Polyethylene Glycol (PEG) Additive in Polymer Membranes for Carbon Dioxide Separation: A Critical Review on Performances and Correlation with Membrane Structure
Abstract
:1. Introduction
2. Notes on the Gas Transport in Polymeric Membranes
2.1. Solution-Diffusion Model
2.2. Operative Membrane Parameters
2.3. Robeson Limit
3. Polyethylene Oxide as Polymeric Additive
4. Polymer Blends
5. Polymer/PEG Blend Membranes for Separation
5.1. Polycarbonate (PC)
5.2. Cellulose Acetate (CA)
5.3. Matrimid®5218
5.4. Polysulfones (PSF) and Polyethersulfones (PES)
5.5. Polymers of Intrinsic Microporosity (PIMs)
5.6. Polyether Block Amine (PEBA)
6. Polymer/PEG Hybrid Membranes
6.1. Polycarbonate-Based Hybrid Membranes
6.2. CA-Based Hybrid Membranes
6.3. Matrimid-Based Hybrid Membranes
6.4. PSF-Based Membranes
6.5. PIM-1 Based Hybrid Membranes
6.6. Pebax®-Based Hybrid Membranes
7. Pebax Membranes Containing PEG-Functionalized Filler Nanoparticles
8. PVA-Crosslinked Hybrid Membranes
9. PEO-Based MMM
10. Emerging Membrane Systems
11. Discussion
12. Conclusions
Funding
Conflicts of Interest
References
- Hanson, E.; Nwakile, C.; Hammed, V.O. Carbon capture, utilization, and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Res. Surf. Interf. 2025, 18, 100381. [Google Scholar] [CrossRef]
- Alli, Y.A.; Bamisaye, A.; Bamidele, M.O.; Etafo, N.O.; Chkirida, S.; Lawal, A.; Hammed, V.O.; Akinfenwa, A.S.; Hanson, E.; Nwakile, C.; et al. Transforming waste to wealth: Harnessing carbon dioxide for sustainable solutions. Res. Surf. Interf. 2024, 17, 100321. [Google Scholar] [CrossRef]
- Odunlami, O.A.; Vershima, D.A.; Oladimeji, T.E.; Nkongho, S.; Ogunlade, S.K.; Fakinle, B.S. Advanced techniques for capturing and separation of CO2—A review. Results Eng. 2022, 15, 100512. [Google Scholar] [CrossRef]
- Yun, X.; Soo, D.; Lee, J.J.C.; Wu, W.Y.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 capture by absorption and desorption: A comprehensive review. J. CO2 Util. 2024, 81, 102727. [Google Scholar]
- Karimi, M.; Shirzad, M.; Silva, J.A.C.; Rodrigues, A.E. Carbon dioxide separation and capture by adsorption: A review. Environ. Chem. Lett 2023, 21, 2041–2084. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Deng, S.; Li, H.; Kitamura, Y. Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges. Renew. Sust. Energy Rev. 2019, 101, 265–278. [Google Scholar] [CrossRef]
- Kim, C.; Talapaneni, S.N.; Dai, L. Porous carbon materials for CO2 capture, storage and electrochemical conversion. Mater. Rep. Energy 2023, 3, 100199. [Google Scholar] [CrossRef]
- Heidari, M.; Mousavi, S.B.; Rahmani, F.; Sene, R.A. Eco-friendly, sustainable and porous eggshell/tea waste-derived CaO nanoparticles as a high-temperature CO2 sorbent: Fabrication and textural/ morphological evaluation. J. Ind. Eng. Chem. 2024, 134, 169–180. [Google Scholar] [CrossRef]
- Mousavi, B.; Heidari, M.; Rahmani, F.; Sene, R.A.; Clough, P.T.; Ozmen, S. Highly robust ZrO2-stabilized CaO nanoadsorbent prepared via a facile one-pot MWCNT-template method for CO2 capture under realistic calcium looping conditions. J. Clean. Prod. 2023, 384, 135579. [Google Scholar] [CrossRef]
- Heidari, M.; Mousavi, S.B.; Rahmani, F.; Aminabhavi, T.M.; Rezakazemi, M. Insightful textural/morphological evaluation of cost-effective and highly sustainable Ca-Zr-O nanosorbent modified with the waste date kernel as a biomass pore-former for high-temperature CO2 capture. Sust. Mat. Technol. 2023, 38, e00778. [Google Scholar] [CrossRef]
