Modern Approaches to Preparation of Body Fluids for Determination of Bioactive Compounds
Abstract
:1. Introduction
2. Modern and Novel Sample Preparation Techniques
2.1. Solid-Phase Extractions
2.1.1. Solid-Phase Microextraction and Derived Techniques
2.1.2. Microextraction in Packed Syringe
2.1.3. Disposable Pipette Extraction
2.1.4. Dispersive Micro-Solid-Phase Extraction and Magnetic Solid-Phase Extraction
2.1.5. Stir Bar Sorption Extraction
2.2. Liquid-Phase Extractions
2.2.1. Single-Drop Microextraction
2.2.2. Dispersive Liquid–Liquid Microextraction
2.2.3. Hollow-Fiber Liquid-Phase Microextraction
3. Applications
3.1. Solid-Phase Extractions
3.2. Liquid-Phase Extractions
4. Summary and Conclusions
Funding
Conflicts of Interest
References
- Niu, Z.; Zhang, W.; Yu, C.; Zhang, J.; Wen, Y. Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. TrAC Trends Anal. Chem. 2018, 102, 123–146. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, L.; Li, J.; Liu, D.; Chen, L. Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. TrAC Trends Anal. Chem. 2014, 59, 26–41. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Taima-Mancera, I.; Pasán, J.; Pino, V. Metal-Organic Frameworks in Green Analytical Chemistry. Separations 2019, 6, 33. [Google Scholar] [CrossRef]
- Kissoudi, M.; Samanidou, V. Recent Advances in Applications of Ionic Liquids in Miniaturized Microextraction Techniques. Molecules 2018, 23, 1437. [Google Scholar] [CrossRef] [PubMed]
- Zilfidou, E.; Kabir, A.; Furton, K.G.; Samanidou, V. Fabric Phase Sorptive Extraction: Current State of the Art and Future Perspectives. Separations 2018, 5, 40. [Google Scholar] [CrossRef]
- Zohdi, Z.; Hashemi, M.; Uheida, A.; Moein, M.M.; Abdel-Rehim, M. Graphene oxide tablets for sample preparation of drugs in biological fluids: Determination of omeprazole in human saliva for liquid chromatography tandem mass spectrometry. Molecules 2019, 24, 1191. [Google Scholar] [CrossRef] [PubMed]
- Mafraa, G.; Spudei, D.; Brognoli, R.; Merib, J.; Carasek, E. Expanding the applicability of cork as extraction phase for disposable pipette extraction in multiresidue analysis of pharmaceuticals in urine samples. J. Chromatogr. B 2018, 1102–1103, 159–166. [Google Scholar] [CrossRef]
- Carmoa, S.N.; Meribb, J.; Carasek, E. Bract as a novel extraction phase in thin-film SPME combined with 96-well plate system for the high-throughput determination of estrogens in human urine by liquid chromatography coupled to fluorescence detection. J. Chromatogr. B 2019, 1118–1119, 17–24. [Google Scholar] [CrossRef]
- Ríos-Gómez, J.; Fresco-Cala, B.; García-Valverde, M.T.; Lucena, R.; Cárdenas, S. Carbon nanohorn suprastructures on a paper support as a sorptive phase. Molecules 2018, 23, 1252. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Lord, H.; Pawliszyn, J. Evolution of solid-phase microextraction technology. J. Chromatogr. A 2000, 885, 153–193. [Google Scholar] [CrossRef]
- Gómez-Ríos, G.A.; Mirabelli, M.F. Solid Phase Microextraction-mass spectrometry: Metanoia. TrAC Trends Anal. Chem. 2019, 112, 201–211. [Google Scholar] [CrossRef]
