Development and Validation of a Method for the Analysis of Multiple Pesticides in Fishery Products Using Gas Chromatography with Micro-Electron Capture Detection and Gas Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Sample Preparation
2.3. Sample Extraction and Purification
- (1)
- d-SPE purification: The ACN upper layer (1 mL) was transferred into a 2 mL centrifuge tube containing 150 mg of MgSO4, 100 mg of PSA, and 100 mg of C18. The mixture was vortexed for 1 min and centrifuged at 2000× g at 4 °C for 5 min. The final supernatant was used as the test solution.
- (2)
- Cartridge purification: A 2.5 mL ACN solution was concentrated with a rotary evaporator at 30 °C, then resuspended in 2.5 mL hexane. The Florisil cartridge was activated by passing 5 mL of hexane through it at a flow rate of 2–3 drops/s, with the eluate discarded. Subsequently, 2 mL of the sample dissolved in hexane was passed through the cartridge at the same flow rate and collected in a test tube. Eluent (5 mL, 50% DCM, 3.5% ACN, 46.5% hexane) was added 1 mL at a time and collected in the same test tube. The collected solution was concentrated under nitrogen at 40 °C and dissolved in 1 mL of hexane. The solution was vortexed thoroughly and analyzed using gas chromatography with micro-electron capture detection (GC-μECD) and gas chromatography–tandem mass spectrometry (GC-MS/MS).
2.4. Method Validation
2.5. ME
2.6. Instrumental Analysis
3. Results
3.1. Purification Efficiency
3.2. Sample-Specific ME
3.3. LOD, LOQ, and Recovery Rate
- Abalone: 64.2–105.5% (LOQ), 63.7–96.9% (10×LOQ), and 62.6–88.8% (50×LOQ);
- Eel: 96.7–109.3%, 99.0–111.6%, and 103.9–117.9%;
- Olive flounder: 86.0–119.1%, 69.6–104.1%, and 87.5–114.1%;
- Whiteleg shrimp: 78.3–109.0%, 72.8–102.7%, and 76.1–101.9%.
- The RSD values were as follows:
- Abalone: 1.1–19.8%, 1.0–18.6%, and 0.7–16.8%;
- Eel: 0.7–1.5%, 1.6–2.7%, and 0.4–1.7%;
- Olive flounder: 1.4–10.4%, 0.9–16.7%, and 2.0–10.5%;
- Whiteleg shrimp: 0.6–11.6%, 0.8–19.5%, and 3.0–10.5%.
3.4. Calibration Curve and Linearity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Helfrich, L.A.; Weigmann, D.L.; Hipkins, P.A.; Stinson, E.R. Pesticides and Aquatic Animals: A Guide to Reducing Impacts on Aquatic Systems; Virginia Cooperative Extension: Blacksburg, VA, USA, 2009. [Google Scholar]
- Kim, J.H. Pesticide and its importance. Safe Food 2007, 2, 48–52. [Google Scholar]
- Aktar, M.W.; SenGupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Afful, S.; Anim, A.K.; Serfor-Armah, Y. Spectrum of organochlorine pesticide residues in fish samples from the Densu Basin. Res. J. Environ. Earth Sci. 2010, 2, 133–138. [Google Scholar]
- Ccanccapa, A.; Masiá, A.; Navarro-Ortega, A.; Picó, Y.; Barceló, D. Pesticides in the Ebro River basin: Occurrence and risk assessment. Environ. Pollut. 2016, 211, 414–424. [Google Scholar] [CrossRef]
- Hwang, I.S.; Oh, Y.J.; Kwon, H.Y.; Ro, J.H.; Kim, D.B.; Moon, B.C.; Oh, M.S.; Noh, H.H.; Park, S.W.; Choi, G.H.; et al. Monitoring of pesticide residues concerned in stream water. Korean J. Environ. Agric. 2019, 38, 173–184. [Google Scholar] [CrossRef]
- Albanis, T.A.; Hela, D.G.; Sakellarides, T.M.; Konstantinou, I.K. Monitoring of pesticide residues and their metabolites in surface and underground waters of Imathia (N. Greece) by means of solid-phase extraction disks and gas chromatography. J. Chromatogr. A 1998, 823, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Meylan, W.M.; Howard, P.H.; Boethling, R.S.; Aronson, D.; Printup, H.; Gouchie, S. Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environ. Toxicol. Chem. 1999, 18, 664–672. [Google Scholar] [CrossRef]
- Garabrant, D.H.; Held, J.; Langholz, B.; Peters, J.M.; Mack, T.M. DDT and related compounds and risk of pancreatic cancer. J. Natl. Cancer Inst. 1992, 84, 764–771. [Google Scholar] [CrossRef]
