Parameter Optimization Considering the Variations Both from Materials and Process: A Case Study of Scutellaria baicalensis Extract
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Herb Materials
2.2. Experimental Methods
2.2.1. Reference Solution Preparation
2.2.2. Preparation of Test Solution
2.2.3. Analytic Procedure
2.2.4. Determination of Critical Process Evaluation Indicators
2.2.5. Research on Herb Properties
2.2.6. Experiment Design
2.3. Data Processing
2.3.1. CMA Screening and Process Modeling
2.3.2. Design Space Calculation
3. Results
3.1. Properties of Decoction
3.2. Potential CMAs Identified
3.3. Influences of CMAs and CPPs
3.4. Design Space Calculation and Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QbD | Quality by Design |
CPP | critical process parameter |
CMA | critical material attribute |
CQA | critical quality attribute |
LOD | limits of detection |
LOQ | limits of quantification |
DSD | Definitive Screening Design |
HPLC | high-performance liquid chromatography |
References
- State Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; State Pharmacopoeia Commission: Ghaziabad, India, 2020. [Google Scholar]
- Zhang, H.; Chen, Q.; Zhou, W.; Gao, S.; Lin, H.; Ye, S.; Xu, Y.; Cai, J. Chinese medicine Injection Shuanghuanglian for treatment of acute upper respiratory tract infection: A systematic review of randomized controlled trials. Evid. Based Complement. Alternat Med. 2013, 2013, 987326. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Howard, O.M.Z.; Yang, X.; Wang, L.; Oppenheim, J.J.; Krakauer, T. Effects of Shuanghuanglian and Qingkailing, two multi-components of traditional Chinese medicinal preparations, on human leukocyte function. Life Sci. 2002, 70, 2897–2913. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.Y.; Li, C.H.; Dou, J.X.; Liang, J.; Chen, Z.Q.; Xu, Z.S.; Wang, T. Research progress on pharmacological properties and application of probiotics in the fermentation of Scutellaria baicalensis Georgi. Front. Nutr. 2024, 11, 1407182. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.Q.; Wang, Y.Z.; Zhao, C.X.; Zhao, B.Y.; Wang, J.G. Baicalin: An active natural product with potential medicinal values. J. Asian Nat. Prod. Res. 2025, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liang, H.; Lu, X.; Cai, S.; Wang, B.; Zhao, Y. Flavonoids from Scutellaria baicalensis and their bioactivities. J. Peking Univ. Health Sci. 2009, 41, 578–584. [Google Scholar] [CrossRef]
- Cai, J.Y.; Hu, Q.C.; He, Z.L.; Chen, X.Y.; Wang, J.; Yin, X.; Ma, X.; Zeng, J.H. Scutellaria baicalensis Georgi and their natural flavonoid compounds in the treatment of ovarian cancer: A review. Molecules 2023, 28, 5082. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Kim, K.; Kwon, D.; Kim, J.K.; Sathasivam, R.; Park, S.U. Effects of different solvents on the extraction of phenolic and flavonoid compounds, and antioxidant activities, in Scutellaria baicalensis hairy roots. Horticulturae 2024, 10, 160. [Google Scholar] [CrossRef]
- Pei, T.L.; Yan, M.X.; Huang, Y.B.; Wei, Y.K.; Martin, C.; Zhao, Q. Specific flavonoids and their biosynthetic pathway in Scutellaria baicalensis. Front. Plant Sci. 2022, 13, 866282. [Google Scholar] [CrossRef] [PubMed]
- Miao, N.; Yun, C.; Han, S.L.; Shi, Y.T.; Gao, Y.; Wu, S.; Zhao, Z.W.; Wang, H.M.; Wang, W.J. Postharvest UV-A radiation affects flavonoid content, composition, and bioactivity of Scutellaria baicalensis root. Postharvest Biol. Technol. 2022, 189, 111933. [Google Scholar] [CrossRef]
- Vrabec, R.; Vokurková, D.; Tumová, L.; Cheel, J. Ex-vivo immune-stimulating activity of Scutellaria baicalensis and its major flavonoids on human immune cells. Rec. Nat. Prod. 2022, 16, 188–193. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, Q.; Guan, J.; Wang, Y.; Gong, X. Identification of critical sections in the preparation of Scutellaria baicalensis extract. Cent. South Pharm. 2023, 21, 123–129. [Google Scholar]
- ICH Guidelines. ICH Q8 (R2) International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Available online: https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf (accessed on 20 May 2025).
