Extraction of Phthalic Acid Esters and Di(2-ethylhexyl) Adipate from Tap and Waste Water Samples Using Chromabond® HLB as Sorbent Prior to Gas Chromatography-Mass Spectrometry Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Materials
2.2. Instrumentation
2.3. Samples
2.4. SPE Procedure
3. Results and Discussion
3.1. Gas Chromatography-Mass Spectrometry Analysis
3.2. Solid-Phase Extraction Optimization
3.3. Matrix-Matched Calibration
3.4. Recovery Study
3.5. Analysis of Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IHS Markit Plasticizers. Chemical Economics Handbook. Available online: https://ihsmarkit.com/products/plasticizers-chemical-economics-handbook.html (accessed on 20 January 2020).
- Tsatsakis, A.M.; Katsikantami, I.; Kalantzi, O.-I.; Sevim, Ç.; Tsarouhas, K.; Sarigiannis, D.; Tzatzarakis, M.N.; Rizos, A.K. Phthalates: Exposure and Health Effects; Elsevier: Oxford, UK, 2019; pp. 163–173. ISBN 978-0-444-63952-3. [Google Scholar]
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/4. Off. J. Eur. J. 2006, L396, 1–520.
- Oppt Phthalates ActionPlan; US Environmental Protection Agency: Washington, DC, USA, 2012.
- Hazardous Products Act. Phthalates Regulations; Government of Canada: Ottawa, ON, Canada, 2010.
- González-Sálamo, J.; Socas-Rodríguez, B.; Hernández-Borges, J. Analytical methods for the determination of phthalates in food. Curr. Opin. Food Sci. 2018, 22, 122–136. [Google Scholar] [CrossRef]
- Fankhauser-Noti, A.; Grob, K. Blank problems in trace analysis of diethylhexyl and dibutyl phthalate: Investigation of the sources, tips and tricks. Anal. Chim. Acta 2007, 582, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.S. Analytical Solid-Phase Extraction, 1st ed.; Wiley-VCH Verlag: New York, NY, USA, 1999; ISBN 978-0-471-24667-1. [Google Scholar]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-phase extraction of organic compounds: A critical review (Part I). TrAC Trends Anal. Chem. 2016, 80, 641–654. [Google Scholar] [CrossRef]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-phase extraction of organic compounds: A critical review. part ii. TrAC Trends Anal. Chem. 2016, 80, 655–667. [Google Scholar] [CrossRef]
- Trikas, E.D.; Papi, R.M.; Kyriakidis, D.A.; Zachariadis, G.A. Evaluation of Ion Exchange and Sorbing Materials for Their Adsorption/Desorption Performane towards Anthocyanins, Total Phenolics, and Sugars from a Grape Pomace Extract. Separations 2017, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Waters Sample Preparation Catalogue; Waters Corporation: Mildford, MA, USA, 2019.
- Waters Oasis Sample Extraction Products Catalogue; Waters Corporation: Mildford, MA, USA, 2019.