- Kataoka, H. Automated sample preparation using in-tube solid-phase microextraction and its application—A review. Anal. Bioanal. Chem. 2002, 373, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zou, J.; Cai, P.S.; Xiong, C.M.; Ruan, J.L. Preparation of magnetic ODS-PAN thin films for microextraction of quetiapine and clozapine in plasma and urine samples followed by HPLC-UV detection. J. Pharm. Biomed. Analysis 2016, 125, 319–328. [Google Scholar] [CrossRef]
- Jiang, R.; Pawliszyn, J. Thin-film microextraction offers another geometry for solid phase microextraction. TrAC Trends Anal. Chem. 2012, 39, 245–253. [Google Scholar] [CrossRef]
- Abdel-Rehim, M. New trend in sample preparation: On-line microextraction in packed syringe for liquid and gas chromatography applications I. Determination of local anaesthetics in human plasma samples using gas chromatography–mass spectrometry. J. Chromatogr. B 2004, 801, 317–321. [Google Scholar] [CrossRef]
- Brewer, W.E. Disposable Pipette Extraction. U.S. Patent 6,566,145 B2, 20 May 2003. [Google Scholar]
- Laxman Kole, P.; Venkatesh, G.; Kotecha Ravi Sheshala, J. Recent advances in sample preparation techniques for effective bioanalytical methods. Biomed. Chromatogr. 2011, 25, 199–217. [Google Scholar] [CrossRef]
- Seidi, S.; Tajik, M.; Baharfar, M.; Rezazadeh, M. Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: Miniaturized concepts for chromatographic analysis. TrAC Trends Anal. Chem. 2019, 118, 810–827. [Google Scholar] [CrossRef]
- Cristiane Mozaner Bordin, D.; Nogueira Rabelo Alves, M.; Geraldo de Campos, E.; Spinosa De Martinis, B. Disposable pipette tips extraction: Fundamentals, applications and state of the art. J. Sep. Sci. 2016, 39, 1168–1172. [Google Scholar] [CrossRef]
- Khezeli, T.; Daneshfar, A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. TRAC Trends Anal. Chem. 2017, 89, 99–118. [Google Scholar] [CrossRef]
- Chisvert, A.; Cárdenes, S.; Lucena, R. Dispersive micro-solid phase extraction. TrAC Trends Anal. Chem. 2019, 112, 226–233. [Google Scholar] [CrossRef]
- Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep. 1999, 11, 737–747. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Djozan, D.; Nouri, N.; Bamorowat, M.; Shalamzari, M.S. Coupling stir bar sorptive extraction-dispersive liquid–liquid microextraction for preconcentration of triazole pesticides from aqueous samples followed by GC-FID and GC-MS determinations. J. Sep. Sci. 2010, 33, 1816–1828. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, S.; Lucena, R. Recent Advances in Extraction and Stirring Integrated Techniques. Separations 2017, 4, 6. [Google Scholar] [CrossRef]
- Liu, H.H.; Dasgupta, P.K. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal. Chem. 1996, 68, 1817–1821. [Google Scholar] [CrossRef] [PubMed]
- Jeannot, M.A.; Cantwell, F.F. Solvent microextraction into a single drop. Anal. Chem. 1996, 68, 2236–2240. [Google Scholar] [CrossRef]
- Wen, Y.; Li, J.; Ma, J.; Chen, L. Recent advances in enrichment techniques for trace analysis in capillary electrophoresis. Electrophoresis 2012, 33, 2933–2952. [Google Scholar] [CrossRef]
