Challenges Associated with Membrane Separation of Polypeptides and Relevant Solution Strategies
Abstract
1. Introduction
2. Application of Membranes in the Separation and Purification of Peptides
2.1. Microfiltration
2.2. Ultrafiltration
2.3. Nanofiltration and Reverse Osmosis
2.4. Electrodialysis
3. Challenges in Membrane Separation of Polypeptides
3.1. Membrane Fouling
3.2. Loss of Polypeptide Caused by Membrane Adsorption
3.3. Poor Selectivity Caused by Polypeptide Aggregation
4. Methods and Strategies for Solving Problems
4.1. Pretreatment Methods
4.2. Optimization of Separation Processes
4.3. Elimination of Polypeptide Aggregates
4.4. Selection and Modification of Membrane
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quintero-Soto, M.F.; Chávez-Ontiveros, J.; Garzón-Tiznado, J.A.; Salazar-Salas, N.Y.; Pineda-Hidalgo, K.V.; Delgado-Vargas, F.; López-Valenzuela, J.A. Characterization of peptides with antioxidant activity and antidiabetic potential obtained from chickpea (Cicer arietinum L.) protein hydrolyzates. J. Food Sci. 2021, 86, 2962–2977. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.-S. Proteins and bioactive peptides from algae: Insights into antioxidant, anti-hypertensive, anti-diabetic and anti-cancer activities. Trends Food Sci. Technol. 2024, 145, 104352. [Google Scholar] [CrossRef]
- Cermeño, M.; Kleekayai, T.; Amigo-Benavent, M.; Harnedy-Rothwell, P.; FitzGerald, R.J. Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis 2020, 41, 1694–1717. [Google Scholar] [CrossRef] [PubMed]
- Alavi, F.; Ciftci, O.N. Purification and fractionation of bioactive peptides through membrane filtration: A critical and application review. Trends Food Sci. Technol. 2023, 131, 118–128. [Google Scholar] [CrossRef]
- Li, L.; Ye, M.; Gan, X.; Xiao, T.; Zhu, Z. Development of membrane separation technology and membrane-based biore-actor in wastewater treatment: Conventional membrane and dynamic membrane. Desalin. Water Treat. 2023, 304, 36–46. [Google Scholar] [CrossRef]
- Zhu, Q.; Cai, Z.; Zhou, P.; Sun, X.; Xu, J. Recent progress of membrane technology for chiral separation: A comprehensive review. Sep. Purif. Technol. 2023, 309, 123077. [Google Scholar] [CrossRef]
- Wen, J.; Han, Q.; Qiu, M.; Jiang, L.; Chen, X.; Fan, Y. Membrane technologies for the separation and purification of functional oligosaccharides: A review. Sep. Purif. Technol. 2024, 346, 127463. [Google Scholar] [CrossRef]
- Grelich-Mucha, M.; Bachelart, T.; Torbeev, V.; Ożga, K.; Berlicki, Ł.; Olesiak-Bańska, J. Amyloid engineering–how terminal capping modifies morphology and secondary structure of supramolecular peptide aggregates. Biomater. Sci. 2024, 12, 1590–1602. [Google Scholar] [CrossRef]
- Saxena, A.; Tripathi, B.P.; Kumar, M.; Shahi, V.K. Membrane-based techniques for the separation and purification of proteins: An overview. Adv. Colloid Interface Sci. 2009, 145, 1–22. [Google Scholar] [CrossRef]
- Van der Schaaf, J.M.; Goulding, D.A.; Fuerer, C.; O’Regan, J.; O’Mahony, J.A.; Kelly, A.L. A novel approach to isolation of β-casein from micellar casein concentrate by cold microfiltration combined with chymosin treatment. Int. Dairy J. 2024, 148, 105796. [Google Scholar] [CrossRef]
- Kongsinkaew, C.; Ajariyakhajorn, K.; Boonyaratanakornkit, V.; Sooksai, S.; Pornpukdeewattana, S.; Krusong, W.; Sitanggang, A.B.; Charoenrat, T. Membrane-based approach for the removal of pigment impurities secreted by Pichia pastoris. Food Bioprod. Process. 2023, 139, 178–189. [Google Scholar] [CrossRef]
- Swaminathan, A.V.; Molitor, M.S.; Burrington, K.J.; Otter, D.; Lucey, J.A. Partial enrichment of phospholipids by enzymatic hydrolysis and membrane filtration of whey protein phospholipid concentrate. JDS Commun. 2023, 4, 175–180. [Google Scholar] [CrossRef]
- Tam, A.J.C.; Durham, S.D.; Barile, D.; de Moura Bell, J.M.L.N. Application of hollow fiber membranes for producing an ultrafiltration permeate from colostrum whey enriched in bioactive compounds. Food Bioprod. Process. 2024, 146, 185–194. [Google Scholar] [CrossRef]
- Marcet, I.; Delgado, J.; Díaz, N.; Rendueles, M.; Díaz, M. Peptides recovery from egg yolk lipovitellins by ultrafiltration and their in silico bioactivity analysis. Food Chem. 2022, 379, 132145. [Google Scholar] [CrossRef] [PubMed]
- Ghalamara, S.; Coscueta, E.R.; Silva, S.; Brazinha, C.; Pereira, C.D.; Pintado, M.E. Integrated ultrafiltration, nanofiltration, and reverse osmosis pilot process to produce bioactive protein/peptide fractions from sardine cooking effluent. J. Environ. Manag. 2022, 317, 115344. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Su, Z.; Graham, N.J.D.; Liu, H.; Sun, K.; Yu, W. Double positively charged polyamide nanofiltration membrane with PEI/Zr4+ for Cr3+ and trimethoprim removal. Chem. Eng. J. 2023, 469, 144074. [Google Scholar] [CrossRef]