- Chang, S.-F.; Chiu, H.-H.; Jao, H.-S.; Shang, J.; Lin, Y.J.; Yu, B.-Y. Comprehensive evaluation of various CO2 capture technologies through rigorous simulation: Economic, equipment footprint, and environmental analysis. Carbon Capt. Sci. Technol. 2025, 14, 100342. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications; John Wiley & Sons: Chichester, UK, 2012; ISBN 9780470743720. [Google Scholar]
- Stankiewick, A. Reactive separation for process intensification: An industrial perspective. Chem. Eng. Process. 2003, 42, 137–144. [Google Scholar] [CrossRef]
- Drioli, E.; Stankiewick, A.; Macedonio, F. Membrane engineering in process intensification—An overview. J. Membr. Sci. 2011, 380, 1–8. [Google Scholar] [CrossRef]
- Gallucci, F.; Fernandez, E.; Corengia, P.; van Sint, M. Recent advances in membranes for efficient hydrogen purification. Chem. Eng. Sci. 2013, 92, 40–66. [Google Scholar] [CrossRef]
- Naquash, A.; Qyyum, M.A.; Chaniago, Y.D.; Riaz, A.; Yehia, F.; Lim, H.; Lee, M. Separation and purification of syngas-derived hydrogen: A comparative evaluation of membrane- and cryogenic-assisted approaches. Chemosphere 2023, 313, 137420. [Google Scholar] [CrossRef]
- Baker, R.W.; Lokhandwale, K. Natural gas processing with membranes: An overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2112. [Google Scholar] [CrossRef]
- Dai, Z.; Deng, L. Membranes for CO2 capture and separation: Progresses in research and development for industrial applications. J. Membr. Sci. 2024, 335, 126022. [Google Scholar] [CrossRef]
- Valappil, R.S.K.; Ghasem, N.; Al-Marzouqi, M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. J. Ind. Eng. Chem. 2021, 98, 103–129. [Google Scholar] [CrossRef]
- Russo, F.; Galiano, F.; Iulianelli, A.; Basile, A.; Figoli, A. Biopolymers for sustainable membranes in CO2 separation: A review. Fuel Proc. Technol. 2021, 213, 106643. [Google Scholar] [CrossRef]
- Han, Y.; Winston Ho, W.S. Polymeric membranes for CO2 separation and capture. J. Membr. Sci. 2021, 628, 119244. [Google Scholar] [CrossRef]
- Merkel, T.C.; Wei, X.; He, Z.; White, L.S.; Wijmans, J.; Baker, R.W. Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plant. Ind. Eng. Chem. Res. 2012, 52, 1150–1159. [Google Scholar] [CrossRef]
- Jana, A.; Modi, A. Recent progresses on functional polymeric membranes for CO2 separation from flue gases: A review. Carbon Capt. Sci. Technol. 2024, 11, 100204. [Google Scholar] [CrossRef]
- Ramasubramanian, K.; Verweij, H.; Ho, W.S.W. Membrane processes for carbon capture from coal-fired power plant flue gas: A modeling and cost study. J. Membr. Sci. 2012, 421, 299–310. [Google Scholar] [CrossRef]
- Lin, H.; Freeman, B.D. Materials selection guidelines for membranes that remove CO2 from gas mixtures. J. Mol. Struct. 2005, 739, 57–74. [Google Scholar] [CrossRef]
- Tong, Z.; Ho, W.S.W. Facilitated transport membranes for CO2 separation and capture. Sep. Sci. Technol. 2017, 52, 156–167. [Google Scholar] [CrossRef]
- Wind, J.D.; Paoul, D.R.; Koros, W.J. Natural gas permeation in polyimide membranes. J. Membr. Sci. 2004, 228, 227–236. [Google Scholar] [CrossRef]
