.38 ± 9.46 | 610.11 ± 30.51 | 4245.91 ± 212.30 | 11471.18 ± 573.56 | |
S15 | 40.48 ± 2.02 | 550.85 ± 27.54 | 80.49 ± 0.80 | 159.34 ± 6.37 | 1085.49 ± 54.27 | 4951.64 ± 247.58 | |
S16 | 493.90 ± 24.69 | 3046.57 ± 152.33 | 267.88 ± 10.72 | 957.41 ± 38.30 | 4369.30 ± 218.47 | 11,860.40 ± 593.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, Z.; Wang, S.; Zhang, C.; Li, N.; Xu, D.; Yang, Y.; Wang, Y. Determination and Chemometrics-Assisted Comparative Analysis of Active Components in Different Tissue of Rana chensinensis. Separations 2021, 8, 164. https://doi.org/10.3390/separations8100164
Zhang J, Wang Z, Wang S, Zhang C, Li N, Xu D, Yang Y, Wang Y. Determination and Chemometrics-Assisted Comparative Analysis of Active Components in Different Tissue of Rana chensinensis. Separations. 2021; 8(10):164. https://doi.org/10.3390/separations8100164
Chicago/Turabian StyleZhang, Jianqiu, Zhongyao Wang, Shihan Wang, Changli Zhang, Nan Li, Dongliang Xu, Yong Yang, and Yongsheng Wang. 2021. "Determination and Chemometrics-Assisted Comparative Analysis of Active Components in Different Tissue of Rana chensinensis" Separations 8, no. 10: 164. https://doi.org/10.3390/separations8100164
APA StyleZhang, J., Wang, Z., Wang, S., Zhang, C., Li, N., Xu, D., Yang, Y., & Wang, Y. (2021). Determination and Chemometrics-Assisted Comparative Analysis of Active Components in Different Tissue of Rana chensinensis. Separations, 8(10), 164. https://doi.org/10.3390/separations8100164