- Adami, H.O.; Lipworth, L.; Titus-Ernstoff, L.; Hsieh, C.C.; Hanberg, A.; Ahlborg, U.; Baron, J.; Trichopoulos, D.; Trichopoulos, D. Organochlorine compounds and estrogen-related cancers in women. Cancer Causes Control 1995, 6, 551–566. [Google Scholar] [CrossRef]
- Magnusson, K.; Ekelund, R.; Grabic, R.; Bergqvist, P.A. Bioaccumulation of PCB congeners in marine benthic infauna. Mar. Environ. Res. 2006, 61, 379–395. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, B.J.; Kim, J.K.; Kim, W.I.; Hong, S.M.; Im, G.J.; Hong, M.K. Risk assessment for aquatic organisms of pesticides detected in water phase of six major rivers in Korea. Korean J. Pestic. Sci. 2011, 15, 48–54. [Google Scholar]
- Suzuki, T.; Kondo, H.; Yaguchi, K.; Maki, T.; Suga, T. Estimation of leachability and persistence of pesticides at golf courses from point-source monitoring and model to predict pesticide leaching to groundwater. Environ. Sci. Technol. 1998, 32, 920–929. [Google Scholar] [CrossRef]
- Choi, J.Y.; Yang, D.B.; Hong, G.H.; Kim, S.H.; Chung, C.S.; Kim, K.R.; Cho, K.D. Potential human risk assessment of PCBs and OCPs in edible fish collected from the offshore of Busan. J. Korean Soc. Environ. Eng. 2012, 34, 810–820. [Google Scholar] [CrossRef]
- Macgregor, K.; Oliver, I.W.; Harris, L.; Ridgway, I.M. Persistent organic pollutants (PCB, DDT, HCH, HCB & BDE) in eels (Anguilla anguilla) in Scotland: Current levels and temporal trends. Environ. Pollut. 2010, 158, 2402–2411. [Google Scholar] [CrossRef] [PubMed]
- Sharifiarab, G.; Ahmadi, M.; Shariatifar, N.; Ariaii, P. Investigating the effect of type of fish and different cooking methods on the residual amount of polycyclic aromatic hydrocarbons (PAHs) in some Iranian fish: A health risk assessment. Food Chem. X 2023, 19, 100789. [Google Scholar] [CrossRef]
- Mills, P.A.; Onley, J.H.; Gaither, R.A. Rapid method for chlorinated pesticide residues in nonfatty foods. J. Assoc. Off. Agric. Chem. 1963, 46, 186–191. [Google Scholar] [CrossRef]
- Luke, M.A.; Doose, G.M. A modification of the Luke multiresidue procedure for low moisture, nonfatty products. Bull. Environ. Contam. Toxicol. 1983, 30, 110–116. [Google Scholar] [CrossRef]
- Luke, M.A.; Froberg, J.E.; Masumoto, H.T. Extraction and cleanup of organochlorine, organophosphate, organonitrogen, and hydrocarbon pesticides in produce for determination by gas-liquid chromatography. J. Assoc. Off. Anal. Chem. 1975, 58, 1020–1026. [Google Scholar] [CrossRef]
- Wilkowska, A.; Biziuk, M. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem. 2011, 125, 803–812. [Google Scholar] [CrossRef]
- Schenck, F.J.; Callery, P.; Gannett, P.M.; Daft, J.R.; Lehotay, S.J. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods. J. AOAC Int. 2002, 85, 1177–1180. [Google Scholar] [CrossRef]
- Camel, V. Microwave-assisted solvent extraction of environmental samples. TrAC Trends Anal. Chem. 2000, 19, 229–248. [Google Scholar] [CrossRef]
- Giergielewicz-Możajska, H.; Dąbrowski, Ł.; Namieśnik, J. Accelerated solvent extraction (ASE) in the analysis of environmental solid samples—Some aspects of theory and practice. Crit. Rev. Anal. Chem. 2001, 31, 149–165. [Google Scholar] [CrossRef]
- Barker, S.A. Applications of matrix solid-phase dispersion in food analysis. J. Chromatogr. A 2000, 880, 63–68. [Google Scholar] [CrossRef]
- Ling, Y.C.; Teng, H.C. Supercritical fluid extraction and clean-up of organochlorine pesticides and polychlorinated biphenyls in mussels. J. Chromatogr. A 1997, 790, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Koesukwiwat, U.; Lehotay, S.J.; Mastovska, K.; Dorweiler, K.J.; Leepipatpiboon, N. Extension of the QuEChERS method for pesticide residues in cereals to flaxseeds, peanuts, and doughs. J. Agric. Food Chem. 2010, 58, 5950–5958. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety (MFDS). Guidelines for Establishing Standard Procedures for Food Testing Methods; Ministry of Food and Drug Safety (MFDS): Cheongju-si, Republic of Korea, 2016.
