Analysis on the Main Components of Selenium-Enriched Premna microphylla Leaves and Processed Tofu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instruments
2.3. Selenium Enrichment Cultivation
2.4. Preparation of Chai Tofu
2.5. Quantitation and Composition Analysis on Chai Tofu Pectin
2.6. Flavonoids Analysis
2.7. Analysis on Phenolics, Chlorophylls, Carotenoids, and Protein of P. microphylla Leaves
3. Results
3.1. Composition of Selenized P. microphylla Pectin: Glucose, Fructose, and Mannose
3.2. The Other Functional Components: Phenolics, Flavonoids, Chlorophylls, Carotenoids, and Proteins
3.3. Selenium Enrichment Promotes Accumulation of Phenolics, Carotenoids, and Chlorophylls
4. Discussion
4.1. Pectin and Selenized Pectin: Important Functional Food Sources
4.2. The Main Medicinal Components: Kaempferol and Phenolics
4.3. Other Functional Components:
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marilisa, A.; Monica, A. Re-thinking functional food development through a holistic approach. J. Funct. Foods 2021, 81, 104466. [Google Scholar] [CrossRef]
- Oboh, G. Phytomedicine and functional foods: Keys to sustainable healthcare delivery. J. Food Biochem. 2021, 45, 13634. [Google Scholar] [CrossRef] [PubMed]
- Diniz, T.C.; Silva, J.C.; Lima-Saraiva, S.R.G. The Role of Flavonoids on Oxidative Stress in Epilepsy. Oxid. Med. Cell Longevevity 2015, 2015, 171756. [Google Scholar] [CrossRef]
- Peluso, I.; Miglio, C.; Morabito, G.; Ioannone, F.; Serafini, M. Flavonoids and immune function in human: A systematic review. Crit. Rev. Food Sci. Nutr. 2015, 55, 383–395. [Google Scholar] [CrossRef]
- Zhang, L.; Reddy, N.; Koyyalamudi, S.R. Isolation, Characterization, and Biological Activities of Polysaccharides from Medicinal Plants and Mushrooms. Stud. Nat. Prod. Chem. 2014, 42, 117–151. [Google Scholar] [CrossRef]
- Shrestha, G.; Clair, L.L.; O’Neill, K.L. The Immunostimulating Role of Lichen Polysaccharides: A Review. Phytother. Res. 2015, 29, 317–322. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Mishra, V.K.; Bacheti, R.K.; Husen, A. Medicinal Uses of Chlorophyll: A critical overview. In Chlorophyll: Structure, Function and Medicinal Uses; Hua Le, H., Salcedo, E., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 177–196. Available online: https://www.novapublishers.com/catalog/product_info.php?products_id=22468 (accessed on 21 May 2025)ISBN 978-1-62100-015-0.