- Zhao, J.; Ouyang, F.; Yang, Y.; Tang, W. Degradation of recalcitrant organics in nanofiltration concentrate from biologically pretreated landfill leachate by ultraviolet-Fenton method. Sep. Purif. Technol. 2020, 235, 116076. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Tang, S.; Xu, Y.; Zhi, X. Recent advances of nanofiltration separation in pharmaceutical field from water to organic solution. J. Mol. Liq. 2024, 409, 125482. [Google Scholar] [CrossRef]
- Fjerbæk Søtoft, L.; Lizarazu, J.M.; Razi Parjikolaei, B.; Karring, H.; Christensen, K.V. Membrane fractionation of herring marinade for separation and recovery of fats, proteins, amino acids, salt, acetic acid and water. J. Food Eng. 2015, 158, 39–47. [Google Scholar] [CrossRef]
- Saidi, S.; Deratani, A.; Belleville, M.-P.; Amar, R.B. Production and fractionation of tuna by-product protein hydrolysate by ultrafiltration and nanofiltration: Impact on interesting peptides fractions and nutritional properties. Food Res. Int. 2014, 65, 453–461. [Google Scholar] [CrossRef]
- Firdaous, L.; Dhulster, P.; Amiot, J.; Doyen, A.; Lutin, F.; Vezina, L.-P.; Bazinet, L. Investigation of the large-scale bioseparation of an antihypertensive peptide from alfalfa white protein hydrolysate by an electromembrane process. J. Membr. Sci. 2010, 355, 175–181. [Google Scholar] [CrossRef]
- Doyen, A.; Saucier, L.; Beaulieu, L.; Pouliot, Y.; Bazinet, L. Electroseparation of an antibacterial peptide fraction from snow crab by-products hydrolysate by electrodialysis with ultrafiltration membranes. Food Chem. 2012, 132, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Castro-Munoz, R.; Garcia-Depraect, O. Membrane-based harvesting processes for microalgae and their valuable-related molecules: A review. Membranes 2021, 11, 585. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, A.; Tomaiuolo, G.; Guido, S. Membrane fouling phenomena in microfluidic systems: From technical challenges to scientific opportunities. Micromachines 2021, 12, 820. [Google Scholar] [CrossRef] [PubMed]
- Corbaton-Baguena, M.-J.; Alvarez-Blanco, S.; Vincent-Vela, M.-C. Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions. Desalination 2015, 360, 87–96. [Google Scholar] [CrossRef]
- Celik, E.; Liu, L.; Choi, H. Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. Water Res. 2011, 45, 5287–5294. [Google Scholar] [CrossRef]
- Boukil, A.; Suwal, S.; Chamberland, J.; Pouliot, Y.; Doyen, A. Ultrafiltration performance and recovery of bioactive peptides after fractionation of tryptic hydrolysate generated from pressure-treated β-lactoglobulin. J. Membr. Sci. 2018, 556, 42–53. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Zhu, L. Fouling mechanism of hydrophobic polytetrafluoroethylene (PTFE) membrane by differently charged organics during direct contact membrane distillation (DCMD) process: An especial interest in the feed properties. J. Membr. Sci. 2018, 548, 125–135. [Google Scholar] [CrossRef]
- Beaubier, S.; Przybylski, R.; Bodin, A.; Nedjar, N.; Dhulster, P.; Kapel, R. Ultrafiltration fractionation of bovine hemoglobin hydrolysates: Prediction of separation performances for optimal enrichment in antimicrobial peptide. Membranes 2021, 11, 73. [Google Scholar] [CrossRef]
- Marson, G.V.; Lacour, S.; Hubinger, M.D.; Belleville, M.-P. Serial fractionation of spent brewer’s yeast protein hydrolysate by ultrafiltration: A peptide-rich product with low RNA content. J. Food Eng. 2022, 312, 110737. [Google Scholar] [CrossRef]
- Saidi, S.; Deratani, A.; Ben Amar, R.; Belleville, M.-P. Fractionation of a tuna dark muscle hydrolysate by a two-step membrane process. Sep. Purif. Technol. 2013, 108, 28–36. [Google Scholar] [CrossRef]
- Miao, R.; Wang, L.; Mi, N.; Gao, Z.; Liu, T.; Lv, Y.; Wang, X.; Meng, X.; Yang, Y. Enhancement and mitigation mechanisms of protein fouling of ultrafiltration membranes under different ionic strengths. Environ. Sci. Technol. 2015, 49, 6574–6580. [Google Scholar] [CrossRef] [PubMed]
- Roslan, J.; Mustapa Kamal, S.M.; Md. Yunos, K.F.; Abdullah, N. Fractionation of Tilapia by-product protein hydrolysate using multilayer configuration of ultrafiltration membrane. Processes 2021, 9, 446. [Google Scholar] [CrossRef]
- Persico, M.; Dhulster, P.; Bazinet, L. Redundancy analysis for determination of the main physicochemical characteristics of filtration membranes explaining their fouling by peptides. J. Membr. Sci. 2018, 563, 708–717. [Google Scholar] [CrossRef]
- Hashino, M.; Hirami, K.; Ishigami, T.; Ohmukai, Y.; Maruyama, T.; Kubota, N.; Matsuyama, H. Effect of kinds of membrane materials on membrane fouling with BSA. J. Membr. Sci. 2011, 384, 157–165. [Google Scholar] [CrossRef]