- Lehotay, S.J. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef]
- McMahon, B.M.; Wagner, R.F. (Eds.) Pesticide Analytical Manual, 3rd ed.; U.S. Food and Drug Administration: Washington, DC, USA, 1994; Volume I.
- Codex Alimentarius Commission. Procedural Manual, 27th ed.; Food and Agricultural Organization of the United Nations/World Health Organization: Rome, Italy, 2019; pp. 77–79. [Google Scholar]
- Kim, Y.H.; Hong, S.M.; Son, K.A.; Lee, J.Y.; Min, Z.W.; Kwon, H.Y.; Kim, T.K.; Kyung, K.S.; Kyung, K.S. The analysis of pesticide residue in leafy vegetables using the modified QuEChERS pre-treatment methods. Korean J. Pestic. Sci. 2012, 16, 121–130. [Google Scholar] [CrossRef]
- Kristenson, E.M.; Brinkman, U.; Ramos, L. Recent advances in matrix solid-phase dispersion. TrAC Trends Anal. Chem. 2006, 25, 96–111. [Google Scholar] [CrossRef]
- Long, A.R.; Soliman, M.M.; Barker, S.A. Matrix solid phase dispersion (MSPD) extraction and gas chromatographic screening of nine chlorinated pesticides in beef fat. J. Assoc. Off. Anal. Chem. 1991, 74, 493–496. [Google Scholar] [CrossRef]
- Doong, R.A.; Lee, C.Y. Determination of organochlorine pesticide residues in foods using solid-phase extraction clean-up cartridges. Analyst 1999, 124, 1287–1289. [Google Scholar] [CrossRef]
- Koc, F.; Karakus, E. Determination of organochlorinated pesticide residues by gas chromatography-mass spectrometry after elution in a Florisil column. Kafkas Univ. Vet. Fak. Derg. 2011, 17, 65–70. [Google Scholar]
- Chatterjee, N.S.; Utture, S.; Banerjee, K.; Ahammed Shabeer, T.P.; Kamble, N.; Mathew, S.; Ashok Kumar, K. Multiresidue analysis of multiclass pesticides and polyaromatic hydrocarbons in fatty fish by gas chromatography tandem mass spectrometry and evaluation of matrix effect. Food Chem. 2016, 196, 1–8. [Google Scholar] [CrossRef]
- Kung, T.A.; Tsai, C.W.; Ku, B.C.; Wang, W.H. A generic and rapid strategy for determining trace multiresidues of sulfonamides in aquatic products by using an improved QuEChERS method and liquid chromatography–electrospray quadrupole tandem mass spectrometry. Food Chem. 2015, 175, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M.V.; Postigo, C.; Guillem-Argiles, N.; Monllor-Alcaraz, L.S.; Simionato, J.I.; Stella, E.; Barceló, D.; López de Alda, M.L.; López de Alda, M. Analysis of 52 pesticides in fresh fish muscle by QuEChERS extraction followed by LC-MS/MS determination. Sci. Total Environ. 2019, 653, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Holmes, B.; Dunkin, A.; Schoen, R.; Wiseman, C. Single-laboratory ruggedness testing and validation of a modified QuEChERS approach to quantify 185 pesticide residues in salmon by liquid chromatography– and gas chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2015, 63, 5100–5106. [Google Scholar] [CrossRef]