- Feller, R.; Ângelo, P.M.; Mazzutti, S.; Moecke, E.H.S.; Junior, A.F. Polyunsaturated ω-3 and ω-6 fatty acids, total carotenoids and antioxidant activity of three marine microalgae extracts obtained by supercritical CO2 and subcritical n -butane. J. Supercritic. Fluid. 2018, 133, 437–443. [Google Scholar] [CrossRef]
- Sun, Y.W.; Qiu, H.C.; Ming-Chun, O.U.; Chen, R.L.; Liang, G. Saponins isolated from Schizocapsa plantaginea inhibit human hepatocellular carcinoma cell growth in vivo and in vitro via mitogen-activated protein kinase signaling. Chin. J. Nat. Med. 2018, 16, 29–40. [Google Scholar] [CrossRef]
- Liu, M.W.; Wei, R.; Su, M.X.; Li, H.; Fang, T.W.; Zhang, W. Effects of Panax notoginseng saponins on severe acute pancreatitis through the regulation of mTOR/Akt and caspase-3 signaling pathway by up regulating miR-181b expression in rats. BMC Complement. Altern. Med. 2018, 18, 51. [Google Scholar] [CrossRef]
- Zhan, Z.J.; Tang, L.; Shan, W.G. A new triterpene glycoside from Premna microphylla. Chem. Nat. Comp. 2009, 45, 197–199. [Google Scholar] [CrossRef]
- Hu, Z.; Xue, Y.; Yao, G.; Luo, Z.; Wang, Y.; Zhang, Y. Chemical constituents from the leaves of Premna microphylla Turcz. J. Chin. Pharm. Sci. 2013, 22, 431–434. [Google Scholar] [CrossRef]
- Wang, D.Y.; Xu, S.Y. Two new xanthones from Premna microphylla. Nat. Prod. Res. 2003, 17, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Wang, W.; Li, Y.X.; Khan, G.J.; Chen, Y.; Shen, T. Identification of phytochemicals and antioxidant activity of Premna microphylla Turcz. stem through UPLC-LTQ-Orbitrap-MS. Food Chem. 2022, 373, 131482. [Google Scholar] [CrossRef]
- Wen, S.; Hui, Y.; Chuang, W. Biosynthesis and antioxidation of nano-selenium using lemon juice as a reducing agent. Green. Process. Synth. 2021, 10, 178–188. [Google Scholar] [CrossRef]
- Subha, V.; Shanmugam, K.; Sahadevan, R. In Vivo Studies and Flow Cytometric Investigation on Anticancer Potential of Selenium Nanoparticles Synthesized via Aqueous Extract of Clerodendron phlomidis. Proc. Antica. Res. 2024, 8, 71–81. [Google Scholar] [CrossRef]
- Debata, N.R.; Sethy, K.; Swain, R.K.; Mishra, S.K.; Panda, N.; Maity, S. Supplementation of nano-selenium (SeNPs) improved growth, immunity, antioxidant enzyme activity, and selenium retention in broiler chicken during summer season. Trop. Anim. Health Prod. 2023, 55, 260. [Google Scholar] [CrossRef]
- Pourmoradian, S.; Rezazadeh, L.; Tutunchi, H.; Ostadrahimi, A. Selenium and zinc supplementation in HIV-infected patients. Int. J. Vitam. Nutr. Res. 2024, 94, 153–159. [Google Scholar] [CrossRef]
- Hadrup, N.; Ravn-Haren, G. Toxicity of repeated oral intake of organic selenium, inorganic selenium, and selenium nanoparticles: A review. J. Trace Elem. Med. Biol. 2023, 79, 127235. [Google Scholar] [CrossRef]
- Sors, T.G.; Ellis, D.R.; Salt, D.E. Selenium uptake, translocation, assimilationand metabolic fate in plants. Photosynth. Res. 2005, 86, 373–389. [Google Scholar] [CrossRef]