- Gong, X.C.; Chen, T.; Qu, H.B. Research advances in secondary development of Chinese patent medicines based on quality by design concept. China J. Chin. Mater. Medica 2017, 42, 1031–1036. [Google Scholar] [CrossRef]
- Watson, T.; Nosal, R.; Lepore, J.; Montgomery, F. Misunderstanding design space: A robust drug product control strategy is the key to quality assurance. J. Pharm. Innov. 2018, 13, 283–285. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Yao, J.; Liu, H.; Gong, X. Research on multi-parameter optimization of the process of Ginkgo biloba leaf extract considering quality variations among raw material batches. Chin. J. Pharm. 2025, 56, 378–388+395. [Google Scholar] [CrossRef]
- Gong, X.C.; Li, Y.; Guo, Z.T.; Qu, H.B. Control the effects caused by noise parameter fluctuations to improve pharmaceutical process robustness: A case study of design space development for an ethanol precipitation process. Sep. Purif. Technol. 2014, 132, 126–137. [Google Scholar] [CrossRef]
- Tai, Y.; Qu, H.; Gong, X. Design space calculation and continuous improvement considering a noise parameter: A case study of ethanol precipitation process optimization for the Carthami Flos extract. Separations 2021, 8, 74. [Google Scholar] [CrossRef]
- Dyrstad, K.; Westad, F. Interpretation of high dimensional definitive screening designs assisted by bootstrapped partial least squares regression. Chemom. Intell. Lab. Syst. 2024, 253, 105218. [Google Scholar] [CrossRef]
- Zhong, W.; Chen, S.; Zhang, J.; Wang, Y.; Liu, A. Which one is more important, raw materials or productive technology?—A case study for quality consistency control of Gegen Qinlian decoction. China J. Chin. Mater. Medica 2016, 41, 1027–1032. [Google Scholar] [CrossRef]
- Pan, J. Research on the Control Strategy of Traditional Chinese Medicine Ethanol Precipitation Process Based on a Membrane Dispersion Micromixer. Master’s Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar]
- Shen, J. Study on the Quality Control Method of Critical Purification Processes of Lonicerae Japonicae Flos Extract. Master’s Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Shao, J.; Qu, H.; Gong, X. Comparison of two algorithms for development of design space-overlapping method and probability-based method. China J. Chin. Mater. Medica 2018, 43, 2074–2080. [Google Scholar] [CrossRef]
Herb Identification Number | Batch of Herbs | Manufacturer |
---|---|---|
S1 | B2008191-01 | Hebei Chufeng Decoction Pieces Co., Ltd. (Hebei, China) |
S2 | 210301 | Anhui Daoyuantang Decoction Pieces Co., Ltd. (Anhui, China) |