Parameters | Condition | ||
---|---|---|---|
Column | DB-5MS UI (30 m × 250 µm × 0.25 µm) | ||
Flow rate | 1.2 mL/min | ||
Injection volume | 1 µL | ||
Injection mode | Split mode (5:1) | ||
Carrier gas | He | ||
Injection temp. | 260 °C | ||
Oven temp. | Rate (°C/min) | Value (°C) | Hold time (min) |
60 | 0.2 | ||
20 | 180 | 0 | |
15 | 250 | 3 | |
20 | 300 | 5 | |
MS/MS condition | |||
Ion source | EI | ||
Source temp. | 250 °C | ||
Electron energy | 70 eV |
Pesticide | Retention Time (min) | Precursor Ion (m/z) | Product Ion (m/z) | Collision Energy (eV) |
---|---|---|---|---|
4,4′-DDD | 12.011 | 237 | 165 | 35 |
235 | 165 | 30 | ||
4,4′-DDT | 12.593 | 237 | 165 | 35 |
235 | 165 | 35 | ||
Alachlor | 9.598 | 237 | 160 | 10 |
188 | 160 | 10 | ||
Atrazine | 8.538 | 215 | 200 | 45 |
215 | 58 | 25 | ||
Boscalid | 16.491 | 140 | 112 | 15 |
140 | 76 | 35 | ||
Carfentrazone-ethyl | 12.361 | 340 | 312 | 15 |
312 | 151 | 30 | ||
Chlorpyrifos | 10.106 | 314 | 258 | 25 |
199 | 171 | 20 | ||
α-Endosulfan | 11.052 | 241 | 206 | 20 |
205 | 170 | 20 | ||
Fenitrothion | 9.841 | 277 | 260 | 5 |
277 | 109 | 20 | ||
Heptachlor | 9.648 | 274 | 237 | 20 |
272 | 237 | 20 | ||
Heptachlor epoxide (cis) | 10.638 | 353 | 253 | 20 |
217 | 182 | 30 | ||
Iprobenfos | 9.165 | 204 | 121 | 45 |
204 | 91 | 10 | ||
Mirex | 14.826 | 272 | 237 | 20 |
272 | 143 | 50 | ||
270 | 235 | 20 | ||
Prometryn | 9.616 | 241 | 199 | 5 |
241 | 184 | 15 | ||
Terbutryn | 9.787 | 241 | 185 | 5 |
185 | 170 | 10 | ||
Tetraconazole | 10.179 | 336 | 218 | 25 |
336 | 204 | 40 | ||
Trifluralin | 8.044 | 306 | 264 | 10 |
264 | 206 | 5 | ||
α-HCH (α-BHC) | 8.31 | 217 | 181 | 20 |
181 | 145 | 25 | ||
γ-HCH (γ-BHC, Lindane) | 8.73 | 217 | 181 | 10 |
181 | 145 | 20 |
Instrument | Agilent 7890A gas chromatograph equipped with μECD (Agilent Technologies, Santa Clara, CA, USA) |
Column | HP-5 30 m length × 250 μm ID × 0.25 μm film thickness |
Temperature | Inlet 260 °C Oven 70 °C (2 min) → 5 °C/min → 158 °C (3 min) → 10 °C/min → 185 °C → 15 °C/min → 195 °C → 20 °C/min → 240 °C (5 min) → 30 °C/min → 300 °C (15 min) Detector 300 °C |
Flow rate | Carrier gas (N2) 1.2 mL/min |
Injection volume | 1 μL |
Split ratio | 5:1 |
Pesticides | Matrix Effect (%) | |||||||
---|---|---|---|---|---|---|---|---|
Abalone | Eel | Olive Flounder | Whiteleg Shrimp | |||||
d-SPE 1 | Cartridge 2 | d-SPE | Cartridge | d-SPE | Cartridge | d-SPE | Cartridge | |