- Suleman, M.S.; Lau, K.K.; Yeong, Y.F. Plasticization and swelling in polymeric membranes in CO2 removal from natural gas. Chem. Eng. Technol. 2016, 39, 1604–1616. [Google Scholar] [CrossRef]
- Basu, S.; Khan, A.L.; Cano-Odena, A.; Liu, C.; Vankelecom, I.F. Membrane-based technologies for biogas separation. Chem. Soc. Rev. 2010, 39, 750–768. [Google Scholar] [CrossRef]
- Vakharia, V.; Ramasubramanian, K.; Ho, W.S.W. An experimental and modeling study of CO2-selective membranes for IGCC syngas purification. J. Membr. Sci. 2015, 488, 56–66. [Google Scholar] [CrossRef]
- Merkel, T.C.; Zhao, M.; Baker, R.W. Carbon dioxide capture with membranes at an IGCC power plant. J. Membr. Sci. 2012, 389, 441–450. [Google Scholar] [CrossRef]
- Checchetto, R.; De Angelis, M.G.; Minelli, M. Exploring the membrane-based separation of CO2/CO mixtures for CO2 capture and utilization processes: Challenges and opportunities. Sep. Purif. Technol. 2024, 346, 127401. [Google Scholar] [CrossRef]
- Numes, S.P.; Peinemann, K.V. Gas Separation with Membranes. In Membrane Technology in the Chemical Industry; Wiley-VCH Verlag: Weinheim, Germany, 2001; pp. 39–67. [Google Scholar]
- Chen, X.Y.; Vinh-Thang, H.; Ramirez, A.A.; Rodrigue, D.; Kaliaguine, S. Membrane gas separation technologies for biogas upgrading. RCS Adv. 2015, 5, 24399–24448. [Google Scholar] [CrossRef]
- Bandehali, S.; Moghadassi, A.; Parvizian, F.; Hosseini, S.M.; Matsuura, T.; Joudaki, E. Advances in high carbon dioxide separation performance of poly(ethylene oxiode)-based membranes. J. Energy Chem. 2020, 46, 30–52. [Google Scholar] [CrossRef]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Marturano, V.; Cerruti, P.; Ambrogi, V. Polymer Additives. Phys. Sci. Rev. 2017, 2, 20160130. [Google Scholar]
- Bailey, F.E., Jr.; Koleske, J.V. Poly(Ethylene) Oxide. Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Wijmans, J.G.; Baker, R.W. The solution-diffusion model: A review. J. Membr. Sci. 1995, 518, 1–21. [Google Scholar] [CrossRef]
- Sharma, J.; Tewari, K.; Arya, R.K. Diffusion in polymers—A review on the free volume theory. Prog. Org. Coat. 2017, 111, 83–92. [Google Scholar] [CrossRef]
- Matteucci, S.; Yampolskii, Y.; Freeman, B.D.; Pinnau, I. Transport of gases and vapors in glassy and rubbery polymers. In Materials Science of Membranes for Gas and Vapor Separation; Yampolskii, Y., Pinnau, I., Freeman, B.D., Eds.; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2006; ISBN 978-0-470-85345-0. [Google Scholar]
- Redhead, P.A.; Hobson, J.P.; Kornelsen, E.V. The Physical Basis of Ultrahigh Vacuum; American Institute of Physics: New York, NY, USA, 1992. [Google Scholar]
- Cecopieri-Gomez, M.L.; Palacios-Alquisira, J.; Dominguez, J. On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes. J. Membr. Sci. 2007, 293, 53–65. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Freeman, B.D. Basis of permeability/selectivity tradeoff relations in polymeric gas. Macromolecules 1999, 32, 375–380. [Google Scholar] [CrossRef]
- Ullmann, F. Polyoxyalkylenes. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar] [CrossRef]
- Liu, S.L.; Shao, L.; Chua, M.L.; Lau, C.H.; Wang, H.; Quan, S. Recent progresses in the design of advanced PEO-containing membranes for CO2 removal. Prog. Polym. Sci. 2013, 38, 1089–1120. [Google Scholar] [CrossRef]
