Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Preparation of the Long-Pressed Locular Tubing and the Bead Embedded Locular Tubing
2.3. Preparation of Coiled Column Assembly
2.4. Reagents
2.5. Preparation of Two-Phase Solvent Systems and Sample Solutions
2.6. CCC Separation
2.7. Analysis of CCC Fractions
2.8. Evaluation of Theoretical Plate Number and Peak Resolution
3. Results
3.1. Proteins
3.2. Sugar Derivatives
4. Discussion
5. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ito, Y. Principles and Instrumentation of Countercurrent Chromatography. In Countercurrent Chromatography: Theory and Practice; Mandava, N.B., Ito, Y., Eds.; Marcel Dekker: New York, NY, USA, 1988; pp. 79–442. [Google Scholar]
- Conway, W.D. The evolution of Countercurrent Chromatography. In Countercurrent Chromatography: Apparatus, Theory & Applications; VCH: Weinheim, Germany, 1990; pp. 37–115. [Google Scholar]
- Ito, Y. Principle, Application, and Methodology of High-Speed Countercurrent Chromatography. In High-Speed Countercurrent Chromatography; Ito, Y., Conway, W.D., Eds.; Wiley-Interscience: New York, NY, USA, 1996; pp. 3–44. [Google Scholar]
- Ito, Y.; Menet, J.-M. Coil Planet Centrifuge for High-Speed Countercurrent Chromatography. In Countercurrent Chromatography; Menet, J.-M., Thiebaut, D., Eds.; Marcel Dekker: New York, NY, USA, 1999; pp. 87–119. [Google Scholar]
- Ito, Y. Cross-axis synchronous flow-through coil planet centrifuge free of rotary seals for preparative countercurrent chromatography. Part I. Apparatus and analysis of acceleration. Sep. Sci. Technol. 1987, 22, 1971–1988. [Google Scholar] [CrossRef]
- Ito, Y. Cross-axis synchronous flow-through coil planet centrifuge free of rotary seals for preparative countercurrent chromatography. Part II. Studies on phase distribution and partition efficiency in coaxial coils. Sep. Sci. Technol. 1987, 22, 1989–2009. [Google Scholar] [CrossRef]
- Shinomiya, K.; Muto, M.; Kabasawa, Y.; Fales, H.M.; Ito, Y. Protein separation by improved cross-axis coil planet centrifuge with eccentric coil assemblies. J. Liq. Chromatogr. Relat. Technol. 1996, 19, 415–425. [Google Scholar] [CrossRef]
- Shinomiya, K.; Yanagidaira, K.; Ito, Y. New small-scale cross-axis coil planet centrifuge: The design of the apparatus and its application to counter-current chromatographic separation of proteins with aqueous-aqueous polymer phase systems. J. Chromatogr. A 2006, 1104, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Shinomiya, K.; Kobayashi, H.; Inokuchi, N.; Kobayashi, K.; Oshima, H.; Kitanaka, S.; Yanagidaira, K.; Sasaki, H.; Muto, M.; Okano, M.; et al. New small-scale cross-axis coil planet centrifuge: Partition efficiency and application to purification of bullfrog ribonuclease. J. Chromatogr. A 2007, 1151, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Shinomiya, K.; Menet, J.-M.; Fales, H.M.; Ito, Y. Studies on a new cross-axis coil planet centrifuge for performing counter-current chromatography. I. Design of the apparatus, retention of the stationary phase, and efficiency in the separation of proteins with polymer phase systems. J. Chromatogr. A 1993, 644, 215–229. [Google Scholar] [CrossRef]
- Shinomiya, K.; Kabasawa, Y.; Ito, Y. Protein Separation by Cross-Axis Coil Planet Centrifuge with Two Different Types of Coiled Columns. J. Liq. Chromatogr. Relat. Technol. 1998, 21, 111–120. [Google Scholar] [CrossRef]
