Characterization of Pyrolysis Oils Using a Combination of GC×GC/TOFMS and GC/HRMS Analysis: The Impact of Data Processing Parameters
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. GC×GC/TOFMS Analysis
2.3. GC/HRMS Analysis
2.4. Data Processing Software
2.5. Level of Identification Confidence
2.6. Selection of Experimental Design
- MSN specifies the lowest signal-to-noise ratio required for a signal to be recognized as a true peak. If the MSN is too high, trace compounds cannot be detected. Therefore, an appropriate S/N threshold value should be carefully selected. Boudard et al. (2024) chose 1000 as a minimum S/N threshold for body odor samples [21] while Stephanuto et al. (2017) used an S/N threshold of 100 for profiling volatile aromas of beer upon Thermal desorption(TD)-GC×GC/TOFMS analysis [35]. In the context of TD injection, ambient air contributes significantly to background noise, which justifies the use of a relatively high minimum S/N to balance between the number of detected peaks and the reliability of true positive identifications. However, in the case of liquid injections, the background noise is significantly lower than in TD injection. Consequently, a lower minimum S/N threshold is more suitable to enable the untargeted detection of heteroatom-containing compounds at the trace level. Bean et al. (2015) used an S/N of 10 to analyze metabolites for biomarker discovery [36], which is comparable to the value used in our study for liquid injection.
- MSC refers to the minimum number of ions in a mass spectrum that must be present for a detected peak to be considered as a valid compound, thereby reducing the risk of false positives due to artefacts. Thus, increasing the MSC leads to a decrease in the number of detected peaks, due to the stricter criteria imposed for peak formation. Bean et al. (2015) used an MSC of 2 for data processing (called apexing masses) [36].
- The m/z S/N threshold corresponds to the minimum ratio between an ion’s signal height and the baseline noise for the ion to be included in the mass spectrum. Increasing the m/z S/N threshold led to a decrease in the number of detected peaks, due to stricter filtering of low-intensity ions.
- The peak S/N threshold specifies the minimum ratio between the peak height and the baseline noise for a signal to be classified as a valid chromatographic peak.
- The TIC intensity threshold sets the minimum total ion current (TIC) intensity required for a peak to be retained.
3. Results and Discussion
3.1. GC×GC/TOFMS and GC/HRMS Chromatograms of Fraction A
3.2. CCD for GC×GC/TOFMS
3.2.1. Correlation of the Two Responses
3.2.2. Significance of Coefficients for Each Response
3.2.3. Optimization with Desirability for Fraction A
3.2.4. CCD Relevance and Experimental Validation for Fraction A
3.3. CCD for GC/HRMS Data of Fraction A
3.4. Confirmation of These Optimal Values Through Another Sample: Fraction B (142–169 °C)
3.5. Comparison of GC×GC/TOFMS and GC/HRMS Results
4. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tyre Production Worldwide|Tyre Industry of JAPAN|Japan Automobile Tyre Manufacturers Association, Inc. Available online: https://www.jatma.or.jp/english/tyre_industry/tyreproduction.html (accessed on 14 March 2024).
- Moasas, A.M.; Amin, M.N.; Khan, K.; Ahmad, W.; Al-Hashem, M.N.A.; Deifalla, A.F.; Ahmad, A. A Worldwide Development in the Accumulation of Waste Tires and Its Utilization in Concrete as a Sustainable Construction Material: A Review. Case Stud. Constr. Mater. 2022, 17, e01677. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C. A Comprehensive Review on the Applications of Waste Tire Rubber in Cement Concrete. Renew. Sustain. Energy Rev. 2016, 54, 1323–1333. [Google Scholar] [CrossRef]
- Arabiourrutia, M.; Lopez, G.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Waste Tyre Valorization by Catalytic Pyrolysis—A Review. Renew. Sustain. Energy Rev. 2020, 129, 109932. [Google Scholar] [CrossRef]
- Available online: www.etrma.org/wp-content/uploads/2021/05/20210520_ETRMA_PRESS-RELEASE_ELT-2019.pdf (accessed on 9 June 2025).