- Arrutia, F.; Rubio, R.; Riera, F.A. Production and membrane fractionation of bioactive peptides from a whey protein concentrate. J. Food Eng. 2016, 184, 1–9. [Google Scholar] [CrossRef]
- Persico, M.; Daigle, G.; Kadel, S.; Perreault, V.; Pellerin, G.; Thibodeau, J.; Bazinet, L. Predictive models for determination of peptide fouling based on the physicochemical characteristics of filtration membranes. Sep. Purif. Technol. 2020, 240, 116602. [Google Scholar] [CrossRef]
- Barukčić, I.; Božanić, R.; Kulozik, U. Effect of pore size and process temperature on flux, microbial reduction and fouling mechanisms during sweet whey cross-flow microfiltration by ceramic membranes. Int. Dairy J. 2014, 39, 8–15. [Google Scholar] [CrossRef]
- Steinhauer, T.; Hanély, S.; Bogendörfer, K.; Kulozik, U. Temperature dependent membrane fouling during filtration of whey and whey proteins. J. Membr. Sci. 2015, 492, 364–370. [Google Scholar] [CrossRef]
- Arias, L.; Sánchez-Henao, C.P.; Zapata, J.E. Optimization of the separation conditions of antioxidant peptides from red tilapia (Oreochromis spp.) viscera on cross-flow filtration ceramic membranes. S. Afr. J. Chem. Eng. 2023, 45, 100–110. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, T.; Zhang, Z.; Feng, X. Extraction and concentration of glutathione from yeast by membranes. Can. J. Chem. Eng. 2022, 100, S195–S204. [Google Scholar] [CrossRef]
- Cirillo, A.I.; Tomaiuolo, G.; Guido, S.J.C.E.J.A. Microfiltration of concentrated albumin solutions and the role of processing conditions on membrane fouling. Chem. Eng. J. Adv. 2023, 16, 100561. [Google Scholar] [CrossRef]
- Marshall, A.D.; Munro, P.A.; Tragardh, G. The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review. Desalination 1993, 91, 65–108. [Google Scholar] [CrossRef]
- Chew, J.W.; Kilduff, J.; Belfort, G. The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update. J. Membr. Sci. 2020, 601, 117865. [Google Scholar] [CrossRef]
- Chabeaud, A.; Vandanjon, L.; Bourseau, P.; Jaouen, P.; Chaplain-Derouiniot, M.; Guerard, F. Performances of ultrafiltration membranes for fractionating a fish protein hydrolysate: Application to the refining of bioactive peptidic fractions. Sep. Purif. Technol. 2009, 66, 463–471. [Google Scholar] [CrossRef]
- Marson, G.V.; Pereira, D.T.V.; da Costa Machado, M.T.; Di Luccio, M.; Martínez, J.; Belleville, M.-P.; Hubinger, M.D. Ultrafiltration performance of spent brewer’s yeast protein hydrolysate: Impact of pH and membrane material on fouling. J. Food Eng. 2021, 302, 110569. [Google Scholar] [CrossRef]
- Kilmer, N.T.; Huss, R.L.; George, C.C.; Stennett, E.M.S. The influence of ion identity and ionic strength on membrane biofouling of a binary protein solution. Sep. Purif. Technol. 2021, 255, 117769. [Google Scholar] [CrossRef]
- Fernández, A.; Suárez, A.; Zhu, Y.; FitzGerald, R.J.; Riera, F.A. Membrane fractionation of a β-lactoglobulin tryptic digest: Effect of the pH. J. Food Eng. 2013, 114, 83–89. [Google Scholar] [CrossRef]
- Loh, S.; Beuscher, U.; Poddar, T.K.; Porter, A.G.; Wingard, J.M.; Husson, S.M.; Wickramasinghe, S.R. Interplay among membrane properties, protein properties and operating conditions on protein fouling during normal-flow microfiltration. J. Membr. Sci. 2009, 332, 93–103. [Google Scholar] [CrossRef]
- Hadidi, M.; Zydney, A.L. Fouling behavior of zwitterionic membranes: Impact of electrostatic and hydrophobic interactions. J. Membr. Sci. 2014, 452, 97–103. [Google Scholar] [CrossRef]
- Rabe, M.; Verdes, D.; Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 2011, 162, 87–106. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.; Tay, K.G.; Ng, H.Y. Fouling of reverse osmosis membrane by protein (BSA): Effects of pH, calcium, magnesium, ionic strength and temperature. J. Membr. Sci. 2008, 315, 28–35. [Google Scholar] [CrossRef]
- Barnett, G.V.; Drenski, M.; Razinkov, V.; Reed, W.F.; Roberts, C.J. Identifying protein aggregation mechanisms and quantifying aggregation rates from combined monomer depletion and continuous scattering. Anal. Biochem. 2016, 511, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Creusot, N.; Gruppen, H. Protein-peptide interactions in mixtures of whey peptides and whey proteins. J. Agric. Food Chem. 2007, 55, 2474–2481. [Google Scholar] [CrossRef]
- Creusot, N.; Gruppen, H.; van Koningsveld, G.A.; de Kruif, C.G.; Voragen, A.G.J. Peptide-peptide and protein-peptide interactions in mixtures of whey protein isolate and whey protein isolate hydrolysates. Int. Dairy J. 2006, 16, 840–849. [Google Scholar] [CrossRef]