- Ajitha, A.R.; Sabu, T. (Eds.) Compatibilization of Polymer Blends: Micro and Nanoscale Phase Morphologies, Interphase Characterization and Properties. Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Koningsveld, R. Thermodynamic of polymer blends. Macromol. Symp. 1994, 78, 1–13. [Google Scholar] [CrossRef]
- Einaga, Y. Thermodynamics of polymer solutions and mixtures. Prog. Polym. Sci. 1994, 19, 1–28. [Google Scholar] [CrossRef]
- Manis, E.; UtracKi, L.A. Thermodynamics of Polymer Blends. In Polymer Blends Handbook; Utracki, L.A., Wilkie, C.A., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 171–289. [Google Scholar]
- Yang, R. Analytical Methods for Polymer Characterization; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Su, W.F. (Ed.) Characterization of Polymers. In Principles of Polymer Design and Synthesis; Springer: Berlin, Germany, 2013; pp. 89–110. [Google Scholar]
- Raja, P.M.V.; Barron, A.R. SEM and its Applications for Polymers Science. In Physical Methods in Chemistry and Nano Science; Barron, A.R., Ed.; LibreTexts: Davis, CA, USA, 2012; Available online: https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Physical_Methods_in_Chemistry_and_Nano_Science_(Barron)/09:_Surface_Morphology_and_Structure/9.03:_SEM_and_its_Applications_for_Polymer_Science (accessed on 13 March 2025).
- Drzezdzon, J.; Jacewicz, D.; Sielika, A.; Chmurzynsi, L. Characterization of polymers based on differential scanning calorimetry-based techniques. TrAC Trends Anal. Chem. 2019, 110, 51–56. [Google Scholar] [CrossRef]
- He, Y.; Zhu, B.; Inoue, Y. Hydrogen bonds in polymer blends. Prog. Polym. Sci. 2004, 29, 1021–1051. [Google Scholar] [CrossRef]
- Sharma, J. Characterization of polymer blends by X-ray scattering: SAXS and WAXS. In Characterization of Polymer Blends; Thomas, S., Grohens, Y., Jyotishkumar, P., Eds.; Wiley-VCH: Weinheim, Germany, 2015. [Google Scholar]
- Hacarlioglu, P.; Toppare, L.; Yilmaz, L. Effect of preparation parameters on performance of dense homogeneous polycarbonate membrane. J. Appl. Polym. Sci. 2003, 90, 776–785. [Google Scholar] [CrossRef]
- Hamrahi, Z.; Kargari, A. Modification of polycarbonate membrane by polyethylene glycol for CO2/CH4 separation. Sep. Sci. Technol. 2017, 52, 544–556. [Google Scholar] [CrossRef]
- Bashir, Z.; Lock, S.S.M.; Hira, N.E.; Ilyas, S.U.; Lim, L.G.; Lock, I.S.M.; Yiin, C.L.; Darban, M.A. A review on recent advances of cellulose acetate membranes for gas separation. RCS Adv. 2024, 14, 19560–19580. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Nagai, K.; Nakagawa, T.; Mau, A.W.-H. Effect of polyethyleneglycol (PEG) on gas permeabilities and perm-selectivities in its cellulose acetate (CA) blend membranes. J. Membr. Sci. 1998, 138, 134–152. [Google Scholar] [CrossRef]
- Checchetto, R.; Scarpa, M.; De Angelis, M.G.; Minelli, M. Mixed gas diffusion and permeation of ternary and quaternary CO2/CO/N2/O2 gas mixtures in Matrimid®, polyetherimide and poly(lactic) acid membranes for CO2/CO separation. J. Membr. Sci. 2022, 659, 120768. [Google Scholar] [CrossRef]
- Castro-Munoz, R.; Fila, V.; Ahmad, M.Z. Enhancing the CO2 separation performances of Matrimid 5218 membranes for CO2/CH4 binary mixture separation. Chem. Eng. Technol. 2019, 42, 645–654. [Google Scholar] [CrossRef]
