Relationships in Gas Chromatography—Fourier Transform Infrared Spectroscopy—Comprehensive and Multilinear Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Standards and Sample Preparation
2.3. Conditions
2.4. Software
3. Results and discussion
3.1. Chromatographic Peak Variations
Effect of Varying Parameters on Signal-to-Noise (SNR) Ratio
3.2. Co-Eluting Isomer Analysis
3.3. GC×FTIR Analysis of Oximes
3.4. Multivariate Analysis of Co-Eluting Isomers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poole, C.F. Ionization-based detectors for gas chromatography. J. Chromatogr. A 2015, 1421, 137–153. [Google Scholar] [CrossRef]
- Zavahir, J.S.; Nolvachai, Y.; Marriott, P.J. Molecular spectroscopy—Information rich detection for gas chromatography. TrAC Trends Anal. Chem. 2018, 99, 47–65. [Google Scholar] [CrossRef]
- Wilson, I.D.; Brinkman, U.A.T. Hyphenation and hypernation: The practice and prospects of multiple hyphenation. J. Chromatogr. A 2003, 1000, 325–356. [Google Scholar] [CrossRef]
- Santos, I.C.; Schug, K.A. Recent advances and applications of gas chromatography vacuum ultraviolet spectroscopy. J. Sep. Sci. 2017, 40, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Nolvachai, Y.; Kulsing, C.; Marriott, P.J. Pesticides analysis: Advantages of increased dimensionality in as chromatography and mass spectrometry. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2135–2173. [Google Scholar] [CrossRef]
- Andersson, J.T. Detectors. In Practical Gas Chromatography: A Comprehensive Reference; Dettmer-Wilde, K., Engewald, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 205–248. [Google Scholar] [CrossRef]
- Gachot, G.; Grugeon, S.; Jimenez-Gordon, I.; Eshetu, G.G.; Boyanov, S.; Lecocq, A.; Marlair, G.; Pilard, S.; Laruelle, S. Gas chromatography/Fourier transform infrared/mass spectrometry coupling: A tool for Li-ion battery safety field investigation. Anal. Methods 2014, 6, 6120–6124. [Google Scholar] [CrossRef]
- Skoog, D.A. Principles of Instrumental Analysis, 6th ed.; Thomson, Brooks/Cole: Belmont, CA, USA, 2007. [Google Scholar]
- Visser, T. FT-IR detection in gas chromatography. TrAC Trends Anal. Chem. 2002, 21, 627–636. [Google Scholar] [CrossRef]
- Visser, T. Gas Chromatography/Fourier Transform Infrared Spectroscopy. In Handbook of Vibrational Spectroscopy; Griffiths, P.R., Chalmers, J.M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 1605–1626. [Google Scholar] [CrossRef]
- Sciarrone, D.; Schepis, A.; De Grazia, G.; Rotondo, A.; Alibrando, F.; Cipriano, R.R.; Bizzo, H.; Deschamps, C.; Sidisky, L.M.; Mondello, L. Collection and identification of an unknown component from: Eugenia uniflora essential oil exploiting a multidimensional preparative three-GC system employing apolar, mid-polar and ionic liquid stationary phases. Faraday Discuss. 2019, 218, 101–114. [Google Scholar] [CrossRef]
- Demirgian, J.C. Gas chromatography—Fourier transform infrared spectroscopy—Mass spectrometry. A powerful tool for component identification in complex organic mixtures. TrAC Trends Anal. Chem. 1987, 6, 58–64. [Google Scholar] [CrossRef]
- Wilkins, C.L. Directly-linked gas chromatography–infrared–mass spectrometry (GC/IR/MS). In Handbook of Vibrational Spectroscopy; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 1627–1633. [Google Scholar] [CrossRef]
- Krock, K.A.; Ragunathan, N.; Wilkins, C.L. Multidimensional gas chromatography coupled with infrared and mass spectrometry for analysis of Eucalyptus essential oils. Anal. Chem. 1994, 66, 425–430. [Google Scholar] [CrossRef]
- Cooper, J.R.; Wilkins, C.L. Utilization of spectrometric information in linked gas chromatography-Fourier transform infrared spectroscopy-mass spectrometry. Anal. Chem. 1989, 61, 1571–1577. [Google Scholar] [CrossRef]
- Cai, J.; Lin, P.; Zhu, X.L.; Su, Q. Comparative analysis of clary sage (S. sclarea L.) oil volatiles by GC-FTIR and GC-MS. Food Chem. 2006, 99, 401–407. [Google Scholar] [CrossRef]
- Ragunathan, N.; Krock, K.A.; Klawun, C.; Sasaki, T.A.; Wilkins, C.L. Gas chromatography with spectroscopic detectors. J. Chromatogr. A 1999, 856, 349–397. [Google Scholar] [CrossRef]
- Zavahir, J.S.; Nolvachai, Y.; Wood, B.R.; Marriott, P.J. Gas chromatography-Fourier transform infrared spectroscopy reveals dynamic molecular interconversion of oximes. Analyst 2019, 144, 4803–4812. [Google Scholar] [CrossRef]