- Majid, N.; Khan, R.H. Protein aggregation: Consequences, mechanism, characterization and inhibitory strategies. Int. J. Biol. Macromol. 2023, 242, 125123. [Google Scholar] [CrossRef]
- Wang, W.; Roberts, C.J. Protein aggregation-Mechanisms, detection, and control. Int. J. Pharm. 2018, 550, 251–268. [Google Scholar] [CrossRef]
- Buck, P.M.; Kumar, S.; Singh, S.K. On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: Insights from diverse analyses. PLoS. Comput. Biol. 2013, 9, e1003291. [Google Scholar] [CrossRef]
- Meric, G.; Robinson, A.S.; Roberts, C.J. Driving forces for nonnative protein aggregation and approaches to predict aggregation-prone regions. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 139–159. [Google Scholar] [CrossRef]
- Tartaglia, G.G.; Pawar, A.P.; Campioni, S.; Dobson, C.M.; Chiti, F.; Vendruscolo, M. Prediction of aggregation-prone regions in structured proteins. J. Mol. Biol. 2008, 380, 425–436. [Google Scholar] [CrossRef]
- Steckmann, T.; Awan, Z.; Gerstman, B.S.; Chapagain, P.P. Kinetics of peptide secondary structure conversion during amyloid β-protein fibrillogenesis. J. Theor. Biol. 2012, 301, 95–102. [Google Scholar] [CrossRef]
- Pawar, A.P.; DuBay, K.F.; Zurdo, J.; Chiti, F.; Vendruscolo, M.; Dobson, C.M. Prediction of “Aggregation-prone” and “Aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J. Mol. Biol. 2005, 350, 379–392. [Google Scholar] [CrossRef]
- Adachi, K.; Ding, M.; Asakura, T.; Surrey, S. Relationship between β4 hydrogen bond and β6 hydrophobic interactions during aggregate, fiber or crystal formation in oversaturated solutions of hemoglobin A and S. Arch. Biochem. Biophys. 2009, 481, 137–144. [Google Scholar] [CrossRef]
- Adachi, K.; Ding, M.; Surrey, S. Role of the β4Thr−β73Asp hydrogen bond in HbS polymer and domain formation from multinucleate-containing clusters. Biochemistry 2008, 47, 5441–5449. [Google Scholar] [CrossRef]
- Oliva, A.; Fariña, J.B.; Llabrés, M. Pre-study and in-study validation of a size-exclusion chromatography method with different detection modes for the analysis of monoclonal antibody aggregates. J. Chromatogr. B. 2016, 1022, 206–212. [Google Scholar] [CrossRef]
- Meliga, S.C.; Farrugia, W.; Ramsland, P.A.; Falconer, R.J. Cold-induced precipitation of a monoclonal IgM: A negative activation enthalpy reaction. J. Phys. Chem. B. 2013, 117, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Varga, N.; Hornok, V.; Sebok, D.; Dekany, I. Comprehensive study on the structure of the BSA from extended-to aged form in wide (2–12) pH range. Int. J. Biol. Macromol. 2016, 88, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wu, Z.; Wangb, Y.; Ding, L.; Wang, Y. Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnol. Rep. 2016, 9, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Filipe, V.; KüKrer, B.; Hawe, A.; Jiskoot, W. Transient molten globules and metastable aggregates induced by brief exposure of a monoclonal IgG to low pH. J. Pharm. Sci. 2012, 101, 2327–2339. [Google Scholar] [CrossRef]
- Wang, W.; Nema, S.; Teagarden, D. Protein aggregation—Pathways and influencing factors. Int. J. Pharm. 2010, 390, 89–99. [Google Scholar] [CrossRef]
- Giger, K.; Vanam, R.P.; Seyrek, E.; Dubin, P.L. Suppression of Insulin Aggregation by Heparin. Biomacromolecules 2008, 9, 2338–2344. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.; Royer, C.A. Lessons from pressure denaturation of proteins. J. R. Soc. Interface 2018, 15, 20180244. [Google Scholar] [CrossRef]
- Cordeiro, Y.; Foguel, D.; Silva, J.L. Pressure–temperature folding landscape in proteins involved in neurodegenerative diseases and cancer. Biophys. Chem. 2013, 183, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, N.; Chen, X.; Wu, Z.; Zhong, W.; Yu, D.; Zhang, H. Effects of moderate electric field on the structural properties and aggregation characteristics of soybean protein isolate. Food Hydrocoll. 2022, 133, 107911. [Google Scholar] [CrossRef]
- Hu, X.; Wang, H.; Hu, Y.; Tu, Z. Insight into the effects of pulsed electric field on the structure, aggregation characteristics and functional properties of whey proteins. Food Hydrocoll. 2024, 154, 110111. [Google Scholar] [CrossRef]
- Devi, S.; Chaturvedi, M.; Fatima, S.; Priya, S. Environmental factors modulating protein conformations and their role in protein aggregation diseases. Toxicology 2022, 465, 153049. [Google Scholar] [CrossRef]
- Ghazvini, S.; Kalonia, C.; Volkin, D.B.; Dhar, P. Evaluating the Role of the air-solution interface on the mechanism of subvisible particle formation caused by mechanical agitation for an IgG1 mAb. J. Pharm. Sci. 2016, 105, 1643–1656. [Google Scholar] [CrossRef]
- Lin, G.L.; Pathak, J.A.; Kim, D.H.; Carlson, M.; Riguero, V.; Kim, Y.J.; Buff, J.S.; Fuller, G.G. Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions. Soft Matter. 2016, 12, 3293–3302. [Google Scholar] [CrossRef]