4,4′-DDD | 17.7 | −11.8 | 10.7 | −13.6 | 17.0 | 8.3 | −19.9 | −4.5 |
4,4′-DDT | 34.2 | −14.2 | 24.5 | −15.7 | 11.8 | 6.8 | −17.8 | 0.0 |
Alachlor | 35.8 | −28.1 | 31.0 | −20.9 | 19.2 | 18.2 | −43.2 | −23.2 |
Atrazine | 31.8 | −16.6 | 19.9 | −11.5 | 12.0 | 9.7 | −28.5 | −5.7 |
Boscalid | 86.2 | −33.3 | 103.0 | −24.2 | 135.2 | 78.4 | −56.7 | −38.6 |
Carfentrazone-ethyl | 10.9 | −37.6 | 7.3 | −26.3 | 34.1 | 37.1 | −45.7 | −4.7 |
Chlorpyrifos | 21.0 | 7.1 | 24.1 | 2.0 | 10.6 | 8.4 | −15.2 | −8.9 |
α-Endosulfan | 17.4 | 6.2 | 1.8 | 9.0 | 17.1 | 0.1 | −17.1 | −15.7 |
Fenitrothion | 54.2 | −5.4 | 15.3 | −35.3 | 49.0 | 52.5 | −27.3 | −11.9 |
Heptachlor | 24.6 | 6.9 | 28.3 | 1.1 | 11.5 | 4.7 | −13.6 | −11.3 |
Heptachlor epoxide (cis) | 75.7 | −5.7 | 17.8 | −7.2 | −0.1 | −4.8 | −19.6 | −7.1 |
Iprobenfos | 49.5 | −37.4 | 24.3 | −36.9 | 43.7 | 30.7 | −38.7 | −1.3 |
Mirex | 14.5 | −8.9 | 16.1 | −8.1 | 13.5 | 12.5 | −17.8 | −4.3 |
Prometryn | 26.8 | −14.1 | 15.9 | −30.4 | 29.9 | 30.9 | −32.5 | −5.8 |
Terbutryn | 45.2 | 76.7 | 32.3 | −18.4 | 9.4 | 18.9 | −36.8 | 4.0 |
Tetraconazole | 36.9 | −4.3 | 29.1 | −22.9 | 31.0 | 26.7 | −38.9 | −7.6 |
Trifluralin | 20.3 | −5.2 | 11.7 | −10.3 | 13.2 | 3.4 | −16.7 | −4.7 |
α-HCH (α-BHC) | −4.6 | −8.5 | −5.8 | 5.6 | 4.1 | −11.3 | −12.4 | 13.7 |
γ-HCH (γ-BHC, Lindane) | 15.4 | 1.9 | 10.0 | −3.3 | 3.7 | 1.0 | −11.8 | −0.9 |
Pesticides | Matrix | Linearity (R2) | LOD (ng/g Wet Mass) | LOQ (ng/g Wet Mass) | Recovery (%) ± SD 1 | RSD 2 (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
LOQ | 10×LOQ | 50×LOQ | LOQ | 10×LOQ | 50×LOQ | |||||
4,4′-DDD | Eel | 0.99896 | 2 | 7 | 102.6 ± 1.1 | 103.4 ± 2.3 | 107.8 ± 1.1 | 1.0 | 2.2 | 1.0 |
Olive flounder | 0.99944 | 2 | 7 | 101.0 ± 1.6 | 102.0 ± 2.4 | 108.0 ± 4.7 | 1.5 | 2.3 | 4.3 | |
Avalone | 0.99968 | 2 | 7 | 82.6 ± 2.2 | 78.2 ± 0.8 | 81.6 ± 5.4 | 2.6 | 1.0 | 6.6 | |
Whiteleg shrimp | 0.99933 | 2 | 7 | 98.8 ± 1.4 | 98.6 ± 1.7 | 99.8 ± 3.3 | 1.4 | 1.7 | 3.3 | |
4,4′-DDT | Eel | 0.99748 | 2 | 7 | 102.4 ± 1.0 | 103.0 ± 2.3 | 107.6 ± 1.2 | 0.9 | 2.2 | 1.1 |
Olive flounder | 0.99537 | 3 | 9 | 101.4 ± 2.3 | 104.1 ± 2.2 | 109.8 ± 5.6 | 2.2 | 2.1 | 5.1 | |
Avalone | 0.99948 | 2 | 7 | 86.0 ± 1.5 | 81.2 ± 2.5 | 86.8 ± 5.8 | 1.7 | 3.0 | 6.6 | |
Whiteleg shrimp | 0.99881 | 2 | 7 | 101.6 ± 2.4 | 102.7 ± 2.3 | 101.9 ± 4.4 | 2.3 | 2.2 | 4.3 | |
Alachlor | Eel | 0.99944 | 2 | 7 | 103.2 ± 1.0 | 105.0 ± 2.1 | 110.8 ± 1.2 | 0.9 | 2.0 | 1.0 |
Olive flounder | 0.99916 | 2 | 8 | 93.2 ± 2.7 | 92.2 ± 0.9 | 93.1 ± 3.5 | 2.8 | 0.9 | 3.7 | |
Avalone | 0.99341 | 2 | 7 | 82.1 ± 3.3 | 78.2 ± 3.9 | 79.3 ± 2.6 | 4.0 | 4.9 | 3.2 | |
