Evaluating the Adsorbed Water Layer on Polar Stationary Phases for Hydrophilic Interaction Chromatography (HILIC)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Volume Ratio
3.2. Factors Afffecting the Volume Ratio
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ikegami, T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J. Sep. Sci. 2019, 42, 130–213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, F.Q.; Ge, L.; Hu, Y.J.; Xia, Z.N. Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis. J. Sep. Sci. 2017, 40, 49–80. [Google Scholar] [CrossRef] [PubMed]
- Kohler, I.; Giera, M. Recent advances in liquid-phase separations for clinical metabolomics. J. Sep. Sci. 2017, 40, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Periat, A.; Krull, I.S.; Guillarme, D. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins. J. Sep. Sci. 2015, 38, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Isokawa, M.; Kanamori, T.; Funatus, T.; Tsunoda, T. Recent advances in hydrophilic interaction chromatography for quantitative analysis of endogenous and pharmamceutical compounds in plasma samples. Bioanalysis 2014, 6, 2421–2439. [Google Scholar] [CrossRef] [PubMed]
- Novakova, L.; Havlikova, L.; Vlckova, H. Hydrophilic interaction chromatography for polar and ionizable compounds by UHPLC. TrAC Trends Anal. Chem. 2014, 63, 55–64. [Google Scholar] [CrossRef]
- Panderi, I.; Taxiarchi, E.; Pistos, C.; Kalogria, E.; Vonaparti, A. Insights into the mechanism of separation of biophsphonates by zwitterionic hydrophilic interaction liquid chromatography: Application to the quantitation of risedronate in pharmaceuticals. Separations 2019, 6, 6. [Google Scholar] [CrossRef]
- Guo, Y. Recent progress in the fundamental understanding of hydrophilic interaction chromatography. Analyst 2015, 140, 6452–6466. [Google Scholar] [CrossRef]
- Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A 1990, 499, 177–196. [Google Scholar] [CrossRef]
- Guo, Y.; Shah, R. Detailed insights into the retention mechanism of caffeine metabolites on the amide stationary phase in hydrophilic interaction chromatography. J. Chromatogr. A 2016, 1463, 121–127. [Google Scholar] [CrossRef] [PubMed]
- McCalley, D.V. Understanding and manipulating the separation in hydrophilic interaction chromatography. J. Chromatogr. A 2017, 1523, 49–71. [Google Scholar] [CrossRef]
- McCalley, D.V. Study of the selectivity, retention mechanisms and performance of alternative silica-based stationary phases for separation of ionized solutes in hydrophilic interaction chromatography. J. Chromatogr. A 2010, 1273, 3408–3417. [Google Scholar] [CrossRef]
- Guo, Y.; Gaiki, S. Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. J. Chromatogr. A 2005, 1074, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Alpert, A.J. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal. Chem. 2008, 80, 62–76. [Google Scholar] [CrossRef]
- Wikberg, E.; Sparrman, T.; Viklund, C.; Jonsson, T.; Irgum, K. A 2H nuclear magnetic resonance study of the state of water in neat silica and zwitterionic stationary phases and its influence on the chromatographic retention characteristics in hydrophilic interaction high-performance liquid chromatography. J. Chromatogr. A 2011, 1218, 6630–6638. [Google Scholar] [CrossRef] [PubMed]
- Soukup, J.; Jandera, P. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography. J. Chromatogr. A 2014, 1374, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Dinh, N.P.; Jonsson, T.; Irgum, K. Water uptake on polar stationary phases under conditions for hydrophilic interaction chromatography and its relation to solute retention. J. Chromatogr. A 2013, 1320, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Melnikov, S.M.; Holtzel, A.; Seidel-Morgenstern, A.; Tallarek, U. Adsorption of water-acetontrile mixtures to model silica surface. J. Phys. Chem. C 2013, 117, 6620–6631. [Google Scholar] [CrossRef]