- McBride, S.A.; Tilger, C.F.; Sanford, S.P.; Tessier, P.M.; Hirsa, A.H. Comparison of human and bovine insulin amyloidogenesis under uniform shear. J. Phys. Chem. B. 2015, 119, 10426–10433. [Google Scholar] [CrossRef]
- McBride, S.A.; Sanford, S.P.; Lopez, J.M.; Hirsa, A.H. Shear-induced amyloid fibrillization: The role of inertia. Soft Matter 2016, 12, 3461–3467. [Google Scholar] [CrossRef]
- Sreedhara, A.; Yin, J.; Joyce, M.; Lau, K.; Wecksler, A.T.; Deperalta, G.; Yi, L.; John Wang, Y.; Kabakoff, B.; Kishore, R.S.K. Effect of ambient light on IgG1 monoclonal antibodies during drug product processing and development. Eur. J. Pharm. Biopharm. 2016, 100, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, S.; Xu, L.; Graham, N.J.D.; Yu, W. Beneficial role of pre- and post-ozonation in a low rate biofiltration-ultrafiltration process treating reclaimed water. Water Res. 2022, 226, 119284. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.; Zhou, Y.; Wang, P.; Lu, W.; Li, P.; Li, X.; Wang, L. A comparison of effect mechanisms of chlorination and ozonation on the interfacial forces of protein at membrane surfaces and the implications for membrane fouling control. J. Membr. Sci. 2021, 628, 119266. [Google Scholar] [CrossRef]
- Koh, L.L.A.; Nguyen, H.T.H.; Chandrapala, J.; Zisu, B.; Ashokkumar, M.; Kentish, S.E. The use of ultrasonic feed pre-treatment to reduce membrane fouling in whey ultrafiltration. J. Membr. Sci. 2014, 453, 230–239. [Google Scholar] [CrossRef]
- Poletto, P.; da Rocha Renosto, D.; Baldasso, C.; Zeni, M.; da Silveira, M.M. Activated charcoal and microfiltration as pretreatment before ultrafiltration of pectinases produced by Aspergillus niger in solid-state cultivation. Sep. Purif. Technol. 2015, 151, 102–107. [Google Scholar] [CrossRef]
- Ng, K.S.Y.; Dunstan, D.E.; Martin, G.J.O. Influence of processing temperature on flux decline during skim milk ultrafiltration. Sep. Purif. Technol. 2018, 195, 322–331. [Google Scholar] [CrossRef]
- Prabhuzantye, T.; Khaire, R.A.; Gogate, P.R. Enhancing the recovery of whey proteins based on application of ultrasound in ultrafiltration and spray drying. Ultrason. Sonochem. 2019, 55, 125–134. [Google Scholar] [CrossRef]
- Holder, A.; Weik, J.; Hinrichs, J. A study of fouling during long-term fractionation of functional peptides by means of cross-flow ultrafiltration and cross-flow electro membrane filtration. J. Membr. Sci. 2013, 446, 440–448. [Google Scholar] [CrossRef]
- Wilharm, C.; Rodgers, V.G.J. Significance of duration and amplitude in transmembrane pressure pulsed ultrafiltration of binary protein mixtures. J. Membr. Sci. 1996, 121, 217–228. [Google Scholar] [CrossRef]
- Suwal, S.; Amiot, J.; Beaulieu, L.; Bazinet, L. Effect of pulsed electric field and polarity reversal on peptide/amino acid migration, selectivity and fouling mitigation. J. Membr. Sci. 2016, 510, 405–416. [Google Scholar] [CrossRef]
- Puri, R.; Singh, U.; O’Mahony, J.A. Influence of processing temperature on membrane performance and characteristics of process streams generated during ultrafiltration of skim milk. Foods 2020, 9, 1721. [Google Scholar] [CrossRef]
- Nath, A.; Eren, B.A.; Csighy, A.; Pásztorné-Huszár, K.; Kiskó, G.; Abrankó, L.; Tóth, A.; Szerdahelyi, E.; Kovács, Z.; Koris, A.; et al. Production of liquid milk protein concentrate with antioxidant capacity, angiotensin converting enzyme inhibitory activity, antibacterial activity, and hypoallergenic property by membrane filtration and enzymatic modification of proteins. Processes 2020, 8, 871. [Google Scholar] [CrossRef]
- Gaviria, Y.S.; Zapata, J.E. Optimization of fractionation with membranes of antioxidant enzymatic hydrolysate of Californian red worm (Eisenia fetida) protein. Heliyon 2024, 10, e31169. [Google Scholar] [CrossRef] [PubMed]
- Tanudjaja, H.J.; Anantharaman, A.; Ng, A.Q.Q.; Ma, Y.; Tanis-Kanbur, M.B.; Zydney, A.L.; Chew, J.W. A review of membrane fouling by proteins in ultrafiltration and microfiltration. J. Water Process Eng. 2022, 50, 103294. [Google Scholar] [CrossRef]
- Ábel, M.; Szabó, G.; Poser, O.; László, Z.; Hodúr, C. Enzyme recovery and fouling mitigation by ultrasound-enhanced ultrafiltration. Desalin. Water Treat. 2013, 51, 4921–4926. [Google Scholar] [CrossRef]
- Chen, G.; Song, W.; Qi, B.; Ghosh, R.; Wan, Y. Separation of human serum albumin and polyethylene glycol by electro-ultrafiltration. Biochem. Eng. J. 2016, 109, 127–136. [Google Scholar] [CrossRef]
- Gironès i Nogué, M.; Akbarsyah, I.J.; Bolhuis-Versteeg, L.A.M.; Lammertink, R.G.H.; Wessling, M. Vibrating polymeric microsieves: Antifouling strategies for microfiltration. J. Membr. Sci. 2006, 285, 323–333. [Google Scholar] [CrossRef]