- Kumar Singh, R.; Ruj, B.; Jana, A.; Mondal, S.; Jana, B.; Kumar Sadhukhan, A.; Gupta, P. Pyrolysis of Three Different Categories of Automotive Tyre Wastes: Product Yield Analysis and Characterization. J. Anal. Appl. Pyrolysis 2018, 135, 379–389. [Google Scholar] [CrossRef]
- Williams, P.T. Pyrolysis of Waste Tyres: A Review. Waste Manag. 2013, 33, 1714–1728. [Google Scholar] [CrossRef]
- Antoniou, N.; Zabaniotou, A. Features of an Efficient and Environmentally Attractive Used Tyres Pyrolysis with Energy and Material Recovery. Renew. Sustain. Energy Rev. 2013, 20, 539–558. [Google Scholar] [CrossRef]
- Rofiqulislam, M.; Haniu, H.; Rafiqulalambeg, M. Liquid Fuels and Chemicals from Pyrolysis of Motorcycle Tire Waste: Product Yields, Compositions and Related Properties. Fuel 2008, 87, 3112–3122. [Google Scholar] [CrossRef]
- Martínez, J.D.; Puy, N.; Murillo, R.; García, T.; Navarro, M.V.; Mastral, A.M. Waste Tyre Pyrolysis—A Review. Renew. Sustain. Energy Rev. 2013, 23, 179–213. [Google Scholar] [CrossRef]
- Campuzano, F.; Abdul Jameel, A.G.; Zhang, W.; Emwas, A.-H.; Agudelo, A.F.; Martínez, J.D.; Sarathy, S.M. On the Distillation of Waste Tire Pyrolysis Oil: A Structural Characterization of the Derived Fractions. Fuel 2021, 290, 120041. [Google Scholar] [CrossRef]
- Laresgoiti, M.F.; Caballero, B.M.; de Marco, I.; Torres, A.; Cabrero, M.A.; Chomón, M.J. Characterization of the Liquid Products Obtained in Tyre Pyrolysis. J. Anal. Appl. Pyrolysis 2004, 71, 917–934. [Google Scholar] [CrossRef]
- Amarasekara, A.S.; Reyes, C.D.G. Acidic Ionic Liquid Catalyzed Liquefactions of Corn Cobs and Switchgrass in Acetone: Analysis of Bio-Oils Using LC-MS and GC-MS. J. Anal. Appl. Pyrolysis 2020, 145, 104752. [Google Scholar] [CrossRef]
- Joseph, J.; Rasmussen, M.J.; Fecteau, J.P.; Kim, S.; Lee, H.; Tracy, K.A.; Jensen, B.L.; Frederick, B.G.; Stemmler, E.A. Compositional Changes to Low Water Content Bio-Oils during Aging: An NMR, GC/MS, and LC/MS Study. Energy Fuels 2016, 30, 4825–4840. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Zhang, Q.; Zhao, Y.; Liu, M.; Zhang, D.; Cai, X.; Wang, N.; Wang, W. Structural Characterization and Transformation of Nitrogen Compounds in Waste Tire Pyrolysis Oils. J. Chromatogr. A 2023, 1702, 464093. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Manheim, J.M.; Fu, Y.; Laaksonen, T.; Kilaz, G.; Kenttämaa, H.I. Comparison of APCI Orbitrap MS and GCxGC/EI TOF MS for the Hydrocarbon Analysis of Heavy Base Oils. Fuel 2023, 343, 127993. [Google Scholar] [CrossRef]
- Dao Thi, H.; Djokic, M.R.; Van Geem, K.M. Detailed Group-Type Characterization of Plastic-Waste Pyrolysis Oils: By Comprehensive Two-Dimensional Gas Chromatography Including Linear, Branched, and Di-Olefins. Separations 2021, 8, 103. [Google Scholar] [CrossRef]
- Mohan, A.; Dutta, S.; Balusamy, S.; Madav, V. Liquid Fuel from Waste Tires: Novel Refining, Advanced Characterization and Utilization in Engines with Ethyl Levulinate as an Additive. RSC Adv. 2021, 11, 9807–9826. [Google Scholar] [CrossRef]
- Burdová, H.; Pilnaj, D.; Kuráň, P. Application of Low-Energy-Capable Electron Ionization with High-Resolution Mass Spectrometer for Characterization of Pyrolysis Oils from Plastics. J. Chromatogr. A 2023, 1711, 464445. [Google Scholar] [CrossRef]