- Xiaoyan, T.; Suyu, W.; Yang, Y.; Ran, T.; Yunv, D.; Dan, A.; Li, L. Removal of six phthalic acid esters (PAEs) from domestic sewage by constructed wetlands. Chem. Eng. J. 2015, 275, 198–205. [Google Scholar] [CrossRef]
- Liu, X.; Shi, J.; Bo, T.; Zhang, H.; Wu, W.; Chen, Q.; Zhan, X. Occurrence of phthalic acid esters in source waters: A nationwide survey in China during the period of 2009–2012. Environ. Pollut. 2014, 184, 262–270. [Google Scholar] [CrossRef]
- Paluselli, A.; Aminot, Y.; Galgani, F.; Net, S. Occurrence of phthalate acid esters (PAEs) in the northwestern Mediterranean Sea and the Rhone River. Prog. Oceanogr. 2018, 163, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Morueco, N.; González-Alonso, S.; Valcárcel, Y. Phthalate occurrence in rivers and tap water from central Spain. Sci. Total Environ. 2014, 500–501, 139–146. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Z.; Shi, P.; Ling, C.; Chen, X.; Zhou, Q.; Li, A. Performance of a novel magnetic solid-phase-extraction microsphere and its application in the detection of organic micropollutants in the Huai River, China. Environ. Pollut. 2019, 252, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Guart, A.; Bono-Blay, F.; Borrell, A.; Lacorte, S. Migration of plasticizersphthalates, bisphenol A and alkylphenols from plastic containers and evaluation of risk. Food Addit. Contam. Part A 2011, 28, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Fauvelle, V.; Castro-Jiménez, J.; Schmidt, N.; Carlez, B.; Panagiotopoulos, C.; Sempéré, R. One-Single Extraction Procedure for the Simultaneous Determination of a Wide Range of Polar and Nonpolar Organic Contaminants in Seawater. Front. Mar. Sci. 2018, 5, 295. [Google Scholar] [CrossRef]
- Macherey-Nagel Chromabond® HLB. Available online: https://www.mn-net.com/spe-columns-chromabond-hlb-30-m-6-mL/150-mg-730944p30 (accessed on 20 January 2020).
- Macherey-Nagel Macherey-Nagel Application Database. Available online: https://ftp.mn-net.com/english/Flyer_Catalogs/Chromatography/SPE/KATEN200184_Brochure_Modern_polymeric_SPE_phases_www.pdf (accessed on 20 January 2020).
- Jiménez-Skrzypek, G.; González-Sálamo, J.; Varela-Martínez, D.A.; González-Curbelo, M.Á.; Hernández-Borges, J. Analysis of phthalic acid esters in sea water and sea sand using polymer-coated magnetic nanoparticles as extraction sorbent. J. Chromatogr. A 2019, 1611, 460620. [Google Scholar] [CrossRef]
- Macherey-Nagel Standard SPE Procedure for Chromabond® HLB. Available online: https://ftp.mn-net.com/english/Flyer_Catalogs/Chromatography/SPE/KATEN200184_Brochure_Modern_polymeric_SPE_phases_www.pdf (accessed on 20 January 2020).
- González-Sálamo, J.; González-Curbelo, M.Á.; Socas-Rodríguez, B.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Determination of phthalic acid esters in water samples by hollow fiber liquid-phase microextraction prior to gas chromatography tandem mass spectrometry. Chemosphere 2018, 201, 254–261. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abd El-Aty, A.M.; Shim, J.-H. Matrix enhancement effect: A blessing or a curse for gas chromatography?—A review. Anal. Chim. Acta 2013, 801, 14–21. [Google Scholar] [CrossRef]
- Kwon, H.; Lehotay, S.J.; Geis-Asteggiante, L. Variability of matrix effects in liquid and gas chromatography-mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. J. Chromatogr. A 2012. [Google Scholar] [CrossRef]
- Varela-Martínez, D.A.; González-Curbelo, M.Á.; González-Sálamo, J.; Hernández-Borges, J. High-throughput analysis of pesticides in minor tropical fruits from Colombia. Food Chem. 2019, 280, 221–230. [Google Scholar] [CrossRef]
- Kmellár, B.; Fodor, P.; Pareja, L.; Ferrer, C.; Martínez-Uroz, M.A.; Valverde, A.; Fernandez-Alba, A.R. Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2008, 1215, 37–50. [Google Scholar] [CrossRef]
- SANTE/11813/2017 Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. Eur. Comm. Heal. Consum. Prot. Dir. 2017.