- Singh, S.M.; Hutchings, R.L.; Mallela, K.M.G. Mechanisms of m-cresol-induced protein aggregation studied using a model protein cytochrome c. J. Pharm. Sci. 2011, 100, 1679–1689. [Google Scholar] [CrossRef]
- Schermeyer, M.-T.; Wöll, A.K.; Kokke, B.; Eppink, M.; Hubbuch, J. Characterization of highly concentrated antibody solution-A toolbox for the description of protein long-term solution stability. mAbs 2017, 9, 1169–1185. [Google Scholar] [CrossRef]
- Zhang, T.; Li, B.; Dong, W.; Wan, Y.; Li, Y. Acidic pH or salt treatment can convert soluble antibody aggregates in culture harvest into monomers and improve Protein A chromatography step yield. Protein Exp. Purif. 2024, 215, 106391. [Google Scholar] [CrossRef]
- Ding, Y.; Xiao, N.; Guo, S.; Lin, J.; Chen, L.; Mou, X.; Ai, M. Impact of NaCl perturbation on physicochemical and structural properties of preheat–treated egg white protein modulating foaming property. Food Chem. 2024, 459, 140377. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.M.; McClements, D.J. Ultrasonic spectrometry study of the influence of temperature on whey protein aggregation. Food Hydrocoll. 1999, 13, 439–444. [Google Scholar] [CrossRef]
- Cao, H.; Sun, R.; Shi, J.; Li, M.; Guan, X.; Liu, J.; Huang, K.; Zhang, Y. Effect of ultrasonic on the structure and quality characteristics of quinoa protein oxidation aggregates. Ultrason. Sonochem. 2021, 77, 105685. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.G.; Katz, J.S.; Ma, H.; Putterman, M.; Yezer, B.A.; Petermann, O.; Reineke, T.M. Effects of hydrophobic tail length variation on surfactant-mediated protein stabilization. Mol. Pharm. 2020, 17, 4302–4311. [Google Scholar] [CrossRef]
- Kim, N.A.; Thapa, R.; Jeong, S.H. Preferential exclusion mechanism by carbohydrates on protein stabilization using thermodynamic evaluation. Int. J. Biol. Macromol. 2018, 109, 311–322. [Google Scholar] [CrossRef]
- Yuen, K.N.; Konermann, L. Mechanism of protein aggregation inhibition by arginine: Blockage of anionic side chains favors unproductive encounter complexes. J. Am. Chem. Soc. 2024, 146, 8394–8406. [Google Scholar] [CrossRef]
- Arakawa, T.; Maluf, N.K. The effects of allantoin, arginine and NaCl on thermal melting and aggregation of ribonuclease, bovine serum albumin and lysozyme. Int. J. Biol. Macromol. 2018, 107, 1692–1696. [Google Scholar] [CrossRef]
- Fukuda, M.; Takahashi, K.; Takarada, T.; Saito, S.; Tanaka, M. Synergistic effect of cyclodextrins and electrolytes at high concentrations on protein aggregation inhibition. J. Pharm. Sci. 2024, 113, 3543–3553. [Google Scholar] [CrossRef]
- Wang, X.; Singh, S.K.; Kumar, S. Potential aggregation-prone regions in complementarity-determining regions of antibodies and their contribution towards antigen recognition: A computational analysis. Pharm. Res. 2010, 27, 1512–1529. [Google Scholar] [CrossRef]
- Butylina, S.; Luque, S.; Nyström, M. Fractionation of whey-derived peptides using a combination of ultrafiltration and nanofiltration. J. Membr. Sci. 2006, 280, 418–426. [Google Scholar] [CrossRef]
- Meng, H.K.; Pang, K.T.; Wan, C.; Zheng, Z.Y.; Beiying, Q.; Yang, Y.; Zhang, W.; Ho, Y.S.; Walsh, I.; Chia, S. Thermal and pH stress dictate distinct mechanisms of monoclonal antibody aggregation. Int. J. Biol. Macromol. 2024, 282, 136601. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Cao, J.; Jiang, L.; Liu, T.; Yi, H. Experimental and molecular dynamics simulation study on the mechanism of β-lactoglobulin self-aggregation induced by ultra-high temperature. LWT 2024, 209, 116782. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, X.; Huang, J.; Wei, Y.; Wen, L.; Yang, F.; Yang, F.; Liu, W. Harnessing ultrasonic power to optimize quinoa byproduct protein for sustainable utilization. LWT 2024, 207, 116629. [Google Scholar] [CrossRef]
- Sharma, N.; Sahil; Madhumita, M.; Kumar, Y.; Prabhakar, P.K. Ultrasonic modulated rice bran protein concentrate: Induced effects on morphological, functional, rheological, and thermal characteristics. Innov. Food Sci. Emerg. 2023, 85, 103332. [Google Scholar] [CrossRef]
- Tao, C.; Ye, T.; Tang, D.; Tian, R.; Xie, Y. Isolation of Prunus persica kernel protein and its physicochemical properties and aggregating performance modulated by heating and ultrasonication. Sustain. Chem. Pharm. 2024, 38, 101508. [Google Scholar] [CrossRef]
- Kim, H.L.; McAuley, A.; Livesay, B.; Gray, W.D.; McGuire, J. Modulation of Protein Adsorption by Poloxamer 188 in Relation to Polysorbates 80 and 20 at Solid Surfaces. J. Pharm. Sci. 2014, 103, 1043–1049. [Google Scholar] [CrossRef]