- Tang, S.; Qi, T.; Ansah, P.D.; Fouemina, J.C.N.; Shen, W.; Basheer, C.; Lee, H.K. Single-drop microextraction. TrAC Trends Anal. Chem. 2018, 108, 306–313. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Milani, H.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef]
- Zuo, M.; Cheng, J.; Matsadiq, G.; Liu, L.; Li, M.-L.; Zhang, M. Application of dispersive liquid–liquid microextraction based on solidification of floating organic droplet multi-residue method for the simultaneous determination of polychlorinated biphenyls, organochlorine, and pyrethroid pesticides in aqueous sample. CLEAN—Soil Air Water 2012, 40, 1326–1333. [Google Scholar] [CrossRef]
- Pedersen-Bjergaard, S.; Rasmussen, K.E. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal. Chem. 1999, 71, 2650–2656. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Lee, H.K. Hollow fiber-protected liquid-phase microextraction of triazine herbicides. Anal. Chem. 2002, 74, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Pedersen-Bjergaard, S.; Rasmussen, K.E. Electrokinetic migration across artificial liquid membranes—New concept for rapid sample preparation of biological fluids. J. Chromatogr. A 2006, 1109, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Pedersen-Bjergaard, S.; Huang, C.; Gjelstad, A. Electromembrane extraction–Recent trends and where to go. J. Pharm. Anal. 2017, 7, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, H.; Mehdinia, A.; Kamarei, F.; Moradi, E. A Sensitive Method for the Determination of Methadone in Biological Samples Using Nano-Structured α-Carboxy Polypyrrol as a Sorbent of SPME. Chromatographia 2012, 75, 149–155. [Google Scholar] [CrossRef]
- Goryński, K.; Kiedrowicz, A.; Bojko, B. Development of SPME-LC-MS method for screening of eight beta-blockers and bronchodilators in plasma and urine samples. J. Pharmac. Biomed. Anal. 2016, 127, 147–155. [Google Scholar] [CrossRef]
- Szultka, M.; Krzemiński, R.; Jackowski, M.; Buszewski, B. Simultaneous determination of selected chemotherapeutics in human whole blood by molecularly imprinted polymers coated solid phase microextraction fibers and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2013, 940, 66–76. [Google Scholar] [CrossRef]
- Kataoka, H.; Ehara, K.; Yasuhara, R.; Saito, K. Simultaneous determination of testosterone, cortisol, and dehydroepiandrosterone in saliva by stable isotope dilution on-line in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 331–340. [Google Scholar] [CrossRef]
- Said, R.; Pohanka, A.; Abdel-Rehim, M.; Beck, O. Determination of four immunosuppressive drugs in whole blood using MEPS and LC-MS/MS allowing automated sample work-up and analysis. J. Chromatogr. B 2012, 897, 42–49. [Google Scholar] [CrossRef]