- González-Sálamo, J.; González-Curbelo, M.Á.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Use of Basolite ® F300 metal-organic framework for the dispersive solid-phase extraction of phthalic acid esters from water samples prior to LC-MS determination. Talanta 2019, 195, 236–244. [Google Scholar] [CrossRef] [PubMed]
- González-Sálamo, J.; Socas-Rodríguez, B.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Determination of phthalic acid esters in water samples using core-shell poly(dopamine) magnetic nanoparticles and gas chromatography tandem mass spectrometry. J. Chromatogr. A 2017, 1530, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Malem, F.; Soonthondecha, P.; Khawmodjod, P.; Chunhakorn, V.; Whitlow, H.J.; Chienthavorn, O. Occurrence of phthalate esters in the eastern coast of Thailand. Environ. Monit. Assess. 2019, 191, 627. [Google Scholar] [CrossRef] [PubMed]
- Paluselli, A.; Fauvelle, V.; Schmidt, N.; Galgani, F.; Net, S.; Sempéré, R. Distribution of phthalates in Marseille Bay (NW Mediterranean Sea). Sci. Total Environ. 2018, 621, 578–587. [Google Scholar] [CrossRef] [Green Version]
- Directive 2013/39/EU Of The European Parliament And Of The Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. J. 2013, L226, 1–17.
- Gao, D.; Li, Z.; Wen, Z.; Ren, N. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere 2014, 95, 24–32. [Google Scholar] [CrossRef]
- Katsikantami, I.; Sifakis, S.; Tzatzarakis, M.N.; Vakonaki, E.; Kalantzi, O.-I.; Tsatsakis, A.M.; Rizos, A.K. A global assessment of phthalates burden and related links to health effects. Environ. Int. 2016, 97, 212–236. [Google Scholar] [CrossRef]
Analytes | Matrix | Studied Linear Range (µg L−1) | Regression Equation (n = 9) | sy/x | R2 | ME (%) | |
---|---|---|---|---|---|---|---|
b ± sb·t(0.05; 7) | a ± sa·t(0.05; 7) | ||||||
DPP | Tap water | 0.5–250 | 7.91·10−3 ± 4.97·10−4 | −3.46·10−2 ± 4.64·10−2 | 5.11·10−2 | 0.9941 | −6.2 |
Waste water | 5–250 | 5.34·10−3 ± 7.79·10−5 | −6.59·10−3 ± 8.14·10−3 | 7.03·10−3 | 0.9998 | −36.7 | |
DBP | Tap water | 0.1–250 | 7.77·10−3 ± 4.33·10−4 | −1.09·10−1 ± 3.69·10−2 | 4.81·10−2 | 0.9938 | 0.4 |
Waste water | 0.1–250 | 5.36·10−3 ± 1.72·10−4 | −7.71·10−2 ± 1.46·10−2 | 1.91·10−2 | 0.9979 | −30.7 | |
DIPP | Tap water | 1–250 | 4.78·10−3 ± 2.51·10−4 | −2.24·10−2 ± 2.47·10−2 | 2.44·10−2 | 0.9966 | 35.6 |
Waste water | 5–250 | 3.43·10−3 ± 5.70·10−5 | −5.44·10−3 ± 5.95·10−3 | 5.14·10−3 | 0.9997 | −2.65 | |
DNPP | Tap water | 0.1–250 | 6.20·10−3 ± 2.92·10−4 | −1.75·10−2 ± 2.49·10−2 | 3.24·10−2 | 0.9956 | 46.2 |
Waste water | 0.1–250 | 4.41·10−3 ± 6.36·10−5 | −3.58·10−3 ± 5.42·10−3 | 7.07·10−3 | 0.9996 | 4.0 | |
BBP | Tap water | 5–250 | 2.17·10−3 ± 9.85·10−5 | −1.17·10−2 ± 1.03·10−2 | 8.89·10−3 | 0.9979 | 91.8 |
Waste water | 5–250 | 1.72·10−3 ± 4.00·10−5 | −4.27·10−3 ± 4.18·10−3 | 3.61·10−3 | 0.9995 | 51.5 | |
DEHA | Tap water | 5–250 | 1.94·10−3 ± 1.61·10−4 | −1.30·10−2 ± 1.68·10−2 | 1.45·10−2 | 0.9932 | 24.9 |