- McCalley, D.V.; Neue, U.D. Estimation of the extent of the water-rich layer associated with the silica surface in hydrophilic interaction chromatography. J. Chromatogr. A. 2008, 1192, 225–229. [Google Scholar] [CrossRef]
- Greco, G.; Grosse, S.; Letzel, T. Study of the retention behavior in zwitterionic hydrophilic interaction chromatography of isomeric hydroxyl- and aminobenzoic acids. J. Chromatogr. A 2012, 1235, 60–67. [Google Scholar] [CrossRef]
- Alpert, A. Effect of salts on retention in hydrophilic interaction chromatography. J. Chromatogr. A 2018, 1538, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, R.C. Temperature and pressure dependence of hydrogen bond strength: A perturbation molecular orbital approach. AIP J. Chem. Phys. 1998, 109, 7372–7378. [Google Scholar] [CrossRef]
Column Name | Stationary Phase Type | Manufacturer | Column Information | ||
---|---|---|---|---|---|
Particle Size (µm) | Pore Size (Å) | Dimension (mm) | |||
ACE HILIC-A | Acidic | Advanced Chromatography Technology | 3 | 100 | 4.6 × 150 |
ACE HILIC-B | Basic | 3 | 100 | 4.6 × 150 | |
ACE HILIC-N | Neutral | 3 | 100 | 4.6 × 150 | |
Cortecs HILIC | Silica | Waters | 2.7 | 83 | 3.0 × 150 |
Atlantis HILIC | Silica | 3 | 98 | 4.6 × 150 | |
5 | 96 | 4.6 × 250 | |||
XBridge Amide | Amide | 3.5 | 142 | 2.1 × 150 | |
Accucore Amide | Amide | Thermo Scientific | 2.6 | 150 | 2.1 × 150 |
Accucore Urea | Urea | 2.6 | 80 | 2.1 × 150 | |
TSkgel-Amide 80 | Amide | Tosoh Bioscience | 3 | 100 | 4.6 × 150 |
3 | 100 | 4.6 × 100 | |||
SiliChrom HILIC | Urea | SiliCycle | 5 | 100 | 4.6 × 250 |
Cosmosil HILIC | Triazole | Nacalai Tesque | 5 | 120 | 4.6 × 250 |
LUNA HILIC | Cross-linked diol | Phenomenex | 5.8 | 204 | 4.6 × 250 |
2.9 | 187 | 4.6 × 150 | |||
YMC-Pack NH2 | Amino | YMC | 5 | 120 | 4.6 × 250 |
YMC Diol-NP | Diol | 5 | 120 | 4.6 × 250 | |
YMC PVA-Sil | Polyvinyl alcohol | 5 | 120 | 4.6 × 250 | |
Epic HILIC-HC | Polyhydroxyl | ES Industry | 5 | 120 | 4.6 × 250 |
Hydroxyethyl A | 2-Hydroxyethyl aspartamide | PolyLC | 5 | 100 | 4.6 × 200 |
ZIC-HILIC | Zwitterionic | EMD Millipore | 5 | 200 | 4.6 × 150 |
3.5 | 200 | 4.6 × 150 | |||
3.5 | 100 | 4.6 × 150 | |||
ZIC-cHILIC | Zwitterionic | 3 | 100 | 4.6 × 150 | |
iHILIC-Fusion | Zwitterionic | HILICON | 3.5 | 100 | 3.0 × 150 |
iHILIC-Fusion (+) | Zwitterionic | 3.5 | 100 | 3.0 × 150 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Bhalodia, N.; Fattal, B.; Serris, I. Evaluating the Adsorbed Water Layer on Polar Stationary Phases for Hydrophilic Interaction Chromatography (HILIC). Separations 2019, 6, 19. https://doi.org/10.3390/separations6020019
Guo Y, Bhalodia N, Fattal B, Serris I. Evaluating the Adsorbed Water Layer on Polar Stationary Phases for Hydrophilic Interaction Chromatography (HILIC). Separations. 2019; 6(2):19. https://doi.org/10.3390/separations6020019
Chicago/Turabian StyleGuo, Yong, Nidhi Bhalodia, Bassel Fattal, and Ioannis Serris. 2019. "Evaluating the Adsorbed Water Layer on Polar Stationary Phases for Hydrophilic Interaction Chromatography (HILIC)" Separations 6, no. 2: 19. https://doi.org/10.3390/separations6020019
APA StyleGuo, Y., Bhalodia, N., Fattal, B., & Serris, I. (2019). Evaluating the Adsorbed Water Layer on Polar Stationary Phases for Hydrophilic Interaction Chromatography (HILIC). Separations, 6(2), 19. https://doi.org/10.3390/separations6020019