- Jagerdeo, E.; Abdel-Rehim, M. Screening of cocaine and its metabolites in human urine samples by direct analysis in real-time source coupled to time-of-flight mass spectrometry after online preconcentration utilizing microextraction by packed sorbent. J. Am. Soc. Mass Spectrom. 2009, 20, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Szultka, M.; Krzemiński, R.; Szeliga, J.; Jackowski, M.; Buszewski, B. A new approach for antibiotic drugs determination in human plasma by liquid chromatography-mass spectrometry. J. Chromatogr. A 2013, 1272, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Rezaei Kahkha, M.R.; Oveisi, A.R.; Kaykhaii, M.; Rezaei Kahkha, B. Determination of carbamazepine in urine and water samples using amino-functionalized metal-organic framework as sorbent. Chem. Cent. J. 2018, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rehim, M.; Persson, C.; Zeki, A.; Blomberg, L. Evaluation of monolithic packed 96-tips and liquid chromatography-tandem mass spectrometry for extraction and quantification of pindolol and metoprolol in human plasma samples. J. Chromatogr. A 2008, 1196–1197, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Skoglund, C.; Bassyouni, F.; Abdel-Rehim, M. Monolithic packed 96-tips set for high-throughput sample preparation: Determination of cyclophosphamide and busulfan in whole blood samples by monolithic packed 96-tips and LC-MS. Biomed. Chromatogr. 2013, 27, 714–719. [Google Scholar] [CrossRef]
- Ettore, F.J.; Eloisa, D.C. Simultaneous determination of drugs and pesticides in postmortem blood using dispersive solid-phase extraction and large volume injection-programmed temperature vaporization-gas chromatography-mass spectrometry. Forensic Sci. Inter. 2018, 290, 318–326. [Google Scholar] [CrossRef]
- Asgharinezhad, A.A.; Karami, S.; Ebrahimzadeh, H.; Shekari, N.; Jalilian, N. Polypyrrole/magnetic nanoparticles composite as an efficient sorbent for dispersive micro-solid-phase extraction of antidepressant drugs from biological fluids. Int. J. Pharm. 2015, 494, 102–112. [Google Scholar] [CrossRef]
- Xiao, D.; Wang, C.; Dai, H.; Peng, J.; He, J.; Zhang, K.; Kong, S.; Qiu, P.; He, H. Applications of magnetic surface imprinted materials for solid phase extraction of levofloxacin in serum samples. J. Mol. Recognit. 2015, 28, 277–284. [Google Scholar] [CrossRef]
- Marques, L.A.; Nakahara, T.T.; Madeira, T.B.; Almeida, M.B.; Monteiro, A.M.; de Almeida Silva, M.; Carrilho, E. Optimization and validation of an SBSE–HPLC–FD method using laboratory-made stir bars for fluoxetine determination in human plasma. Biomed. Chromatogr. 2018, 33, e4398. [Google Scholar] [CrossRef]
- Babarahimi, V.; Talebpour, Z.; Haghighi, F.; Adib, N.; Vahidi, H. Validated determination of losartan and valsartan in human plasma by stir bar sorptive extraction based on acrylate monolithic polymer, liquid chromatographic analysis and experimental design methodology. J. Pharmac. Biomed. Anal. 2018, 153, 204–213. [Google Scholar] [CrossRef]
- Taghvimia, A.; Hamishehkarb, H. Developed nanocarbon-based coating for simultaneous extraction of potent central nervous system stimulants from urine media by stir bar sorptive extraction method coupled to high performance liquid chromatography. J. Chromatogr. B 2019, 1125, 121721. [Google Scholar] [CrossRef]
- Jahan, S.; Xie, H.; Zhong, R.; Yan, J.; Xiao, H.; Fan, L.; Cao, C. A highly efficient three-phase single drop microextraction technique for sample preconcentration. Analyst 2015, 140, 3193–3200. [Google Scholar] [CrossRef] [PubMed]