- Valiño, V.; San Román, M.F.; Ibañez, R.; Ortiz, I. Improved separation of bovine serum albumin and lactoferrin mixtures using charged ultrafiltration membranes. Sep. Purif. Technol. 2014, 125, 163–169. [Google Scholar] [CrossRef]
- Bubela, H.; Konovalova, V.; Kujawa, J.; Kolesnyk, I.; Burban, A.; Kujawski, W. Enhancing of transport parameters and antifouling properties of PVDF membranes modified with Fe3O4 nanoparticles in the process of proteins fractionation. Sep. Purif. Technol. 2023, 325, 124573. [Google Scholar] [CrossRef]
- Yun, K.H.; Sharma, K.; Kim, H.U.; Bae, T.-H. Modification of a PES microfiltration membrane to enhance sterile filtration by inhibiting protein adsorption. J. Ind. Eng. Chem. 2023, 123, 311–319. [Google Scholar] [CrossRef]
- Kanagaraj, P.; Nagendran, A.; Rana, D.; Matsuura, T. Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes. Int. J. Biol. Macromol. 2016, 89, 81–88. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, G.; Yan, Z.; Li, S.; Xu, M.; Wang, C.; Li, Y. Improving the hydrophilicity and antifouling performance of PVDF membranes via PEI amination and further poly (methyl vinyl ether-alt-maleic anhydride) modification. React. Funct. Polym. 2023, 189, 105610. [Google Scholar] [CrossRef]
- Jin, W.; Lin, Y.-F.; Xu, Z.-L.; Li, P.-P.; Dai, J.-Y.; Tong, Y.-H.; Zhang, X. Polyethersulfone membrane modified by zwitterionic groups for improving anti-fouling and antibacterial properties. J. Ind. Eng. Chem. 2023, 122, 274–284. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barredo-Damas, S.; Iborra-Clar, A.; Pascual-Garrido, J.; Iborra-Clar, M.I. Fabrication and Performance of Low-Fouling UF Membranes for the Treatment of Isolated Soy Protein Solutions. Sustainability 2021, 13, 13682. [Google Scholar] [CrossRef]
- Ye, Y.; Han, Q.; Zhao, C.; Ke, W.; Qiu, M.; Chen, X.; Fan, Y. Improved negative charge of tight ceramic ultrafiltration membranes for protein-resistant and easy-cleaning performance. Sep. Purif. Technol. 2023, 309, 123082. [Google Scholar] [CrossRef]
- Almaie, S.; Vatanpour, V.; Rasoulifard, M.H.; Seyed Dorraji, M.S. Novel negatively-charged amphiphilic copolymers of PVDF-g-PAMPS and PVDF-g-PAA to improve permeability and fouling resistance of PVDF UF membrane. React. Funct. Polym. 2022, 179, 105386. [Google Scholar] [CrossRef]
- Xu, Z.; Ma, G.; Rana, D.; Matsuura, T.; Lan, C.Q. Engineering polyvinylidene fluoride membranes using charge tunable dendrimer polyamidoamine to enable microporous membranes for protein separation. Sep. Purif. Technol. 2025, 354, 128887. [Google Scholar] [CrossRef]
- Xu, Z.; Ma, G.; Zhou, H.; Wang, X.; Rana, D.; Matsuura, T.; Lan, C.Q. Polyamidoamine dendrimer-modified polyvinylidene fluoride microporous membranes for protein separation. React. Funct. Polym. 2024, 204, 106021. [Google Scholar] [CrossRef]
- Jhaveri, J.H.; Murthy, Z.V.P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 2016, 379, 137–154. [Google Scholar] [CrossRef]
- Li, N.; Tian, Y.; Zhao, J.; Zhang, J.; Kong, L.; Zhang, J.; Zuo, W. Static adsorption of protein-polysaccharide hybrids on hydrophilic modified membranes based on atomic layer deposition: Anti-fouling performance and mechanism insight. J. Membr. Sci. 2018, 548, 470–480. [Google Scholar] [CrossRef]
- Ji, M.; Li, X.; Omidvarkordshouli, M.; Sigurdardóttir, S.B.; Woodley, J.M.; Daugaard, A.E.; Luo, J.; Pinelo, M. Charge exclusion as a strategy to control retention of small proteins in polyelectrolyte-modified ultrafiltration membranes. Sep. Purif. Technol. 2020, 247, 116936. [Google Scholar] [CrossRef]
- Zhai, W.; Wang, M.; Song, J.; Zhang, L.; Li, X.-M.; He, T. Fouling resistance of 3-[[3-(trimethoxysilane)-propyl] amino] propane-1-sulfonic acid zwitterion modified poly (vinylidene fluoride) membranes. Sep. Purif. Technol. 2020, 239, 116589. [Google Scholar] [CrossRef]
Bioproduct | Feed | Membrane | Preprocessing Method | Performance | Ref. |
---|---|---|---|---|---|
BSA | BSA solution | PVDF UF membrane | Pre-chlorination | FDR: 73% to 39% FRR: 37.1% to 73% | [83] |
Whey protein | Whey protein concentrate 80 | 10 kD flat UF membranes | Ultrasonic pretreatment | Particle size: 24.7 µm to 0.19 µm Viscosity: 3.2 cP to 3.0 cP Flux (23L·m−2·h−1) and FRR (100%) are similar | [84] |
Pectinases | Enzyme extracting solution | 10 kD UF membranes | Adsorption and MF pretreatment | Flux: 11 L·m−2·h−1 to 24 L·m−2·h−1 FDR: 90% to 80% FRR: 27.4% to 57.4% | [85] |
Bioproduct | Feed | Membrane | Optimization Parameters | Performance | Ref. |
---|---|---|---|---|---|
α-lactalbumin | Milk | 10 kD PES membrane | Temperature: 10 °C vs. 50 °C | Flux: 20 to 50 L·m−2·h−1 FDR: 91% to 84% Peptide adsorption: 273.8 to 369.0 mg/m2 | [86] |
Peptides (<10 KDa) | Bovine colostrum whey | 10 kD hollow fiber membrane | Feed flow rates: 9 L·min−1 vs. 3 L·min−1 | Flux: 64.6 to 12.5 L·m−2·h−1 Protein interception: 94% to 96% Peptide penetration: 86% to 87% | [13] |