Waste water | 0.1–250 | 1.78·10−3 ± 3.62·10−5 | −8.50·10−3 ± 3.08·10−3 | 4.02·10−3 | 0.9992 | 14.7 | |
DCHP | Tap water | 5–250 | 1.74·10−3 ± 9.52·10−5 | −1.12·10−2 ± 9.94·10−3 | 8.59·10−3 | 0.9970 | 117.0 |
Waste water | 5–250 | 2.29·10−3 ± 9.93·10−5 | −1.20·10−2 ± 1.04·10−2 | 8.96·10−3 | 0.9981 | 185.0 | |
DEHP | Tap water | 0.1–250 | 3.30·10−3 ± 2.27·10−4 | −8.18·10−2 ± 1.99·10−2 | 2.49·10−2 | 0.9918 | 11.8 |
Waste water | 1–250 | 2.67·10−3 ± 2.46·10−4 | −1.86·10−1 ± 2.53·10−2 | 2.30·10−2 | 0.9916 | −9.6 |
Analytes | Water Sample | Level 1 | Level 2 | LOQmethod (ng L−1) |
---|---|---|---|---|
Recovery% (RSD%) | Recovery% (RSD%) | |||
DPP | Tap water | 89 (19) | 64 (13) | 7.0 |
Waste water | 97 (10) | 95 (4) | 46 | |
DBP | Tap water | 97 (7) | 83 (3) | 1.1 |
Waste water | 109 (2) | 105 (1) | 0.82 | |
DIPP | Tap water | 93 (12) | 77 (16) | 11 |
Waste water | 109 (5) | 90 (8) | 44 | |
DNPP | Tap water | 92 (14) | 88 (19) | 1.1 |
Waste water | 110 (5) | 91 (10) | 0.86 | |
BBP | Tap water | 109 (11) | 87 (12) | 46 |
Waste water | 126 (7) | 108 (6) | 37 | |
DEHA | Tap water | 112 (8) | 92 (9) | 71 |
Waste water | 87 (6) | 88 (8) | 1.1 | |
DCHP | Tap water | 97 (10) | 75 (17) | 52 |
Waste water | 123 (10) | 104 (5) | 37 | |
DEHP | Tap water | 105 (17) | 91 (7) | 1.5 |
Waste water | 99 (4) | 97 (10) | 9.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Zamora, C.; González-Sálamo, J.; Varela-Martínez, D.A.; González-Curbelo, M.Á.; Hernández-Borges, J. Extraction of Phthalic Acid Esters and Di(2-ethylhexyl) Adipate from Tap and Waste Water Samples Using Chromabond® HLB as Sorbent Prior to Gas Chromatography-Mass Spectrometry Analysis. Separations 2020, 7, 21. https://doi.org/10.3390/separations7020021
Ortega-Zamora C, González-Sálamo J, Varela-Martínez DA, González-Curbelo MÁ, Hernández-Borges J. Extraction of Phthalic Acid Esters and Di(2-ethylhexyl) Adipate from Tap and Waste Water Samples Using Chromabond® HLB as Sorbent Prior to Gas Chromatography-Mass Spectrometry Analysis. Separations. 2020; 7(2):21. https://doi.org/10.3390/separations7020021
Chicago/Turabian StyleOrtega-Zamora, Cecilia, Javier González-Sálamo, Diana Angélica Varela-Martínez, Miguel Ángel González-Curbelo, and Javier Hernández-Borges. 2020. "Extraction of Phthalic Acid Esters and Di(2-ethylhexyl) Adipate from Tap and Waste Water Samples Using Chromabond® HLB as Sorbent Prior to Gas Chromatography-Mass Spectrometry Analysis" Separations 7, no. 2: 21. https://doi.org/10.3390/separations7020021
APA StyleOrtega-Zamora, C., González-Sálamo, J., Varela-Martínez, D. A., González-Curbelo, M. Á., & Hernández-Borges, J. (2020). Extraction of Phthalic Acid Esters and Di(2-ethylhexyl) Adipate from Tap and Waste Water Samples Using Chromabond® HLB as Sorbent Prior to Gas Chromatography-Mass Spectrometry Analysis. Separations, 7(2), 21. https://doi.org/10.3390/separations7020021