Whiteleg shrimp | 0.99969 | 2 | 7 | 86.9 ± 3.3 | 81.0 ± 4.7 | 81.7 ± 4.8 | 3.7 | 5.8 | 5.8 | |
Atrazine | Eel | 0.99946 | 2 | 7 | 96.7 ± 1.5 | 99.0 ± 1.8 | 103.9 ± 1.9 | 1.5 | 1.8 | 1.8 |
Olive flounder | 0.99974 | 2 | 7 | 97.4 ± 1.7 | 94.7 ± 3.4 | 97.7 ± 3.7 | 1.7 | 3.5 | 3.7 | |
Avalone | 0.99812 | 2 | 7 | 83.3 ± 2.7 | 76.6 ± 3.5 | 78.9 ± 2.9 | 3.2 | 4.5 | 3.6 | |
Whiteleg shrimp | 0.99868 | 2 | 7 | 82.9 ± 4.8 | 83.6 ± 3.1 | 81.5 ± 5.9 | 5.7 | 3.7 | 7.2 | |
Boscalid | Eel | 0.99728 | 2 | 7 | 107.2 ± 1.5 | 109.1 ± 2.6 | 116.4 ± 2.0 | 1.3 | 2.3 | 1.7 |
Olive flounder | 0.99976 | 2 | 7 | 86.0 ± 4.0 | 69.6 ± 7.1 | 68.4 ± 6.0 | 4.6 | 10.2 | 8.7 | |
Avalone | 0.99630 | 2 | 7 | 73.3 ± 11.6 | 72.5 ± 2.9 | 68.0 ± 11.4 | 15.8 | 4.0 | 16.8 | |
Whiteleg shrimp | 0.99449 | 2 | 7 | 81.8 ± 9.5 | 72.8 ± 2.8 | 78.34 ± 2.4 | 11.6 | 3.8 | 3.0 | |
Carfentrazone-ethyl | Eel | 0.99640 | 2 | 7 | 104.4 ± 1.2 | 105.8 ± 1.7 | 111.2 ± 0.5 | 1.1 | 1.6 | 0.4 |
Olive flounder | 0.99808 | 2 | 7 | 92.0 ± 5.4 | 82.5 ± 5.7 | 84.8 ± 3.6 | 5.8 | 6.9 | 4.2 | |
Avalone | 0.99794 | 2 | 7 | 70.5 ± 14.0 | 68.7 ± 12.8 | 67.6 ± 4.9 | 19.8 | 18.6 | 7.2 | |
Whiteleg shrimp | 0.99910 | 2 | 7 | 82.5 ± 8.7 | 90.4 ± 10.6 | 91.9 ± 3.7 | 10.5 | 11.7 | 4.0 | |
Chlorpyrifos | Eel | 0.99968 | 2 | 7 | 101.9 ± 1.1 | 104.2 ± 2.4 | 109.4 ± 1.0 | 1.0 | 2.3 | 0.9 |
Olive flounder | 0.99948 | 2 | 7 | 91.4 ± 4.0 | 89.4 ± 6.4 | 95.2 ± 3.1 | 4.3 | 7.1 | 3.2 | |
Avalone | 0.99931 | 2 | 7 | 84.0 ± 3.3 | 78.24 ± 1.5 | 80.79 ± 4.7 | 3.9 | 1.9 | 5.8 | |
Whiteleg shrimp | 0.99857 | 2 | 7 | 87.9 ± 2.7 | 84.81 ± 3.6 | 85.06 ± 3.6 | 3.0 | 4.2 | 4.2 | |
α-Endosulfan | Eel | 0.99809 | 2 | 7 | 103.5 ± 1.2 | 105.0 ± 2.2 | 111.1 ± 0.8 | 1.1 | 2.0 | 0.7 |
Olive flounder | 0.99891 | 2 | 7 | 89.5 ± 5.5 | 87.6 ± 5.7 | 92.6 ± 3.2 | 6.1 | 6.5 | 3.4 | |
Avalone | 0.99825 | 2 | 7 | 83.8 ± 7.7 | 85.68 ± 6.3 | 83.48 ± 9.5 | 9.1 | 7.3 | 11.3 | |
Whiteleg shrimp | 0.99890 | 2 | 7 | 90.05 ± 8.3 | 95.57 ± 4.3 | 87.11 ± 7.1 | 9.2 | 4.4 | 8.1 | |
Fenitrothion | Eel | 0.99936 | 2 | 7 | 103.1 ± 1.5 | 105.0 ± 2.6 | 111.3 ± 1.1 | 1.4 | 2.4 | 0.9 |
Olive flounder | 0.99977 | 2 | 7 | 97.3 ± 2.6 | 89.8 ± 2.3 | 93.6 ± 4.1 | 2.6 | 2.5 | 4.3 | |
Avalone | 0.99413 | 2 | 7 | 85.82 ± 1.9 | 79.21 ± 4.2 | 83.19 ± 6.5 | 2.2 | 5.3 | 0.7 | |
Whiteleg shrimp | 0.99846 | 2 | 7 | 86.55 ± 2.8 | 96.93 ± 6.6 | 96.46 ± 10.2 | 3.2 | 6.8 | 10.5 | |
Heptachlor | Eel | 0.99912 | 2 | 7 | 100.8 ± 0.8 | 103.4 ± 2.5 | 109.0 ± 1.7 | 0.7 | 2.4 | 1.5 |
Olive flounder | 0.99895 | 2 | 7 | 94.2 ± 2.8 | 96.5 ± 2.6 | 101.2 ± 4.3 | 2.9 | 2.6 | 4.2 | |