S3 | 168210701 | Hebei Linyitang Pharmaceutical Co., Ltd. (Hebei, China) |
S4 | 168200601 | Hebei Linyitang Pharmaceutical Co., Ltd. (Hebei, China) |
S5 | 201101 | Anhui Daoyuantang Decoction Pieces Co., Ltd. (Anhui, China) |
S6 | 211109 | Bozhou Kangyiyin Biotechnology Co., Ltd. (Bozhou, China) |
S7 | 211112 | Luan Danbell Biological Technology Co., Ltd. (Luan, China) |
S8 | 168211001 | Hebei Linyitang Pharmaceutical Co., Ltd. (Hebei, China) |
S9 | 168201702 | Hebei Linyitang Pharmaceutical Co., Ltd. (Hebei, China) |
Experiment Numbers | Number of Herb Material | pH of First Acid Precipitation X1 | First Temperature Holding Time (min) X2 | pH of Alkalization X3 | Ethanol Amount (g/g) X4 | End pH of Ethanol Washing X5 |
---|---|---|---|---|---|---|
1 | S1 | 0.8 | 35 | 7.0 | 1.2 | 4.88 |
2 | S2 | 2.2 | 35 | 7.5 | 0.8 | 4.35 |
3 | S3 | 1.5 | 30 | 7.0 | 1.0 | 4.47 |
4 | S1 | 2.2 | 30 | 6.5 | 1.2 | 4.34 |
5 | S2 | 1.5 | 35 | 7.5 | 1.2 | 4.29 |
6 | S4 | 0.8 | 25 | 6.5 | 1.2 | 4.75 |
7 | S5 | 1.5 | 25 | 6.5 | 0.8 | 4.01 |
8 | S4 | 0.8 | 30 | 7.5 | 0.8 | 4.18 |
9 | S5 | 2.2 | 25 | 7.0 | 0.8 | 4.04 |
10 | S6 | 0.8 | 35 | 6.5 | 0.8 | 4.10 |
11 | S7 | 0.8 | 25 | 7.5 | 1.0 | 4.43 |
12 | S6 | 2.2 | 35 | 6.5 | 1.0 | 3.96 |
13 | S7 | 2.2 | 25 | 7.5 | 1.2 | 4.25 |
14 | S3 | 1.5 | 30 | 7.0 | 1.0 | 4.19 |
15 | S3 | 1.5 | 30 | 7.0 | 1.0 | 3.96 |
16 | S8 | 1.5 | 30 | 7.0 | 1.0 | 4.29 |
17 | S9 | 1.5 | 30 | 7.0 | 1.0 | 4.00 |
Experiment Numbers | Number of Herb Material | The Yield of Baicalin (mg/g) Z1 | The Yield of Wogonoside (mg/g) Z2 | The Yield of Baicalein (mg/g) Z3 | The Yield of Total Solids (mg/g) Z4 | Purity of Baicalin (%) Z5 | Purity of Wogonoside (%) Z6 | Purity of Baicalein (%) Z7 |
---|---|---|---|---|---|---|---|---|
1 | S1 | 99.29 | 21.00 | 2.12 | 387.9 | 25.59 | 5.41 | 0.55 |
2 | S2 | 90.78 | 19.11 | 1.97 | 458.7 | 19.79 | 4.17 | 0.43 |
3 | S3 | 95.75 | 20.80 | 1.35 | 441.2 | 21.70 | 4.71 | 0.31 |
4 | S1 | 99.29 | 21.00 | 2.12 | 387.9 | 25.59 | 5.41 | 0.55 |
5 | S2 | 90.78 | 19.11 | 1.97 | 458.7 | 19.79 | 4.17 | 0.43 |
6 | S4 | 82.74 | 20.17 | 1.75 | 491.2 | 16.84 | 4.11 | 0.36 |
7 | S5 | 70.81 | 17.27 | 2.64 | 466.3 | 15.18 | 3.70 | 0.57 |
8 | S4 | 82.74 | 20.17 | 1.75 | 491.2 | 16.84 | 4.11 | 0.36 |
9 | S5 | 70.81 | 17.27 | 2.64 | 466.3 | 15.18 | 3.70 | 0.57 |
10 | S6 | 93.78 | 20.62 | 1.91 | 440.4 | 21.29 | 4.68 | 0.43 |
11 | S7 | 89.23 | 19.12 | 1.28 | 399.4 | 22.34 | 4.79 | 0.32 |
12 | S6 | 93.78 | 20.62 | 1.91 | 440.4 | 21.29 | 4.68 | 0.43 |
13 | S7 | 89.23 | 19.12 | 1.28 | 399.4 | 22.34 | 4.79 | 0.32 |