- Dong, J.Z.; Liu, M.R.; Lei, C.; Zheng, X.J.; Wang, Y. Effects of selenium and light wavelengths on liquid culture of Cordyceps militaris link. Appl. Biochem. Biotechnol. 2012, 166, 2030–2036. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.Z.; Wang, Y.; Wang, S.H.; Yin, L.P.; Xu, G.J.; Zheng, C.; Lei, C.; Zhang, M.Z. Selenium Increases Chlorogenic Acid, Chlorophyll and Carotenoids of Lycium chinense Leaves. J. Sci. Food Agri. 2013, 93, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Ma, Q.; Tang, Q.; Ai, X.; Zhou, Z.; Yao, L.; Wang, Y.; Wang, Q.; Dong, J. Sodium selenite regulates phenolica and tuber development of purple potatoes. Sci. Hortic. 2014, 165, 142–147. [Google Scholar] [CrossRef]
- Xu, W.; Wang, G.H.; Wang, C.W.; Chen, Y.Q.; Wng, W.G.; Zhang, J.F. Determination of Premna microphylla pectin content by carbazole spectrophotometric method. Food Mach. 2006, 22, 133–135. [Google Scholar]
- Alnsour, L.; Issa, R.; Awwad, S.; Albals, D.; Al-Momani, I. Quantification of Total Phenols and Antioxidants in Coffee Samples of Different Origins and Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules 2022, 27, 1591. [Google Scholar] [CrossRef]
- Ritika, B.Y.; Bhupender, S.K.; Baljeet, S.Y. Electrophoretic characterization and functional properties of rice proteins from Indian rice cultivars. Int. J. Food Props. 2013, 16, 1776–1788. [Google Scholar] [CrossRef]
- Yuan, B.; Yang, X.Q.; Kou, M.; Lu, C.Y.; Wang, Y.Y.; Peng, J. Selenylation of polysaccharide from the sweet potato and evaluation of antioxidant, antitumor, and antidiabetic activities. J. Agric. Food Chem. 2017, 65, 605. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, C.; Huang, S.C.; Jiang, C.J. Selenium polysaccharide SPMP-2a from Pleurotus geesteranus alleviates H2O2-induced oxidative damage in HaCaT cells. Biomed. Res. Int. 2017, 2017, 4940384. [Google Scholar] [CrossRef]
- Yue, Y.Y.; Wang, B.T.; Xi, W.X.; Liu, X.; Tang, S.; Tan, X.; Li, G.J.; Huang, L.H.; Liu, Y.; Bai, J.Y. Modification methods, biological activities and applications of pectin: A review. Int. J. Biol. Macromol. 2023, 253, 127523. [Google Scholar] [CrossRef]
- Emran, T.B.; Islam, F.; Mitra, S.; Paul, S.; Nath, N.; Khan, Z.; Das, R.; Chandran, D.; Sharma, R.; Lima, C.M.G.; et al. Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules 2022, 27, 7405. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, T.; Wang, H. Physicochemical properties, structure and biological activities of a novel low-molecular-weight hawthorn pectin. Process Biochem. 2022, 122, 282–291. [Google Scholar] [CrossRef]
- Nan, H.E.; Jing, M.A.; Mei-Rui, Q. Advanced research of intestinal microbes and epigenetic modification, and tumor prevention and treatment. Infect. Dis. Inf. 2019, 32, 304–311. [Google Scholar]
- Yang, X. Dietary pectin from Premna microphylla Turcz leaves prevents obesity by regulating gut microbiota and lipid metabolism in mice fed high-fat diet. Foods 2024, 13, 2248. [Google Scholar] [CrossRef] [PubMed]
- Song, S.Y.S. Polysaccharides from Premna microphylla Turcz ameliorate inflammation via the enhancement of intestinal resistance in host. J. Ethnopharmacol. 2021, 276, 11428. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, L.; He, Y.; Miao, J. Effects of dietary supplementation with k-selenocarrageenan on the selenium accumulation and intestinal microbiota of the sea cucumbers Apostichopus japonicus. Biol. Trace Elem. Res. 2021, 199, 2753–2763. [Google Scholar] [CrossRef]