- Poole, C.F. Spectroscopic Detectors for Identification and Quantification. In The Essence of Chromatography; Elsevier Science: Amsterdam, The Netherlands, 2003; pp. 719–792. [Google Scholar] [CrossRef]
- White, R.L. Chromatography-IR, methods and instrumentation. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017; pp. 251–255. [Google Scholar] [CrossRef]
- Mark, H.; Workman, J., Jr. Experimental designs: Part 8—β, the power of a test. In Chemometrics in Spectroscopy; Academic Press: Amsterdam, The Netherlands, 2007; pp. 101–102. [Google Scholar] [CrossRef]
- Blitz, J.P.; Klarup, D.G. Signal-to-noise ratio, signal processing, and spectral information in the instrumental analysis laboratory. J. Chem. Educ. 2002, 79, 1358–1360. [Google Scholar] [CrossRef]
- Giss, G.N.; Wilkins, C.L. Effects of lightpipe dimensions on gas chromatography/Fourier transform infrared sensitivity. Appl. Spectrosc. 1984, 38, 17–20. [Google Scholar] [CrossRef]
- Henry, D.E.; Giorgetti, A.; Haefner, A.M.; Griffiths, P.R.; Gurka, D.F. Optimizing the optical configuration for light-pipe gas chromatography/Fourier transform infrared spectrometry interfaces. Anal. Chem. 1987, 59, 2356–2361. [Google Scholar] [CrossRef]
- Brissey, G.M.; Henry, D.E.; Giss, G.N.; Yang, P.W.; Griffiths, P.R.; Wilkins, C.L. Comparison of gas chromatography/Fourier transform infrared spectrometric Gram-Schmidt reconstructions from different interferometers. Anal. Chem. 1984, 56, 2002–2006. [Google Scholar] [CrossRef]
- Theocharous, E.; Birch, J.R. Detectors for mid- and far-infrared spectrometry: Selection and use. In Handbook of Vibrational Spectroscopy; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 349–367. [Google Scholar] [CrossRef]
- Griffiths, P.R.; Heaps, D.A.; Brejna, P.R. The gas chromatography/infrared interface: Past, present, and future. Appl. Spectrosc. 2008, 62, 259A–270A. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P.R.; de Haseth, J.A. Coupled Techniques. In Fourier Transform Infrared Spectrometry; John Wiley & Sons, Inc.: Chichester, UK, 2006; pp. 481–507. [Google Scholar] [CrossRef]
- Brown, R.S.; Cooper, J.R.; Wilkins, C.L. Lightpipe temperature and other factors affecting signal in gas chromatography/Fourier transform infrared spectrometry. Anal. Chem. 1985, 57, 2275–2279. [Google Scholar] [CrossRef]
- Grob, R.L. Theory of gas chromatography. In Modern Practice of Gas Chromatography, 4th ed.; Grob, R.L., Barry, E.F., Eds.; John Wiley & Sons, Inc.: Chichester, UK, 2004; pp. 23–63. [Google Scholar] [CrossRef]
- Griffiths, P.R. Gas chromatography | Infrared spectroscopy. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 4, pp. 186–192. [Google Scholar] [CrossRef]
- Milman, B.L. General principles of identification by mass spectrometry. TrAC Trends Anal. Chem. 2015, 69, 24–33. [Google Scholar] [CrossRef]
- Milman, B.L.; Zhurkovich, I.K. Mass spectral libraries: A statistical review of the visible use. TrAC Trends Anal. Chem. 2016, 80, 636–640. [Google Scholar] [CrossRef]
- Sasaki, T.A.; Wilkins, C.L. Gas chromatography with Fourier transform infrared and mass spectral detection. J. Chromatogr. A 1999, 842, 341–349. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R. Introduction to Spectroscopy, 5th ed.; Cengage Learning: Stamford, CT, USA, 2015. [Google Scholar]
- Do, T.K.T.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Authenticity of essential oils. TrAC Trends Anal. Chem. 2015, 66 (Suppl. C), 146–157. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Kong, D.-X.; Wu, H. Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind. Crops Prod. 2013, 41, 269–278. [Google Scholar] [CrossRef]
- Marriott, P.J.; Shellie, R.; Cornwell, C. Gas chromatographic technologies for the analysis of essential oils. J. Chromatogr. A 2001, 936, 1–22. [Google Scholar] [CrossRef]
- Wong, Y.F.; Kulsing, C.; Marriott, P.J. Switchable enantioselective three- and four-dimensional dynamic gas chromatography–mass spectrometry: Example study of on-column molecular interconversion. Anal. Chem. 2017, 89, 5620–5628. [Google Scholar] [CrossRef]
- Wang, F.C.-Y.; Edwards, K.E. Separation of C2-naphthalenes by gas chromatography × Fourier transform infrared spectroscopy (GC × FT-IR): Two-dimensional separation approach. Anal. Chem. 2007, 79, 106–112. [Google Scholar] [CrossRef]