Avalone | 0.99896 | 2 | 7 | 87.18 ± 1.0 | 86.38 ± 2.3 | 88.38 ± 3.9 | 1.1 | 6.1 | 4.4 | |
Whiteleg shrimp | 0.99943 | 2 | 7 | 98.06 ± 0.6 | 97.97 ± 2.8 | 96.21 ± 3.1 | 0.6 | 2.8 | 3.2 | |
Heptachlor epoxide (cis) | Eel | 0.99804 | 2 | 7 | 101.5 ± 1.5 | 104.2 ± 2.9 | 109.4 ± 1.1 | 1.4 | 2.7 | 1.0 |
Olive flounder | 0.99891 | 2 | 7 | 98.1 ± 2.6 | 100.1 ± 4.4 | 105.2 ± 4.4 | 6.8 | 4.3 | 4.1 | |
Avalone | 0.99472 | 2 | 7 | 83.23 ± 6.7 | 80.25 ± 3.0 | 85.7 ± 10.5 | 8.0 | 3.7 | 12.2 | |
Whiteleg shrimp | 0.99808 | 2 | 7 | 98.4 ± 7.0 | 96.04 ± 5.1 | 73.91 ± 2.4 | 0.6 | 5.3 | 3.2 | |
Iprobenfos | Eel | 0.99172 | 2 | 7 | 103.8 ± 1.2 | 106.2 ± 2.3 | 112.3 ± 1.4 | 1.1 | 2.1 | 1.2 |
Olive flounder | 0.99955 | 2 | 7 | 97.8 ± 1.8 | 88.7 ± 1.4 | 89.0 ± 4.3 | 1.8 | 1.5 | 4.8 | |
Avalone | 0.99932 | 2 | 7 | 81.62 ± 2.1 | 78.88 ± 2.3 | 78.44 ± 4.9 | 2.5 | 2.9 | 6.2 | |
Whiteleg shrimp | 0.99823 | 2 | 7 | 84.45 ± 4.1 | 84.08 ± 4.0 | 83.05 ± 4.1 | 4.8 | 4.7 | 4.9 | |
Mirex | Eel | 0.99953 | 3 | 9 | 107.62 ± 1.7 | 111 ± 2.8 | 117.63 ± 1.7 | 1.5 | 2.5 | 1.4 |
Olive flounder | 0.99842 | 2 | 7 | 103.06 ± 2.2 | 102.6 ± 1.1 | 108.36 ± 2.6 | 2.1 | 1.0 | 2.3 | |
Avalone | 0.99952 | 2 | 7 | 68.38 ± 1.1 | 65.89 ± 0.8 | 68.78 ± 2.8 | 1.6 | 1.2 | 4.0 | |
Whiteleg shrimp | 0.99955 | 2 | 7 | 80.51 ± 0.9 | 81.72 ± 0.8 | 80.91 ± 3.1 | 1.1 | 0.9 | 3.8 | |
Prometryn | Eel | 0.99880 | 3 | 10 | 106.19 ± 2.2 | 109.1 ± 3.0 | 115.9 ± 1.8 | 2.0 | 2.7 | 1.5 |
Olive flounder | 0.99921 | 3 | 10 | 87.10 ± 1.5 | 82.75 ± 2.8 | 87.49 ± 2.5 | 1.7 | 3.3 | 2.8 | |
Avalone | 0.99933 | 2 | 8 | 64.22 ± 3.5 | 63.77 ± 3.1 | 62.61 ± 4.9 | 5.4 | 4.8 | 7.8 | |
Whiteleg shrimp | 0.99909 | 3 | 9 | 80.79 ± 2.9 | 75.48 ± 2.9 | 76.07 ± 6.7 | 3.5 | 3.8 | 8.8 | |
Terbutryn | Eel | 0.99806 | 2 | 8 | 103.78 ± 1.1 | 109.65 ± 3.5 | 115.79 ± 1.2 | 1.0 | 3.1 | 1.0 |
Olive flounder | 0.99791 | 2 | 8 | 99.42 ± 2.1 | 92.69 ± 5.4 | 97.86 ± 2.2 | 2.1 | 5.8 | 2.2 | |
Avalone | 0.99788 | 2 | 7 | 85.28 ± 4.0 | 80.53 ± 2.6 | 65.45 ± 9.2 | 4.6 | 3.2 | 14 | |
Whiteleg shrimp | 0.99936 | 2 | 7 | 78.26 ± 6.7 | 75.17 ± 6.5 | 76.16 ± 4 | 8.5 | 8.6 | 5.2 | |
Tetraconazole | Eel | 0.99184 | 2 | 7 | 106.56 ± 1.2 | 111.0 ± 2.5 | 117.09 ± 2.2 | 1.1 | 2.2 | 1.8 |
Olive flounder | 0.99586 | 2 | 7 | 119.09 ± 12.4 | 100.0 ± 16.7 | 114.12 ± 12.0 | 10.4 | 16.7 | 10.5 | |
Avalone | 0.99661 | 2 | 7 | 105.46 ± 18.4 | 96.93 ± 7.9 | 88.83 ± 12.2 | 17.4 | 8.1 | 13.7 | |
Whiteleg shrimp | 0.99430 | 2 | 7 | 108.99 ± 12.7 | 94.59 ± 18.5 | 91.25 ± 8.9 | 11.6 | 19.5 | 9.7 | |
Trifluralin | Eel | 0.99093 | 2 | 7 | 109.3 ± 1.5 | 111.64 ± 2.6 | 117.94 ± 1.7 | 1.3 | 2.3 | 1.4 |