- Wang, K.; Qin, L.; Cao, J.; Zhang, L.; Liu, M.; Qu, C. k-Selenocarrageenan oligosaccharides prepared by deep-sea enzyme alleviate inflammatory responses and modulate gut microbiota in ulcerative colitis mice. Int. J. Mol. Sci. 2023, 24, 4672. [Google Scholar] [CrossRef]
- Lv, J.L.; Luo, Z.X.; Huang, D.Q. The therapeutic potential of kaempferol in the prevention and treatment of pulmonary diseases: A bibliometric analysis. Asian J. Surg. 2025, 48, 494–495. [Google Scholar] [CrossRef]
- Xu, C.Y.; Zhang, X.X.; Wang, Y.H.; Wang, Y.; Zhou, Y.X.; Li, F.F.; Hou, X.L.; Xia, D.Z. Dietary kaempferol exerts anti-obesity effects by inducing the browing of white adipocytes via the AMPK/SIRT1/PGC-1α signaling pathway. Cur. Res. Food Sci. 2024, 8, 100728. [Google Scholar] [CrossRef]
- Song, C.M.; Zheng, W.; Song, C.Y.; Zhou, H.F.; Yao, J.Y. Protective Effects of Food-Derived Kaempferol on Pancreaticβ-Cells in Type 1 Diabetes Mellitus. Foods 2024, 13, 3797. [Google Scholar] [CrossRef]
- Wang, A.; Yang, J.L.; Deng, J.P.; Wang, K.T.; Chen, G.D.; Lin, D.S. Kaempferol promotes flap survival by inhibiting ferroptosis and inflammation through network pharmacology and in vivo experiments. Wound Repair. Regen. 2025, 33, 13250. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Zheng, J.; Wang, D.C.; Wang, Z.Y.; Hong, M.; Zhou, Y.X. Kaempferol modulates ɑ2M secretion in bone marrow-derivedmacrophages by downregulating GR/PER1-mediated lipid metabolism toattenuate the emotional stress-aggravated metastasis of prostate cancer. J. Ethnopharmacol. 2025, 339, 119162. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chu, T.J.; Sun, X.; Zhuang, S.; Hou, D.B.; Zhang, Z.H.; Sun, J.L.; Liu, Y.H.; Li, J.; Bian, Y.F. Polyphenols-rich Portulaca oleracea L. (purslane) alleviates ulcerative colitis through restiring the intestinal barrier, gut microbiota and metabolites. Food Chem. 2025, 468, 142391. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.X.; Huang, H.; Du, Y.L.; Zhao, J.Q.; Yu, S.Y.; Lin, Y.H.; Chen, Y.; Shan, C.H.; Zhao, Y.; Belwal, T.; et al. Sea buckthorn polyphenols on gastrointestinal health and the interactions with gut microbiota. Food Chem. 2025, 469, 142591. [Google Scholar] [CrossRef]
- Pandey, V.; Chur, A.; Pandey, H.K.; Nasim, M. Estimation of ascorbic acid, ß carotene, total chlorophyll, phenolics and antioxidant activity of some European vegetables grown in mid hill conditions of western Himalaya. J. New Biol. Rep. 2018, 4, 238–242. [Google Scholar]
- Kaur, R.; Manchanda, P.; Sidhu, G.S. Optimization of extraction of bioactive phenolics and their antioxidant potential from callus and leaf extracts of Stevia rebaudiana Bertoni. J. Food Meas. Charact. 2022, 16, 461–470. [Google Scholar] [CrossRef]
- Balaky, H.H.; Galali, Y.M.; Osman, A.A.; Eyyüp, K.; Hakk, M. Evaluation of antioxidant and antimicrobial activities of mandarin peel (Citrus reticulata Blanco) with microwave assisted extract using two different solvents. Asian J. Plant Sci. 2020, 19, 223–229. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Cai, P.; Cheng, G.H.; Zhang, Y.Q. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1–14. [Google Scholar] [CrossRef]