- Stege, P.W.; Lapierre, A.V.; Martinez, L.D.; Messina, G.A.; Sombra, L.L. A combination of single-drop microextraction and open tubular capillary electrochromatography with carbon nanotubes as stationary phase for the determination of low concentration of illicit drugs in horse urine. Talanta 2011, 86, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Chen, G.; Chen, Y.; Li, N.; Chen, T.; Hu, Z. Selective extraction of alkaloids in human urine by on-line single drop microextraction coupled with sweeping micellar electrokinetic chromatography. J. Chromatogr. A 2011, 1218, 5712–5717. [Google Scholar] [CrossRef]
- Tian, J.; Chen, X.; Bai, X. Comparison of dispersive liquid-liquid microextraction based on organic solvent and ionic liquid combined with high-performance liquid chromatography for the analysis of emodin and its metabolites in urine samples. J. Sep. Sci. 2012, 35, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárel, M. One-step in syringe ionic liquid-based dispersive liquid-liquid microextraction. J. Chromatogr. A 2009, 1216, 6459–6465. [Google Scholar] [CrossRef]
- Jouyban, A.; Sorouraddin, M.H.; Farajzadeh, M.A.; Somi, M.H.; Fazeli-Bakhtiyari, R. Determination of five antiarrhythmic drugs in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography. Talanta 2015, 134, 681–689. [Google Scholar] [CrossRef]
- Panahi, H.A.; Ejlali, M.; Chabouk, M. Two-phase and three-phase liquid-liquid microextraction of hydrochlorothiazide and triamterene in urine samples. Biomed. Chromatogr. 2015, 30, 1022–1028. [Google Scholar] [CrossRef]
- Valle de Bairros, A.; Lanaro, R.; Menck de Almeida, R.; Yonamine, M. Determination of ketamine, norketamine and dehydronorketamine in urine by hollow-fiber liquid-phase microextraction using an essential oil as supported liquid membrane. Forensic Sci. Inter. 2014, 243, 47–54. [Google Scholar] [CrossRef]
- Khataei, M.M.; Yamini, Y.; Nazaripour, A.; Karimi, M. Novel generation of deep eutectic solvent as an acceptor phase in three-phase hollow fiber liquid phase microextraction for extraction and preconcentration of steroidal hormones from biological fluids. Talanta 2018, 178, 473–480. [Google Scholar] [CrossRef]
Name of Analytes | Material | Extraction Efficiency (%) | Analytical Method | Precision (RSD %) | LOD/LOQ | Reference |
---|---|---|---|---|---|---|
Solid-Phase Microextraction (SPME) and Derived Techniques | ||||||
Methadone | Plasma | 95–97 | GC–FID | 5 | 0.035/0.10 µg/L | [35] |
Urine | 5.3 | 0.035/0.10 µg/L | ||||
Beta-blockers (acebutolol, atenolol, fenoterol, nadolol, pindolol, procaterol, sotalol, timolol) | Plasma | 98–115 | LC–MS/MS | 1.0–17.4 | 0.018–0.29/0.09–1.15 ng/mL | [36] |
Urine | 85–119 | 0.8–20.7 | 0.018–0.31/0.06–1.04 ng/mL | |||
Chemotherapeutics (amoxicillin, cefatoxime, ciprofloxacin, daptomycin, fluconazole, gentamicin, clindamycin, linezolid, metronidazole, moxifloxacin) | Whole blood | 65–83 | LC–MS/MS | 0.11–3.19 | 0.126–0.198/0.392–0.652 ng/mL | [37] |
Testosterone | Saliva | 99.5–101.9 | LC–MS/MS | 4.9–9.5 | - a/0.01 ng/mL | [38] |
cortisol | 102.4–105.5 | - a/0.03 ng/mL | ||||
dehydroepiandrosterone | 94.0–99.9 | - a/0.28 ng/mL | ||||