Antioxidant peptides | Red tilapia viscera hydrolysates | 3 kD ceramic tubular membrane | TMP: 5.6 bar vs. 3.5 bar | Reversible: 1.039 to 3.448 kPa·m2·h·L−1 Irreversible: 10.402 to 7.994 kPa·m2·h·L−1 | [40] |
BSA | Concentrated albumin solutions | 0.45 µm MF membrane | Pumping systems: syringe vs. peristaltic | Initial flux: 0.12 to 0.32 mm·s−1 Steady flux: 0.02 to 0.07 mm·s−1 BSA penetration: 1% to 85% | [42] |
Whey protein | Whey | 10 KD hydrosart membrane | Ultrasound assisted UF | Initial flux: 42 to 39 L·m−2·h−1 Steady flux: 34.5 to 30.6 L·m−2·h−1 Enhancement factor: 1.09 | [87] |
Functional peptides | Micellar casein hydrolysate | 5 kD PES membrane | Apply electric field | Steady flux: 4.5 to 11.9 L·m−2·h−1 Protein mass flow: 9.8 to 36 g·h−1·m−2 | [88] |
BSA | Protein mixture 1% BSA/0.3% IgG | 100 kD PES membrane | Pulsating flow | Average flux: 10.9 to 11 mm·s−1 Sieving coefficient: 0.04 to 0.12 | [89] |
Free amino acids and peptides | Snow crab by-product hydrolysate | 20 kD PES membrane | Pulsed electric field | Energy consumption: 806 to 2258 Wh·g−1 Conductivity: 10.13 to 3.89 mS·cm−1 | [90] |
Bioproduct | Elimination Strategy | Performance | Ref. |
---|---|---|---|
Cytochrome c | Hotspot elimination | Tmagg increase rate: 23 °C/% vol/vol aggregation inducer | [98] |
Antibody | Stay away pI | Monomer increased 3.6% [99]; Monomer increase: 79–91% [100] | [99,100] |
Egg white protein | Appropriate salt | Average size: 220 nm to 180 nm Apparent viscosity: 10−1 to 10−2 Pa·s | [101] |
Whey protein | Temperature: 30 °C to 90 °C | Aggregates size: 10 µm to1 µm | [102] |
Quinoa protein | Ultrasonic treatment | Particle size: 886 nm to 494 nm Surface hydrophobicity: 500 to 1200 unit Zeta potential: −15 to −29 unit | [103] |
IgG Etanercept Myoglobin Lysozyme Insulin | Protein stabilizer | Aggregation degree: 1.4% to 0 [104]; Tmagg average increase 4 °C [105]; Soluble protein fraction: ~20% to 78% [106]; Not detected aggregates at 100 mM [107]; Tmagg increase: 68.4 °C to >90 °C [108] | [104,105,106,107,108] |
Bioproduct | Modification Method | Membrane Characteristics | Performance | Ref. |
---|---|---|---|---|
Lysozyme | Surface coating | Contact angle: 68° to 51° Water flux: 45 to 72 L·m−2·h−1·bar−1 | FRR: 63.4% to 73.8% FRir: 36.6% to 19.2% | [118] |
BSA | Blending | Contact angle: 100° to 71° Water flux: 11,210 to 12,140 L·m−2·h−1·bar−1 | BSA adsorption: 44 to 23 mg/m2 FDR: 66% to 50% FRir: 45% to 13% | [119] |
egg albumin | Blending | Contact angle: 70° to 46° Water flux: 17 to 101 L·m−2·h−1 | Protein flux: 10 to 65 L·m−2·h−1 FRR: 68% to 85% | [120] |
BSA | Covalent modification | Contact angle: 85° to 55° Water flux: 30 to 210 L·m−2·h−1 | BSA adsorption: 54 to 6 μg·cm−2 FRR: 62% to 97% FRir: 66% to 3% | [121] |
BSA | Blending | Contact angle: 80° to 58° Water flux: 120 to 260 L·m−2·h−1 | BSA adsorption: 171 to 60 μg·cm−2 FRR: 70% to 94% FRir: 30% to 7% | [122] |
Soy Protein | Blending | Water Permeability: 69 to 17 mm·s−1 bar−1 | Initial flux: 57 to 46 mm·s−1 FDR: 28% to 42% | [123] |
BSA | Grafting modification | Zeta potential: −5.1 to −24.6 mV | BSA adsorption rate: 21% to 6% FRR: 69% to 93% FDR: 55% to 38% | [124] |
BSA | Blending | Contact angle: 76° to 54° Zeta potential: −18 to −43 mV Water flux: 98 to 337 L·m−2·h−1 | BSA flux: 68 to 201 L·m−2·h−1 FRR: 74% to 100% FRir: 26% to 0 | [125] |
Whey protein | Grafting modification | Contact angle: 77.8° to 53° Zeta potential: −42 to −55 mV Water flux: 274 to 487 L·m−2·h−1 | Protein flux: 15.3 to 30.3 L·m−2·h−1 Protein retention: 58.9% to 79% | [126] |
Whey protein | Grafting modification | Contact angle: 89.9° to 57° Zeta potential: −42 to −64 mV Water flux: 274 to 61 L·m−2·h−1 | Protein flux: 15.3 to 2.3 L·m−2·h−1 Protein retention: 58.9% to 98.8% | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Duan, L.; Wu, H. Challenges Associated with Membrane Separation of Polypeptides and Relevant Solution Strategies. Separations 2025, 12, 238. https://doi.org/10.3390/separations12090238
Yang Y, Duan L, Wu H. Challenges Associated with Membrane Separation of Polypeptides and Relevant Solution Strategies. Separations. 2025; 12(9):238. https://doi.org/10.3390/separations12090238
Chicago/Turabian StyleYang, Yu, Lei Duan, and Hao Wu. 2025. "Challenges Associated with Membrane Separation of Polypeptides and Relevant Solution Strategies" Separations 12, no. 9: 238. https://doi.org/10.3390/separations12090238
APA StyleYang, Y., Duan, L., & Wu, H. (2025). Challenges Associated with Membrane Separation of Polypeptides and Relevant Solution Strategies. Separations, 12(9), 238. https://doi.org/10.3390/separations12090238