- Loloei, M.; Moghadassi, A.; Omidkhan, M.; Amooghin, A. Improved CO2 separation performance of Matrimid®5218 membrane by addition of low molecular weight polyethylene glycol, Geenhouse Gases. Sci. Technol. 2015, 5, 530–544. [Google Scholar]
- Yousef, S.; Sereika, J.; Tonkonogovas, A.; Hashem, T.; Mohamed, A. CO2/CH4, CO2/N2 and CO2/H2 selectivity performances of PES membranes under high pressure and temperature for biogas upgrading systems. Environ. Technol. Innov. 2021, 21, 101339. [Google Scholar] [CrossRef]
- Nasirian, D.; Salahshoori, I.; Sadeghi, M.; Rahshidi, N.; Hassanzadeganroudsari, M. Investigation of the gas permeability properties from polysulfone/polyethylene glycol composite membranes. Polym. Bull. 2020, 77, 5529–5552. [Google Scholar] [CrossRef]
- McKeown, N.B. Polymer of intrinsic microporosity. Polymer 2020, 202, 122736. [Google Scholar] [CrossRef]
- He, S.S.; Zhu, B.; Li, S.W.; Zhang, Y.Q.; Jiang, X.; Cher, H.L.; Lu, S. Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design. Sep. Purif. Technol. 2022, 284, 120277. [Google Scholar] [CrossRef]
- Budd, P.M.; Msayib, K.J.; Tattershall, C.E.; Ghanem, B.S.; Reynolds, K.J.; McKeown, N.B.; Fritsch, D. Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 2005, 251, 263–269. [Google Scholar] [CrossRef]
- Wu, X.M.; Zhang, Q.G.; Lin, P.J.; Qu, Y.; Zhu, A.M.; Liu, Q.L. Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol. J. Membr. Sci. 2015, 493, 147–155. [Google Scholar]
- Gonzalez, T.; Castro-Munoz, R.; Vera, M.; Merlet, G.; Pino-Soto, L.; Cabezas, R. Polyether-block-amide PEBA membranes for gas separation and pervaporation: Current design and applications. J. Ind. Chem. Eng. 2024, 135, 67–86. [Google Scholar] [CrossRef]
- Embaye, A.S.; Martinez-Izquierdo, L.; Malankowska, M.; Tellez, C.; Coronas, J. Poly(ether-block-amide) copolymer membranes in CO2 separation applications. Energy Fuels 2021, 35, 17085–17102. [Google Scholar] [CrossRef]
- Car, A.; Stropnik, C.; Yave, W.; Peinemann, K.V. PEG modified poly(amide-b-ehylene oxide) membranes for CO2 separation. J. Membr. Sci. 2008, 307, 88–95. [Google Scholar] [CrossRef]
- Azizi, N.; Mahdavi, H.R.; Isanejad, M.; Mohammadi, T. Effects of low and high molecular mass PEG incorporation into different types of poly(ther-b-amide) copolymers on the permeation properties of CO2 and CH4. J. Polym. Res. 2017, 24, 141. [Google Scholar] [CrossRef]
- Taheri, P.; Raisi, A.; Maleh, M.S. CO2-selective poly(ether-block-amine)/polyethylene glycol composite blend membrane for CO2 separation from gas mixtures. Environ. Sci. Pollut. Res. 2021, 28, 38274–38291. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; He, N.; Yao, Y.; Ma, A.; Zhang, E.; Cheng, L.; Li, Y.; Lu, X. Mixed matrix membranes for gas separation: A review. Chem. Eng. J. 2024, 494, 152912. [Google Scholar] [CrossRef]
- Kamble, A.R.; Patel, C.M.; Murphy, Z.V.P. A review on the recent advances in mixed matrix membranes for gas separation processes. Renew. Sust. Energy Rev. 2021, 145, 111062. [Google Scholar] [CrossRef]
- Powell, C.E.; Qiao, G.G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 2006, 279, 1–49. [Google Scholar] [CrossRef]
- Moghadassi, A.R.; Rajabi, Z.; Hosseini, S.M.; Mohammadi, M. Preparation and characterizzation of polycarbonate-blend-raw/functionalized multi-walled carbon nano tubes mixed matrix membranes for CO2 separation. Sep. Sci. Technol. 2013, 48, 1261–1271. [Google Scholar] [CrossRef]