Estron | Urine | 75–103 | HPLC–FLD b | 3–19 | 3.03/10 µg/L | [39] |
17 β-estradiol | 87–101 | 1–9 | 0.03/0.1 µg/L | |||
17 µ-ethinylestradiol | 71–92 | 2–186 | 0.15/0.5 µg/L | |||
Estrol | 80–91 | 2–9 | 0.1/1 µg/L | |||
Microextraction in Packed Syringe (MEPS) | ||||||
Immunosuppressive drugs (cyclosporine, everolimus, sirolimus, tacrolimus) | Whole blood | 102–103 | LC–MS/MS | 4.2–5.1 | 0.9/3.0 ng/mL | [40] |
103–109 | 3.5–13.7 | 0.15/0.5 ng/mL | ||||
102–108 | 3.6–8.9 | 0.15/0.5 ng/mL | ||||
103–106 | 2.0–9.1 | 0.15/0.5 ng/mL | ||||
Ecgonine methyl ester, Benzoylecgonine, Cocaine, Cocaethylene | Urine | 113–116 | TOF–MS/DART c | - a | 22.9/75.0 ng/mL | [41] |
93–104 | 23.7/65.0 ng/mL | |||||
100–109 | 4.0/95.0 ng/mL | |||||
100–105 | 9.8/75.0 ng/mL | |||||
Linezolid | Plasma | 99.1–108.3 | LC–MS/MS | 1.66–6.83 | 0.1407/0.3814 ng/mL | [42] |
Amoxicillin | 96.2–10.9 | 0.24–3.26 | 0.1341–0.4249 ng/mL | |||
Disposable Pipette Extraction (DPX, Other Acronyms: TIPS, PT-SPE) | ||||||
Carbamazepine | Urine | 98.2–99.4 | HPLC–UV | 2.5 | 0.04/- a µg/L | [43] |
Metoprolol | Plasma | 101–103 | LC–MS/MS | 8–15 | - a/5 nM | [44] |
Pindolol | 94–114 | 9–11 | - a/5 nM | |||
Busulfan | Whole blood | 99–113 | LC–MS/MS | 13–16 | - a/5 nM | [45] |
Cyclophosamid | 103–110 | 7–12 | - a/10 nM | |||
Dispersive Micro-Solid Phase Extraction (D-µ-SPE) and Magnetic Dispersive Extraction (MSPE) | ||||||
7-Aminoflunitrazepam | Whole blood (post-mortem) | 72.7–106.8 | GC–MS | 5.1–17.0 | - a/0.2 ng/L | [46] |
Amitriptyline | 108.1–139.7 | (PTV–LVI d–GC–MS) | 1.92–15.7 | - a/0.2 ng/L | ||
Carbamazepine | 74.6–111.3 | 3.4–5.7 | - a/0.2 ng/L | |||
Carbaryl | 100.6–118.4 | 4.2–15.7 | - a/0.3 ng/L | |||
Carbofuran | 93.3–143.5 | 5.4–9.0 | - a/0.2 ng/L | |||
Cocaine | 103.2–116.3 | 0.94–4.45 | - a/0.2 ng/L | |||
Diazepam | 85.1–91.0 | 2.4–3.7 | - a/0.2 ng/L | |||
Haloperidol | 68.4–115.8 | 6.1–9.1 | - a/0.3 ng/L | |||
MDMA | 86.7–104.6 | 5.3–7.2 | - a/0.3 ng/L | |||
Methiocarb | 99.2–116.4 | 4.0–12.35 | - a/0.3 ng/L | |||
Pirimicarb | 107.3–119.8 | 2.6–17.1 | - a/0.3 ng/L | |||
Terbufos | 87.5–108.1 | 8.4–11.6 | - a/0.2 ng/L | |||
Citalopram | Plasma urine | 93.4–99 | HPLC–UV | 4.8–8.4 | 0.2–1.0 µg/L | [47] |
Sertraline | 94–98.4 | 4.3–9.2 | 0.3–0.7 µg/L | |||
Levofloxacin | Serum | 78.7–83.4 | HPLC–UV | 4.1–4.8 | - a | [48] |
Stir Bar Sorptive Extraction (SBSE) | ||||||
Fluoxetine | Plasma | 101.1–115.9 | HPLC–FLD b | 4.1–14.8 | 9.8/32.7 ng/mL | [49] |
Losartan | Plasma | 98–107 | HPLC–UV | 3–5 | 7 ng/mL/- a | [50] |
Valsartan | 98–117 | 3–8 | 27 ng/mL/- a | |||
Amphetamine | Urine | 99.3–99.6 | HPLC–UV | 4.7–6.5 | 11/39.7 ng/mL | [51] |
Methamphetamine | 99.5–99.8 | 4.3–5.9 | 10/35.2 ng/ mL |
Name of Analytes | Material | Extraction Efficiency (%) | Analytical Method | Precision (RSD %) | LOD/LOQ | Reference |
---|---|---|---|---|---|---|
Single-Drop Microextraction (SDME) | ||||||
Atorovastatin | Serum | 87.6–105.6 | LC–MS | 4.2–6.9 | 0.02 ng/L/- a | [52] |
Fluvastatin | 88.3–92.8 | 3.4–5.9 | 2.12 ng/L/- a | |||
Lovastatin | 84.5–104.2 | 4.2–6.9 | 0.03 ng/L/- a | |||