- Wang, F.C.-Y.; Qian, K.; Green, L.A. GC × MS of diesel: A two-dimensional separation approach. Anal. Chem. 2005, 77, 2777–2785. [Google Scholar] [CrossRef]
- Wang, F.C.-Y. GC × VUV study of diesel: A two-dimensional separation approach. Energy Fuels 2020, 34, 1432–1437. [Google Scholar] [CrossRef]
- Kulsing, C.; Nolvachai, Y.; Wong, Y.F.; Glouzman, M.I.; Marriott, P.J. Observation and explanation of two-dimensional interconversion of oximes with multiple heart-cutting using comprehensive multidimensional gas chromatography. J. Chromatogr. A 2018, 1546, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Nolvachai, Y.; Kulsing, C.; Trapp, O.; Marriott, P.J. Multidimensional gas chromatography investigation of concentration and temperature effects of oxime interconversion on ionic liquid and poly(ethylene glycol) stationary phases. Anal. Chim. Acta 2019, 1081, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Kempe, J.; Bellmann, C.; Meyer, D.; Windrich, F. GC-IR based two-dimensional structural group analysis of petroleum products. Anal. Bioanal. Chem. 2005, 382, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Richardson, Z.; Perez-Guaita, D.; Kochan, K.; Wood, B.R. Determining the age of spoiled milk from dried films using attenuated reflection Fourier transform infrared (ATR FT-IR) spectroscopy. Appl. Spectrosc. 2019, 73, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Toziou, P.-M.; Barmpalexis, P.; Boukouvala, P.; Verghese, S.; Nikolakakis, I. Quantification of live Lactobacillus acidophilus in mixed populations of live and killed by application of attenuated reflection Fourier transform infrared spectroscopy combined with chemometrics. J. Pharm. Biomed. Anal. 2018, 154, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Stein, S. Mass spectral reference libraries: An ever-expanding resource for chemical identification. Anal. Chem. 2012, 84, 7274–7282. [Google Scholar] [CrossRef]
- Ausloos, P.; Clifton, C.L.; Lias, S.G.; Mikaya, A.I.; Stein, S.E.; Tchekhovskoi, D.V.; Sparkman, O.D.; Zaikin, V.; Zhu, D. The critical evaluation of a comprehensive mass spectral library. J. Am. Soc. Mass Spectrom. 1999, 10, 287–299. [Google Scholar] [CrossRef] [Green Version]
Conditions | Peak no. | GC–FID tR (min) | GC–FTIR–FID tR (min) | tR Difference (min) | GC–FID FWHM (min) | GC–FTIR–FID FWHM (min) |
---|---|---|---|---|---|---|
A. split 100:1 ramp 10 °C min−1 | 2 | 2.81 | 2.78 | 0.03 | 0.023 | 0.064 |
3 | 3.25 | 3.23 | 0.02 | 0.026 | 0.061 | |
4 | 3.72 | 3.70 | 0.02 | 0.045 | 0.073 | |
5 | 5.20 | 5.17 | 0.02 | 0.038 | 0.069 | |
B. split 10:1 ramp 5 °C min−1 | 2 | 2.97 | 2.96 | 0.01 | 0.061 | 0.074 |
3 | 3.59 | 3.58 | 0.00 | 0.078 | 0.079 | |
4 | 4.37 | 4.35 | 0.02 | 0.131 | 0.140 | |
5 # | 6.64 | 6.68 | −0.04 | 0.155 | 0.139 | |
C. split 20:1 ramp 5 °C min−1 | 2 | 2.97 | 2.93 | 0.03 | 0.040 | 0.070 |
3 | 3.58 | 3.56 | 0.02 | 0.049 | 0.072 | |
4 | 4.32 | 4.29 | 0.03 | 0.096 | 0.114 | |
5 | 6.64 | 6.62 | 0.01 | 0.095 | 0.108 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavahir, J.S.; Smith, J.S.P.; Blundell, S.; Waktola, H.D.; Nolvachai, Y.; Wood, B.R.; Marriott, P.J. Relationships in Gas Chromatography—Fourier Transform Infrared Spectroscopy—Comprehensive and Multilinear Analysis. Separations 2020, 7, 27. https://doi.org/10.3390/separations7020027
Zavahir JS, Smith JSP, Blundell S, Waktola HD, Nolvachai Y, Wood BR, Marriott PJ. Relationships in Gas Chromatography—Fourier Transform Infrared Spectroscopy—Comprehensive and Multilinear Analysis. Separations. 2020; 7(2):27. https://doi.org/10.3390/separations7020027
Chicago/Turabian StyleZavahir, Junaida Shezmin, Jamieson S. P. Smith, Scott Blundell, Habtewold D. Waktola, Yada Nolvachai, Bayden R. Wood, and Philip J. Marriott. 2020. "Relationships in Gas Chromatography—Fourier Transform Infrared Spectroscopy—Comprehensive and Multilinear Analysis" Separations 7, no. 2: 27. https://doi.org/10.3390/separations7020027
APA StyleZavahir, J. S., Smith, J. S. P., Blundell, S., Waktola, H. D., Nolvachai, Y., Wood, B. R., & Marriott, P. J. (2020). Relationships in Gas Chromatography—Fourier Transform Infrared Spectroscopy—Comprehensive and Multilinear Analysis. Separations, 7(2), 27. https://doi.org/10.3390/separations7020027