Olive flounder | 0.99937 | 2 | 7 | 101.63 ± 2.2 | 101.14 ± 2.8 | 104.14 ± 2.7 | 2.1 | 2.7 | 2.5 | |
Avalone | 0.99643 | 2 | 7 | 87.22 ± 2.1 | 82.96 ± 2.6 | 85.95 ± 4.1 | 2.4 | 3.1 | 4.7 | |
Whiteleg shrimp | 0.99723 | 2 | 7 | 93.73 ± 2.8 | 93.27 ± 1.9 | 93.32 ± 5.0 | 2.9 | 2.0 | 5.3 | |
α-HCH (α-BHC) | Eel | 0.99955 | 2 | 7 | 104.26 ± 0.8 | 104.86 ± 2.6 | 110.24 ± 1.4 | 0.7 | 2.4 | 1.2 |
Olive flounder | 0.99946 | 2 | 7 | 101.33 ± 1.5 | 104.1 ± 2.8 | 108.45 ± 2.2 | 1.4 | 2.6 | 2.0 | |
Avalone | 0.99908 | 2 | 8 | 101.66 ± 1.4 | 92.13 ± 5.8 | 100.98 ± 3.5 | 1.3 | 6.2 | 3.4 | |
Whiteleg shrimp | 0.99841 | 2 | 7 | 94.35 ± 2.7 | 92.91 ± 0.8 | 91.44 ± 3.4 | 2.8 | 0.8 | 3.7 | |
γ-HCH (γ-BHC, Lindane) | Eel | 0.99976 | 2 | 7 | 103.16 ± 1.3 | 104.6 ± 2.7 | 109.75 ± 1.9 | 1.2 | 2.5 | 1.7 |
Olive flounder | 0.99921 | 2 | 7 | 92.60 ± 2.3 | 96.0 ± 2.9 | 99.81 ± 2.9 | 2.4 | 3.0 | 2.9 | |
Avalone | 0.99937 | 2 | 7 | 89.14 ± 2.8 | 85.51 ± 1.5 | 87.47 ± 3.6 | 3.1 | 1.7 | 4.1 | |
Whiteleg shrimp | 0.99940 | 2 | 7 | 96.16 ± 2.1 | 96.84 ± 1.8 | 94.18 ± 4.2 | 2.1 | 1.8 | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Cho, M.; Seo, C.; Im, J.; Park, C.; Lee, Y.; Jo, M.-R.; Moon, Y.-S.; Im, M.-H. Development and Validation of a Method for the Analysis of Multiple Pesticides in Fishery Products Using Gas Chromatography with Micro-Electron Capture Detection and Gas Chromatography–Tandem Mass Spectrometry. Separations 2025, 12, 142. https://doi.org/10.3390/separations12060142
Kim M, Cho M, Seo C, Im J, Park C, Lee Y, Jo M-R, Moon Y-S, Im M-H. Development and Validation of a Method for the Analysis of Multiple Pesticides in Fishery Products Using Gas Chromatography with Micro-Electron Capture Detection and Gas Chromatography–Tandem Mass Spectrometry. Separations. 2025; 12(6):142. https://doi.org/10.3390/separations12060142
Chicago/Turabian StyleKim, Myungheon, Mihyun Cho, Changkyo Seo, Jaebin Im, Changhyeon Park, Yoonmi Lee, Mi-Ra Jo, Yong-Sun Moon, and Moo-Hyeog Im. 2025. "Development and Validation of a Method for the Analysis of Multiple Pesticides in Fishery Products Using Gas Chromatography with Micro-Electron Capture Detection and Gas Chromatography–Tandem Mass Spectrometry" Separations 12, no. 6: 142. https://doi.org/10.3390/separations12060142
APA StyleKim, M., Cho, M., Seo, C., Im, J., Park, C., Lee, Y., Jo, M.-R., Moon, Y.-S., & Im, M.-H. (2025). Development and Validation of a Method for the Analysis of Multiple Pesticides in Fishery Products Using Gas Chromatography with Micro-Electron Capture Detection and Gas Chromatography–Tandem Mass Spectrometry. Separations, 12(6), 142. https://doi.org/10.3390/separations12060142