Improved Renoprotection in Diabetes with Combination Therapy of Coccinia indica Leaf Extract and Low-Dose Pioglitazone
Abstract
:1. Introduction
2. Methods
2.1. Drugs and Chemicals
2.2. Plant Material—Ethanolic Extract of Coccinia indica
2.3. Experimental Animals and Preliminary Work
2.4. Experimental Groups
2.5. Assessment of Diabetes and Lipid Profile
2.6. Pre- and Post-Prandial Glucose Measurement/Oral Glucose Tolerance Test (OGTT)
2.7. Evaluation of Diabetic Nephropathy.
2.7.1. Serum Creatinine
2.7.2. Blood Urea Nitrogen (BUN)
2.7.3. Protein in Urine
2.7.4. Histopathological Analysis of Kidneys
2.8. Detection of Renal Oxidative Stress
2.8.1. Superoxide Dismutase (SOD) Activity
2.8.2. Catalase Activity
2.8.3. Estimation of Lipid Peroxidation
2.9. Statistical Evaluation
3. Results
3.1. Therapeutic Interventions on Blood Glucose
3.2. Pre- and Post-Prandial Glucose Measurement/OGTT
3.2.1. OGTT—Before Treatment
3.2.2. OGTT—After Treatment
3.3. Therapeutic Interventions Onserum Total Cholesterol and Trigylcerides
3.4. Therapeutic Interventions on Creatinine and Urea Nitrogen Level in the Blood
3.5. Therapeutic Interventions on Proteinuria
3.6. Therapeutic Interventions on Renal Oxidative Stress
3.7. Histopathological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Suganya, S.; Narmadha, R.; Gopalakrishnan, V.K.; Devaki, K. Hypoglycemic effect of Costus pictus D. Don on alloxan induced type 2 diabetes mellitus in albino rats. Asian Pac. J. Trop. Dis. 2012, 2, 117–123. [Google Scholar] [CrossRef]
- Arora, M.K.; Reddy, K.; Balakumar, P. The low dose combination of fenofibrate and rosiglitazone halts the progression of diabetes-induced experimental nephropathy. Eur. J. Pharmacol. 2010, 636, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Rohilla, A.; Tiwari, S.K.; Rohilla, S.; Kushnoor, A. Diabetic Nephropathy: Pathogenesis, Prevention and Treatment. Eur. J. Exp. Biol. 2011, 1, 72–80. [Google Scholar]
- Giunti, S.; Barit, D.; Cooper Mark, E. Mechanisms of Diabetic Nephropathy. Hypertension 2006, 48, 519–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, F.; Fornoni, A.; Elliot, S.J.; Guan, Y.; Breyer, M.D.; Striker, L.J.; Striker, G.E. Upregulation of type I collagen by TGF-β in mesangial cells is blocked by PPARγ activation. Am. J. Physiol.-Ren. Physiol. 2002, 282, F639–F648. [Google Scholar] [CrossRef]
- Abrass, C.K. Cellular Lipid Metabolism and the Role of Lipids in Progressive Renal Disease. Am. J. Nephrol. 2004, 24, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Mizushige, K.; Tsuji, T.; Noma, T. Pioglitazone: Cardiovascular Effects in Prediabetic Patients. Cardiovasc. Drug Rev. 2002, 20, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Michael Kubisch, H.; Wang, J.; Bray, T.M.; Phillips, J.P. Targeted Overexpression of Cu/Zn Superoxide Dismutase Protects Pancreatic β-Cells against Oxidative Stress. Diabetes 1997, 46, 1563. [Google Scholar] [CrossRef]
- Naziroğlu, M.; Çay, M. Protective role of intraperitoneally administered vitamin E and selenium on the antioxidative defense mechanisms in rats with diabetes induced by streptozotocin. Biol. Trace Elem. Res. 2001, 79, 149–159. [Google Scholar] [CrossRef]
- Lipinski, B. Pathophysiology of oxidative stress in diabetes mellitus. J. Diabetes Its Complicat. 2001, 15, 203–210. [Google Scholar] [CrossRef]