14 | S3 | 95.75 | 20.80 | 1.35 | 441.2 | 21.70 | 4.71 | 0.31 |
15 | S3 | 95.75 | 20.80 | 1.35 | 441.2 | 21.70 | 4.71 | 0.31 |
16 | S8 | 86.21 | 21.18 | 0.910 | 453.9 | 18.99 | 4.67 | 0.20 |
17 | S9 | 82.20 | 19.17 | 1.59 | 476.7 | 17.24 | 4.02 | 0.33 |
Yield of Baicalin (mg/g) | Yield of Wogonoside (mg/g) | Yield of Baicalein (mg/g) | Yield of Total Solids (mg/g) | Purity of Baicalin (%) | Purity of Wogonoside (%) | |
---|---|---|---|---|---|---|
Yield of Wogonoside (mg/g) | Z2 | 0.808 (0.000) | ||||
Yield of Baicalein (mg/g) | Z3 | −0.413 (0.099) | −0.559 (0.020) | |||
Yield of Total Solids (mg/g) | Z4 | −0.630 (0.007) | −0.297 (0.247) | 0.138 (0.597) | ||
Purity of Baicalin (%) | Z5 | 0.914 (0.000) | 0.640 (0.006) | −0.292 (0.255) | −0.887 (0.000) | |
Purity of Wogonoside (%) | Z6 | 0.866 (0.000) | 0.747 (0.001) | −0.366 (0.149) | −0.854 (0.000) | 0.960 (0.000) |
Purity of Baicalein (%) | Z7 | −0.199 (0.444) | −0.424 (0.090) | 0.954 (0.000) | −0.155 (0.552) | −0.012 (0.965) |
Experiment Number | Number of Herb Materials | Yield of Baicalin (mg/g) Y1 | Yield of Wogonoside (mg/g) Y2 | Yield of Baicalein (mg/g) Y3 | Yield of Total Solids (mg/g) Y4 |
---|---|---|---|---|---|
1 | S1 | 1.860 | 0.03220 | 0.01670 | 2.840 |
2 | S2 | 17.64 | 0.2544 | 0.1662 | 24.87 |
3 | S3 | 36.04 | 0.4843 | 0.2334 | 49.33 |
4 | S1 | 17.45 | 0.1378 | 0.05260 | 21.96 |
5 | S2 | 16.50 | 0.1568 | 0.05890 | 21.16 |
6 | S4 | 5.630 | 0.0739 | 0.02130 | 8.590 |
7 | S5 | 29.38 | 0.2767 | 0.1501 | 40.12 |
8 | S4 | 24.50 | 0.3717 | 0.07680 | 32.70 |
9 | S5 | 31.76 | 0.3138 | 0.1044 | 41.46 |
10 | S6 | 26.66 | 0.3221 | 0.1861 | 35.27 |
11 | S7 | 6.640 | 0.0981 | 0.01220 | 9.500 |
12 | S6 | 30.29 | 0.2195 | 0.1066 | 40.62 |
13 | S7 | 17.22 | 0.1622 | 0.05430 | 22.78 |
14 | S3 | 22.51 | 0.3169 | 0.1213 | 30.39 |
15 | S3 | 28.81 | 0.2877 | 0.2636 | 37.40 |
16 | S8 | 24.92 | 0.3156 | 0.04880 | 32.94 |
17 | S9 | 20.73 | 0.2179 | 0.1128 | 26.66 |
Terms | Y1 | Y2 | Y3 | Y4 | ||||
---|---|---|---|---|---|---|---|---|
Regression Coefficient | P | Regression Coefficient | P | Regression Coefficient | P | Regression Coefficient | P | |
constant | 150.72 | - | 0.6993 | - | 5.77 | - | 187.96 | - |
Z1 | 0.0045 | <0.0001 | ||||||
X1 | ||||||||
X2 | −0.0039 | 0.0044 | ||||||
X3 | ||||||||
X4 | −0.2558 | <0.0001 | −18.14 | 0.0665 | ||||
X5 | −30.65 | <0.0001 | −2.53 | 0.0007 | −33.57 | <0.0001 | ||
X22 | 0.00002 | 0.0118 | ||||||
X52 | −0.0077 | 0.0516 | 0.2751 | 0.0012 | ||||
X1X3 | 0.0018 | 0.0008 | ||||||
X2X3 | 0.0002 | 0.0005 | ||||||
X4X5 | −0.0818 | 0.0005 | ||||||