Mevostatin | 87.4–96.3 | 4.6–6.4 | 2.0 ng/L/- a | |||
Simvastatin | 82.2–97.8 | 4.8–6.7 | 0.03 ng/L/- a | |||
Caffeine | Horse urine | 83.5 ± 1.22 | OT–CEC b | - a | 9.07/10.73 ng/mL | [53] |
Cocaine | 103.1 ± 2.14 | 8.27/9.783 ng/mL | ||||
Ephedrine | 80.3 ± 1.25 | 7.71/9.123 ng/mL | ||||
Morphine | 108.3 ± 2.03 | 5.12/5.983 ng/mL | ||||
Piroxicam | 94.8 ± 1.46 | 17.6/19.03 ng/mL | ||||
Strychnine | 98.8 ± 1.54 | 0.94/1.193 ng/mL | ||||
Theophylline | 87.5 ± 1.3 | 1.32/2.023 ng/mL | ||||
Berberine | Urine | 105.5–107.7 | MEKC c–UV | 4.6–8.8 | 0.2/1.5 ng/mL | [54] |
Palmatine | 88.5–95.0 | 7.3–12.4 | 0.5/0.7 ng/mL | |||
Tetrahydropalmatine | 93.1–115.5 | 6.4–9.0 | 1.5/4.8 ng/mL | |||
Dispersive Liquid–Liquid Microextraction (DLLME) | ||||||
Aloe-emodin | Urine | 87.1–105.0 | HPLC–UV | 7.2–8.7 | 0.07 ng/mL/- a | [55] |
Chryophoanol | (OS-DLLME d) | 0.4 ng/mL/- a | ||||
Danthon | 0.08 ng/mL/- a | |||||
Emodin | 0.08 ng/mL/- a | |||||
Physicon | 0.1 ng/mL/- a | |||||
Rhenib | 94.8–103.0 | 0.3 ng/mL/- a | ||||
(IL-DLLME e) | 5.7–6.4 | 0.01 ng/mL/- a | ||||
0.08 ng/mL/- a | ||||||
0.12 ng/mL/- a | ||||||
1.0 ng/mL/- a | ||||||
0.5 ng/mL/- a | ||||||
0.5 ng/mL/- a | ||||||
Flurbiprofen | Urine | 84.4 ± 1.5 | HPLC–UV | 8.1 | 16.3 ng/mL/- a | [56] |
Indomethacin | 84.61 ± 1.4 | 8.6 | 8.3 ng/mL/- a | |||
Ketoprofen | 73.7 ± 1.4 | 2.5 | 32.0 ng/mL/- a | |||
Naproxen | 76.6 ± 1.3 | 3.6 | 9.2 ng/mL/- a | |||
Carvedilol | Plasma | 93–99 | HPLC–UV | 3.1–10.0 | 6/19 ng/mL | [57] |
Diltiazem | 93–100 | 4.9–13.4 | 3/9 ng/mL | |||
Metoprolol | 94–104 | 5.1–11.1 | 2/7 ng/mL | |||
Propranolol | 94–104 | 7.6–10.4 | 5/18 ng/mL | |||
Verapamil | 90–100 | 2.0–5.4 | 3/10 ng/mL | |||
Hollow-Fiber Liquid-Phase Microextraction (HF-LPME) and Electromembrane Extraction | ||||||
Hydrochlorothiazide | Urine | 91.5–92.5 | HPLC–UV | 4.4–7.9 | - a/0.5 µg/L | [58] |
Triamterene | 89.5–89.0 | 5.8–9.3 | - a/0.5 µg/L | |||
Ketamine | Urine | 85.2–101.0 | GC–MS | 2.9–10.1 | 0.25/0.50 ng/mL | [59] |
Norketamine | 86.9–94.3 | 3.6–9.2 | 0.10/0.50 ng/mL | |||
Dehydronorketamine | 64.6–69.7 | 9.3–16.9 | 0.10/0.50 ng/mL | |||
Cyproterone acetate Dydrogesterone | Urine | 47.1 | HPLC–UV | 5.8 | 1.0/ µg/L | [60] |
46.3 | 6 | 0.5/ µg/L | ||||
Plasma | 20.6 | 6.1 | 2.0/ µg/L | |||
21.4 | 6.3 | 1.2/ µg/L |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madej, K.; Piekoszewski, W. Modern Approaches to Preparation of Body Fluids for Determination of Bioactive Compounds. Separations 2019, 6, 53. https://doi.org/10.3390/separations6040053
Madej K, Piekoszewski W. Modern Approaches to Preparation of Body Fluids for Determination of Bioactive Compounds. Separations. 2019; 6(4):53. https://doi.org/10.3390/separations6040053
Chicago/Turabian StyleMadej, Katarzyna, and Wojciech Piekoszewski. 2019. "Modern Approaches to Preparation of Body Fluids for Determination of Bioactive Compounds" Separations 6, no. 4: 53. https://doi.org/10.3390/separations6040053
APA StyleMadej, K., & Piekoszewski, W. (2019). Modern Approaches to Preparation of Body Fluids for Determination of Bioactive Compounds. Separations, 6(4), 53. https://doi.org/10.3390/separations6040053