- Ha, H.; Lee, H.B. Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int. 2000, 58, S19–S25. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-de la Cruz, M.C.; Ruiz-Torres, P.; Alcamí, J.; Díez-Marqués, L.; Ortega-Velázquez, R.; Chen, S.; Rodríguez-Puyol, M.; Ziyadeh, F.N.; Rodríguez-Puyol, D. Hydrogen peroxide increases extracellular matrix mRNA through TGF-β in human mesangial cells. Kidney Int. 2001, 59, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.W.; Kim, H.W.; Ko, S.H.; Chung, H.W.; Lim, S.W.; Yang, C.W.; Chang, Y.S.; Sugawara, A.; Guan, Y.; Breyer, M.D. Accelerated Diabetic Nephropathy in Mice Lacking the Peroxisome Proliferator–Activated Receptor α. Diabetes 2006, 55, 885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amann, B.; Tinzmann, R.; Angelkort, B. ACE Inhibitors Improve Diabetic Nephropathy Through Suppression of Renal MCP-1. Diabetes Care 2003, 26, 2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, R.N.; Chopra, I.C.; Hand, K.L.; Kapur, L.D. Indigenous Drugs of India, 2nd ed.; UN Dhur and Sons: Calcutta, India, 1958. [Google Scholar]
- Mukherjee, K.; Datta, T. Coccinia indica Linn. As potential hypoglycaemic agent. Indian J. Exp. Biol. 1972, 10, 347–349. [Google Scholar] [PubMed]
- Venkateswaran, S.; Pari, L. Effect of Coccinia indica on Blood Glucose, Insulin and Key Hepatic Enzymes in Experimental Diabetes. Pharm. Biol. 2002, 40, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Venkateswaran, S.; Pari, L. Effect of Coccinia indica leaves on antioxidant status in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2003, 84, 163–168. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Bhuvaneshwari, R.; Dhandapani, R. Hypoglycaemic activity of Coccinia indica wight & arn fruits in alloxan-induced diabetic rats. Indian J. Nat. Prod. Resour. 2011, 2, 350–353. [Google Scholar]
- Srinivasan, K.; Viswanad, B.; Asrat, L.; Kaul, C.L.; Ramarao, P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacol. Res. 2005, 52, 313–320. [Google Scholar] [CrossRef]
- Toshio, K.; Hiraga, Y.; Nakamura, N.; Kitajo, A.; Iinuma, F. Determination of Glucose in Blood using Glucose Oxidase-Peroxidase System and 8-Hydroxyquinoline-p-Anisidine. Chem. Pharm. Bull. 1979, 27, 568–570. [Google Scholar]
- Allain, C.C.; Poon, L.S.; Chan, C.S.G.; Richmond, W.; Fu, P.C. Enzymatic Determination of Total Serum Cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef]
- Bucolo, G.; David, H. Quantitative Determination of Serum Triglycerides by the Use of Enzymes. Clin. Chem. 1973, 19, 476–482. [Google Scholar] [CrossRef]
- Bonsnes, R.W.; Taussky, H.H. On the colorimetric determination of creatinine by the jaffe reaction. J. Biol. Chem. 1945, 158, 581–591. [Google Scholar]
- Fawcett, J.K.; Scott, J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156. [Google Scholar] [CrossRef] [Green Version]
- Šperlingová, I.; Dabrowská, L.; Tichý, M.; Kučera, J. Reference material “total protein in human urine”. Fresenius’ J. Anal. Chem. 1998, 361, 756–760. [Google Scholar] [CrossRef]
- Manjunatha Goud, B.K.; Mallick, A.K.; Sarsina Devi, O.; Raghuveer, C.V.; Nayal, B.; Ahsan, M.; Devaki, R.N.; Avinash, S.S. Diabetes mellitus and microalbuminuria: Factors affecting collection of urine samples for microalbuminuria. Int. J. Pharma Biol. Sci. 2011, 2, 131–137. [Google Scholar]
- Wang, G.G.; Lu, X.H.; Li, W.; Zhao, X.; Zhang, C. Protective Effects of Luteolin on Diabetic Nephropathy in STZ-Induced Diabetic Rats. Evid.-Based Complement. Altern. Med. 2011, 2011, 323171. [Google Scholar] [CrossRef] [Green Version]
- Kono, Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophys. 1978, 186, 189–195. [Google Scholar] [CrossRef]
- Stevens, M.J.; Obrosova, I.; Cao, X.; Van Huysen, C.; Greene, D.A. Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 2000, 49, 1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devasagayam, T.P.A.; Boloor, K.K.; Ramasarma, T. Methods for estimating lipid peroxidation: An analysis of merits and demerits. Indian J. Biochem. Biophys. 2003, 40, 300–308. [Google Scholar]
- Latini, R.; Aleksova, A.; Masson, S. Novel biomarkers and therapies in cardiorenal syndrome. Curr. Opin. Pharmacol. 2016, 27, 56–61. [Google Scholar] [CrossRef]