- Klein, R.; Dugay, J.; Vial, J.; Thiébaut, D.; Colombet, G.; Barreteau, D.; Gruntz, G. Hyphenation of Thermodesorption into GC GC-TOFMS for Odorous Molecule Detection in Car Materials: Column Sets and Adaptation of Second Column Dimensions to TD Pressure Constraints. Separations 2024, 11, 162. [Google Scholar] [CrossRef]
- Boudard, E.; Moumane, N.; Dugay, J.; Vial, J.; Thiébaut, D. Body Volatilome Study Strategy for COVID-19 Biomarker Identification Considering Exogenous Parameters. Separations 2024, 11, 336. [Google Scholar] [CrossRef]
- Mahé, L.; Dutriez, T.; Courtiade, M.; Thiébaut, D.; Dulot, H.; Bertoncini, F. Global Approach for the Selection of High Temperature Comprehensive Two-Dimensional Gas Chromatography Experimental Conditions and Quantitative Analysis in Regards to Sulfur-Containing Compounds in Heavy Petroleum Cuts. J. Chromatogr. A 2011, 1218, 534–544. [Google Scholar] [CrossRef]
- Adahchour, M.; Beens, J.; Vreuls, R.J.J.; Brinkman, U.A.T. Recent Developments in Comprehensive Two-Dimensional Gas Chromatography (GC×GC). TrAC Trends Anal. Chem. 2006, 25, 438–454. [Google Scholar] [CrossRef]
- Liu, Y.; D’Agostino, L.A.; Qu, G.; Jiang, G.; Martin, J.W. High-Resolution Mass Spectrometry (HRMS) Methods for Nontarget Discovery and Characterization of Poly- and per-Fluoroalkyl Substances (PFASs) in Environmental and Human Samples. TrAC Trends Anal. Chem. 2019, 121, 115420. [Google Scholar] [CrossRef]
- Staš, M.; Chudoba, J.; Kubička, D.; Pospíšil, M. Chemical Characterization of Pyrolysis Bio-Oil: Application of Orbitrap Mass Spectrometry. Energy Fuels 2015, 29, 3233–3240. [Google Scholar] [CrossRef]
- Legeard, T.; Tisse, S.; Vaccaro, M.; Moufarrej, L.; Mignot, M.; Castilla, C.; Schmitz, I.; Portet-Koltalo, F.; Méausoone, C.; Monteil, C.; et al. Nontargeted Screening of Air Samples Using TD-GC-HRMS to Identify Volatile Compounds as Markers of an Industrial Plant Fire in Rouen, France. Atmos. Pollut. Res. 2025, 16, 102328. [Google Scholar] [CrossRef]
- Guillemant, J.; Lacoue-Nègre, M.; Berlioz-Barbier, A.; Albrieux, F.; De Oliveira, L.P.; Joly, J.-F.; Duponchel, L. Towards a New Pseudo-Quantitative Approach to Evaluate the Ionization Response of Nitrogen Compounds in Complex Matrices. Sci. Rep. 2021, 11, 6417. [Google Scholar] [CrossRef]
- Williams, P.T.; Bottrill, P. Sulfur-polycyclic aromatic hydrocarbons in tyre pyrolysis oil. Fuel 1995, 74, 736–742. [Google Scholar] [CrossRef]
- Kucinska-Lipka, J.; Janik, H.; Balas, A. Progress in Used Tyres Management in the European Union: A Review. Waste Manag. 2012, 32, 1742–1751. [Google Scholar] [CrossRef]
- Cerasa, M.; Balducci, C.; Giannelli Moneta, B.; Santoro, S.; Perilli, M.; Nikiforov, V. Critical Insights into Untargeted GC-HRMS Analysis: Exploring Volatile Organic Compounds in Italian Ambient Air. Separations 2025, 12, 35. [Google Scholar] [CrossRef]
- Vial, J.; Jardy, A. Utilisation des plans d’expériences pour évaluer la robustesse d’une méthode d’analyse quantitative par Chromatographie enPhase Liquide. Analusis 1998, 26, 15–24. [Google Scholar] [CrossRef]
- Sarazin, C.; Delaunay, N.; Costanza, C.; Eudes, V.; Gareil, P.; Vial, J. On the Use of Response Surface Strategy to Elucidate the Electrophoretic Migration of Carbohydrates and Optimize Their Separation. J. Sep. Sci. 2012, 35, 1351–1358. [Google Scholar] [CrossRef]