- Huang, Z.; Xing, G.; Tu, C.; Rui, X.; Dong, M. Effect of Premna microphylla Turcz leaves’ extract addition on physicochemical and antioxidant properties of packed tofu by lactic fermentation. Int. J. Food Sci. Technol. 2020, 55, 2541–2550. [Google Scholar] [CrossRef]
- Huang, P.H.; Chen, Y.J.; Lin, Y.W.; Huang, D.W. Gelatin-kappa-carrageenan-based edible film incorporated with ethanol extracts from Premna microphylla Turcz leaves for preservation of sailfish fillets. LWT 2024, 208, 116710. [Google Scholar] [CrossRef]
- Murshed, H.M.; Uddin, M.N.; Ashrafuzzaman, M. Variation of phenolics, antioxidant activity and carotenoids contents in some medicinal plants. J. Bangladesh Agri. Univ. 2021, 19, 178–183. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Shokramraji, Z.; Tavakkoli, S.; Mihaylova, D.; Lante, A. Chlorophylls as Natural Bioactive Compounds Existing in Food By-Products: A Critical Review. Plants 2023, 12, 1533. [Google Scholar] [CrossRef] [PubMed]
Compounds | Kaempferol (%, DW) | Phenolics (%, DW) | Proteins (%, DW) | Pectins (%, DW) | Chlorophyll (mg/kg, FW) | Carotenoids (mg/kg, FW) |
---|---|---|---|---|---|---|
Leaves | 5.19 ± 0.55 | 7.33 ± 1.43 | 12.5 ± 2.27 | 25.71 ± 3.66 | 1.25 ± 0.35 | 1.66 ± 0.25 |
Chai Tofu | 3.83 ± 0.33 | 5.36 ± 1.72 | 9.25 ± 2.11 | 22.94 ± 6.88 | 0.85 ± 0.22 | 0.82 ± 0.15 |
Peaks | Components | MW | [M + H]+ | [M − H]− | UV Spectra (nm) | Retention Time (min) |
---|---|---|---|---|---|---|
1 | Kaempferol | 286 | 287.1/243.1/157.1 | 284.8/255.1 | 266.1, 301 (sh), 369.5 | 7.007 |
Selenium (mg/kg) | Kaempferol (%) | Phenolics (%) | Chlorophylls (mg/kg) | Carotenoids (mg/kg) | Proteins (%) | Pectins (%) |
---|---|---|---|---|---|---|
R2 | 0.989 | 0.994 | 0.94 | 0.948 | 0.093 | 0.404 |
10 | 5.45 ± 0.33 | 7.56 ± 1.05 | 1.73 ± 0.6 | 1.87 ± 0.35 | 12.73 ± 1.17 | 25.88 ± 3.96 |
20 | 5.75 ± 0.17 | 8.15 ± 2.25 | 2.05 ± 0.65 | 1.96 ± 0.5 | 12.34 ± 2.58 | 26.43 ± 5.05 |
30 | 6.05 ± 0.28 | 8.86 ± 1.33 | 2.25 ± 0.73 | 2.36 ± 0.25 | 12.58 ± 3.29 | 25.95 ± 3.16 |
40 | 6.52 ± 0.14 | 9.36 ± 1.35 | 2.55 ± 0.5 | 2.87 ± 0.45 | 11.52 ± 2.75 | 26.1 ± 5.35 |
50 | 6.95 ± 0.23 | 9.85 ± 2.15 | 3.25 ± 0.57 | 3.44 ± 0.61 | 12.66 ± 2.32 | 26.85 ± 5.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chen, C.; Mou, F.; Wang, B.; Dong, J. Analysis on the Main Components of Selenium-Enriched Premna microphylla Leaves and Processed Tofu. Separations 2025, 12, 143. https://doi.org/10.3390/separations12060143
Wang J, Chen C, Mou F, Wang B, Dong J. Analysis on the Main Components of Selenium-Enriched Premna microphylla Leaves and Processed Tofu. Separations. 2025; 12(6):143. https://doi.org/10.3390/separations12060143
Chicago/Turabian StyleWang, Jianan, Chunli Chen, Fangjie Mou, Bin Wang, and Jingzhou Dong. 2025. "Analysis on the Main Components of Selenium-Enriched Premna microphylla Leaves and Processed Tofu" Separations 12, no. 6: 143. https://doi.org/10.3390/separations12060143
APA StyleWang, J., Chen, C., Mou, F., Wang, B., & Dong, J. (2025). Analysis on the Main Components of Selenium-Enriched Premna microphylla Leaves and Processed Tofu. Separations, 12(6), 143. https://doi.org/10.3390/separations12060143