- Wolf, G.; Ziyadeh, F.N. Cellular and Molecular Mechanisms of Proteinuria in Diabetic Nephropathy. Nephron Physiol. 2007, 106, p26–p31. [Google Scholar] [CrossRef]
- Usman, A.; Umar, R.; Shehu, N.; Wali, U.; Nasir, A. Markers of Diabetic Nephropathy in Diabetic Patients in Gusau, Zamfara State, Nigeria. Niger. J. Basic Appl. Sci. 2012, 20, 130–133. [Google Scholar]
- Ravid, M.; Neumann, L.; Lishner, M. Plasma lipids and the progression of nephropathy in diabetes mellitus type II: Effect of ACE inhibitors. Kidney Int. 1995, 47, 907–910. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Song, C.Y.; Kim, B.C.; Hong, H.K.; Lee, H.S. Angiotensin II mediates LDL-induced superoxide generation in mesangial cells. Am. J. Physiol.-Ren. Physiol. 2003, 285, F909–F915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, P.J.; Chiou, H.C.; Jiang, H.J.; Lee, M.Y.; Hsieh, T.J.; Kuo, K.K. Pioglitazone Enhances Cytosolic Lipolysis, β-oxidation and Autophagy to Ameliorate Hepatic Steatosis. Sci. Rep. 2017, 7, 9030. [Google Scholar] [CrossRef] [Green Version]
- Yasunari, K.; Kohno, M.; Kano, H.; Yokokawa, K.; Minami, M.; Yoshikawa, J. Mechanisms of action of troglitazone in the prevention of high glucose-induced migration and proliferation of cultured coronary smooth muscle cells. Circ. Res. 1997, 81, 953–962. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Inzucchi, S.; Abdul-Ghani, M.; Nissen, S.E. Pioglitazone: The forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diabetes Vasc. Dis. Res. 2019, 16, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Burns, K.D. Angiotensin II and its receptors in the diabetic kidney. Am. J. Kidney Dis. 2000, 36, 449–467. [Google Scholar] [CrossRef]
- Shahidi, S.; Pakzad, B.; Mortazavi, M.; Akbari, M.; Seirafian, S.; Atapour, A.; Al Saeidi, S.; Shayegannejad, A. Reduction of proteinuria by pioglitazone in patients with non-diabetic renal disease. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2011, 16, 1459–1465. [Google Scholar]
- Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008, 57, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Mason, R.M.; Wahab, N.A. Extracellular matrix metabolism in diabetic nephropathy. J. Am. Soc. Nephrol. JASN 2003, 14, 1358–1373. [Google Scholar] [CrossRef] [Green Version]
- Saltiel, A.R.; Olefsky, J.M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996, 45, 1661–1669. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basavarajappa, G.M.; Nanjundan, P.K.; Alabdulsalam, A.; Asif, A.H.; Shekharappa, H.T.; Anwer, M.K.; Nagaraja, S. Improved Renoprotection in Diabetes with Combination Therapy of Coccinia indica Leaf Extract and Low-Dose Pioglitazone. Separations 2020, 7, 58. https://doi.org/10.3390/separations7040058
Basavarajappa GM, Nanjundan PK, Alabdulsalam A, Asif AH, Shekharappa HT, Anwer MK, Nagaraja S. Improved Renoprotection in Diabetes with Combination Therapy of Coccinia indica Leaf Extract and Low-Dose Pioglitazone. Separations. 2020; 7(4):58. https://doi.org/10.3390/separations7040058
Chicago/Turabian StyleBasavarajappa, Girish Meravanige, Prem Kumar Nanjundan, Abdulrahim Alabdulsalam, Afzal Haq Asif, Hema Tyavanige Shekharappa, Md. Khalid Anwer, and Sreeharsha Nagaraja. 2020. "Improved Renoprotection in Diabetes with Combination Therapy of Coccinia indica Leaf Extract and Low-Dose Pioglitazone" Separations 7, no. 4: 58. https://doi.org/10.3390/separations7040058
APA StyleBasavarajappa, G. M., Nanjundan, P. K., Alabdulsalam, A., Asif, A. H., Shekharappa, H. T., Anwer, M. K., & Nagaraja, S. (2020). Improved Renoprotection in Diabetes with Combination Therapy of Coccinia indica Leaf Extract and Low-Dose Pioglitazone. Separations, 7(4), 58. https://doi.org/10.3390/separations7040058