- Shinomiya, K.; Kabasawa, Y.; Ito, Y. Effect of Elution Modes on Protein Separation by Cross-Axis Coil Planet Centrifuge with Two Different Types of Coiled Columns. Prep. Biochem. Biotechnol. 1999, 29, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Shinomiya, K.; Kabasawa, Y.; Ito, Y. Protein Separation by Cross-Axis Coil Planet Centrifuge with Spiral Column Assemblies. J. Liq. Chromatogr. Relat. Technol. 2002, 25, 2665–2678. [Google Scholar] [CrossRef]
- Shinomiya, K.; Ito, Y. Partition efficiency of newly designed locular multilayer coil for countercurrent chromatographic separation of proteins using small-scale cross-axis coil planet centrifuge with aqueous-aqueous polymer phase systems. J. Liq. Chromatogr. Relat. Technol. 2009, 32, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y. Spiral column configuration for protein separation by high-speed countercurrent chromatography. Chem. Eng. Process. 2010, 49, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Englert, M.; Vetter, W. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency. Anal. Chim. Acta 2015, 884, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Englert, M.; Vetter, W. Tubing modifications for countercurrent chromatography: Investigation of geometrical parameters. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 445–452. [Google Scholar] [CrossRef]
- Shinomiya, K.; Sato, K.; Yoshida, K.; Tokura, K.; Maruyama, H.; Yanagidaira, K.; Ito, Y. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems. J. Chromatogr. A 2013, 1322, 74–80. [Google Scholar] [CrossRef] [PubMed]
Flow rate (mL/min) | Elution volume (mL) | Peak resolution (Rs) | Theoretical plate number (N) | Stationary phase retention (%) | |||
---|---|---|---|---|---|---|---|
Lower mobile phase | |||||||
Cyt C | Myo | Lys | Cyt C/Myo | Myo/Lys | |||
0.8 | 70 | 83 | 110 | 1.3 | 1.2 | 599 | 28.9 |
0.6 | 60 | 76 | 111 | 1.8 | 1.5 | 472 | 36.0 |
0.4 | 55 | 72 | 113 | 2.2 | 2.0 | 568 | 39.6 |
Upper mobile phase | |||||||
Lys | Myo | Lys/Myo | |||||
0.8 | 96 | 119 | 0.8 | 387 | 9.3 | ||
0.6 | 94 | 126 | 1.2 | 497 | 17.3 | ||
0.4 | 89 | 128 | 1.8 | 685 | 27.1 |
Flow rate (mL/min) | Elution volume (mL) | Peak resolution (Rs) | Theoretical plate number (N) | Stationary phase retention (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Lower mobile phase | |||||||||||
Cel | Glc | Man | β-d-Fuc | α-l-Fuc | Cel/Glc | Glc/Man | Man/β-d-Fuc | β-d-Fuc/α-l-Fuc | |||
1.0 | 64 | 93 | 118 | 144 | 180 | 3.2 | 1.9 | 1.5 | 1.6 | 1103 | 42.5 |
1.2 | 68 | 98 | 122 | 149 | 185 | 4.0 | 1.8 | 1.3 | 1.4 | 1525 | 40.8 |
1.4 | 70 | 98 | 122 | 146 | 183 | 3.1 | 1.8 | 1.4 | 1.5 | 1111 | 39.7 |
Upper mobile phase | |||||||||||
α-l-Fuc | Gal | Cel | α-l-Fuc/Gal | Gal/Cel | |||||||
1.0 | 75 | 96 | 134 | 2.6 | 2.8 | 1462 | 34.2 | ||||
1.2 | 66 | 86 | 122 | 2.2 | 2.6 | 900 | 32.0 | ||||
1.4 | 77 | 97 | 132 | 2.3 | 2.7 | 1137 | 30.5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinomiya, K.; Zaima, K.; Harikai, N.; Ito, Y. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns. Separations 2016, 3, 29. https://doi.org/10.3390/separations3040029
Shinomiya K, Zaima K, Harikai N, Ito Y. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns. Separations. 2016; 3(4):29. https://doi.org/10.3390/separations3040029
Chicago/Turabian StyleShinomiya, Kazufusa, Kazumasa Zaima, Naoki Harikai, and Yoichiro Ito. 2016. "Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns" Separations 3, no. 4: 29. https://doi.org/10.3390/separations3040029
APA StyleShinomiya, K., Zaima, K., Harikai, N., & Ito, Y. (2016). Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns. Separations, 3(4), 29. https://doi.org/10.3390/separations3040029