- Alinat, E.; Delaunay, N.; Archer, X.; Vial, J.; Gareil, P. Multivariate Optimization of the Denitration Reaction of Nitrocelluloses for Safer Determination of Their Nitrogen Content. Forensic Sci. Int. 2015, 250, 68–76. [Google Scholar] [CrossRef]
- Van Den Dool, H.A.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Stefanuto, P.-H.; Perrault, K.A.; Dubois, L.M.; L’Homme, B.; Allen, C.; Loughnane, C.; Ochiai, N.; Focant, J.-F. Advanced Method Optimization for Volatile Aroma Profiling of Beer Using Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2017, 1507, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Bean, H.D.; Hill, J.E.; Dimandja, J.-M.D. Improving the Quality of Biomarker Candidates in Untargeted Metabolomics via Peak Table-Based Alignment of Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry Data. J. Chromatogr. A 2015, 1394, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Furno, L.; Combès, A.; Thiébaut, D.; Méré, A.; Passade-Boupat, N.; Vial, J. Liquid Chromatography Column Screening for the Analysis of Corrosion Inhibitor Molecules Using Derringer Desirability Functions. J. Sep. Sci. 2024, 47, e70046. [Google Scholar] [CrossRef]
- Cuzuel, V.; Sizun, A.; Cognon, G.; Rivals, I.; Heulard, F.; Thiébaut, D.; Vial, J. Human Odor and Forensics. Optimization of a Comprehensive Two-Dimensional Gas Chromatography Method Based on Orthogonality: How Not to Choose between Criteria. J. Chromatogr. A 2018, 1536, 58–66. [Google Scholar] [CrossRef] [PubMed]
Experiment | MSC | MSN |
---|---|---|
1 | 0 | 0 |
2 | −1 | 1 |
3 | 1 | −1 |
4 | 1 | 1 |
5 | −1 | 0 |
6 | 0 | 1 |
7 | 0 | −1 |
8 | −1 | −1 |
9 | 1 | 0 |
Factor level | MSC | MSN |
−1 | 3 | 5 |
0 | 5 | 55 |
1 | 7 | 105 |
Number of Experiments | m/z S/N | TIC | S/N |
---|---|---|---|
1 | −1 | 1 | −1 |
2 | 1 | −1 | −1 |
3 | 0 | 0 | 1 |
4 | 0 | 1 | 0 |
5 | 0 | 0 | 0 |
6 | −1 | 0 | 0 |
7 | 0 | −1 | 0 |
8 | 0 | 0 | −1 |
9 | 1 | −1 | 1 |
10 | 1 | 0 | 0 |
11 | −1 | 1 | 1 |
12 | −1 | −1 | −1 |
13 | 1 | 1 | 1 |
14 | −1 | −1 | 1 |
15 | 1 | 1 | −1 |
Factor level | m/z S/N | TIC | S/N |
−1 | 3 | 104 | 3 |
0 | 51.5 | 5.0005 × 107 | 6.5 |
1 | 100 | 108 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Rincon, C.; Gadenne, B.; Dugay, J.; Sablier, M.; Vial, J. Characterization of Pyrolysis Oils Using a Combination of GC×GC/TOFMS and GC/HRMS Analysis: The Impact of Data Processing Parameters. Separations 2025, 12, 239. https://doi.org/10.3390/separations12090239
Chen X, Rincon C, Gadenne B, Dugay J, Sablier M, Vial J. Characterization of Pyrolysis Oils Using a Combination of GC×GC/TOFMS and GC/HRMS Analysis: The Impact of Data Processing Parameters. Separations. 2025; 12(9):239. https://doi.org/10.3390/separations12090239
Chicago/Turabian StyleChen, Xiangdong, Carlos Rincon, Benoît Gadenne, José Dugay, Michel Sablier, and Jérôme Vial. 2025. "Characterization of Pyrolysis Oils Using a Combination of GC×GC/TOFMS and GC/HRMS Analysis: The Impact of Data Processing Parameters" Separations 12, no. 9: 239. https://doi.org/10.3390/separations12090239
APA StyleChen, X., Rincon, C., Gadenne, B., Dugay, J., Sablier, M., & Vial, J. (2025). Characterization of Pyrolysis Oils Using a Combination of GC×GC/TOFMS and GC/HRMS Analysis: The Impact of Data Processing Parameters. Separations, 12(9), 239. https://doi.org/10.3390/separations12090239