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||||
R2 | 0.8223 | 0.8422 | 0.9593 | 0.8474 | ||||
0.8104 | 0.8058 | 0.9276 | 0.8256 |
Critical Process Evaluation Indicators | Lower Limits | Minimum Probability of Reaching the Criteria |
---|---|---|
The yield of baicalin (mg/g) | 13 | ≥80% |
The yield of wogonoside (mg/g) | 0.1 | |
The yield of baicalein (mg/g) | 0.03 | |
The yield of total solids (mg/g) | 15 |
Experimental Conditions and Process Evaluation Indicators | Inside Design Space | ||||||
---|---|---|---|---|---|---|---|
V1 | V2 | V3 | V4 | V5 | V6 | ||
Z1 | 85.468 | 85.468 | 85.468 | 90.127 | 90.127 | 90.127 | |
X1 | 2.2 | 2.2 | 2.2 | 1.3 | 1.3 | 1.3 | |
X2 | 35 | 35 | 35 | 30 | 30 | 30 | |
X3 | 6.564 | 6.551 | 6.511 | 7.536 | 7.567 | 7.507 | |
X4 | 0.8 | 0.8 | 0.8 | 0.9 | 0.9 | 0.9 | |
X5 | 4.137 | 4.115 | 4.068 | 4.132 | 4.157 | 4.257 | |
Y1 | Predicted values (mg/g) | 23.91 | 24.58 | 26.02 | 24.06 | 23.29 | 20.23 |
Measured values (mg/g) | 34.97 | 37.25 | 38.57 | 25.31 | 19.97 | 26.89 | |
Y2 | Predicted values (mg/g) | 0.2871 | 0.2891 | 0.2931 | 0.3152 | 0.3127 | 0.3029 |
Measured values (mg/g) | 0.2782 | 0.3205 | 0.3225 | 0.3183 | 0.2710 | 0.3717 | |
Y3 | Predicted values (mg/g) | 0.0468 | 0.0524 | 0.0633 | 0.1478 | 0.1389 | 0.1103 |
Measured values (mg/g) | 0.1321 | 0.2179 | 0.1186 | 0.0840 | 0.0758 | 0.1107 | |
Y4 | Predicted values (mg/g) | 34.57 | 35.31 | 35.66 | 32.93 | 32.09 | 28.73 |
Measured values (mg/g) | 38.64 | 44.85 | 47.64 | 29.64 | 25.60 | 34.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Tang, Z.; Chen, B.; Gong, X. Parameter Optimization Considering the Variations Both from Materials and Process: A Case Study of Scutellaria baicalensis Extract. Separations 2025, 12, 165. https://doi.org/10.3390/separations12060165
Zhang X, Tang Z, Chen B, Gong X. Parameter Optimization Considering the Variations Both from Materials and Process: A Case Study of Scutellaria baicalensis Extract. Separations. 2025; 12(6):165. https://doi.org/10.3390/separations12060165
Chicago/Turabian StyleZhang, Xuecan, Zhilong Tang, Bo Chen, and Xingchu Gong. 2025. "Parameter Optimization Considering the Variations Both from Materials and Process: A Case Study of Scutellaria baicalensis Extract" Separations 12, no. 6: 165. https://doi.org/10.3390/separations12060165
APA StyleZhang, X., Tang, Z., Chen, B., & Gong, X. (2025). Parameter Optimization Considering the Variations Both from Materials and Process: A Case Study of Scutellaria baicalensis Extract. Separations, 12(6), 165. https://doi.org/10.3390/separations12060165