- Kausar, A. Investigation on nanocomposite membrane of multiwalled carbon nanotube reinforced polycarbonate blend for gas separation. J. Nanomat. 2016, 2016, 7089530. [Google Scholar] [CrossRef]
- Hussain, E.A.; Farrukh, S.; Hussain, A.; Ayoub, M. Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes. Environ. Technol. 2017, 40, 843–854. [Google Scholar] [CrossRef]
- Moghadassi, A.R.; Rajabi, Z.; Hosseini, S.M.; Mohammadi, M. Fabrication and modification of cellulose acetate based mixed matrix membranes: Gas separation and physical properties. J. Ind. Eng. Chem. 2014, 20, 1050–1060. [Google Scholar] [CrossRef]
- Castro-Munoz, B.R.; Fila, V.; Martin-Gil, V.; Muller, C. Enhanced CO2 permeability in Matrimid®5218 mixed matrix membranes for separation of CO2/CH4 mixtures. Sep. Purif. Technol. 2019, 210, 553–562. [Google Scholar] [CrossRef]
- Loloei, M.; Omidkhan, M.; Moghadassi, A.; Amooghin, A.E. Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation. Int. J. Greenh. Control 2015, 39, 225–235. [Google Scholar] [CrossRef]
- Raouf, M.; Abedini, R.; Omidkhan, M.; Nezhadmoghadan, E. A favored CO2 separation over light gases with mixed matrix membranes comprising polysulfone/polyethylene glycol and graphene hydroxide nanoparticles. Proc. Saf. Environ. Prot. 2020, 133, 349–407. [Google Scholar] [CrossRef]
- Salahshoori, I.; Nasarian, D.; Rashidi, N.; Hossain, M.K.; Hatami, A.; Hassanzadeganroudsari, M. The effect of silica nanoparticles on polysulfone-polyethylene glycol (PES/PEG) composite membrane on the gas separation and rheologiocal properties of nanocompopsites. Polym. Bull. 2021, 78, 3227–3258. [Google Scholar] [CrossRef]
- Singh, S.; Verghese, A.M.; Reddy, K.S.K.; Romanos, G.E.; Karanikolos, G.N. Polysulfone mixed matrix membranes comprising poly(ethylene glycol)—Grafted carbon nanotubes: Mechanical properties and CO2 separation performances. Ind. Eng. Chem. Res. 2021, 60, 11289–11308. [Google Scholar] [CrossRef]
- Ma, Y.; He, X.; Xu, S.; Yu, Y.; Zhang, C.; Meng, J.; Zeng, L.; Tang, K. Enhanced 2-D MOF nanosheets PES-g-PEG mixed matrix membranes for efficient CO2 separation. Chem. Eng. Res. Des. 2022, 180, 79–89. [Google Scholar] [CrossRef]
- Khan, H.R.; Jahan, Z.; Niazi, M.B.K.; Noor, T.; Hou, H.; Rafiq, S. High-selective separation performances of CO2 from CH4 by interfacial engineering of ultra-low-dose bimetallic pyrazine-MOF based mixed matrix membranes. Carbon Capt. Sci. Technol. 2022, 3, 100048. [Google Scholar] [CrossRef]
- Khan, M.M.; Filiz, V.; Bengtson, G.; Shishatskiy, S.; Rahman, M.M.; Lillepaerg, J.; Abetz, V. Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymer of intrinsic microporosity (PIM). J. Membr. Sci. 2013, 436, 109–120. [Google Scholar] [CrossRef]
- Wang, S.F.; Liu, Y.; Huang, S.X.; Wu, H.; Li, Y.F.; Tian, Z.Z.; Jiang, Z.Y. Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. J. Membr. Sci. 2014, 460, 62–70. [Google Scholar] [CrossRef]
- Eljaddi, T.; Bouillon, J.; Roizard, D.; Lebrun, L. Pebax-Based Composite Membranes with High Transport Properties Enhanced by ZIF-8 for CO2 Separation. Membranes 2022, 12, 836. [Google Scholar] [CrossRef]
- Azizi, N.; Mohammadi, T.; Behbahbani, R.M. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) to separate CO2 from CH4. J. Nat. Gas Sci. Technol. 2017, 37, 39–51. [Google Scholar] [CrossRef]
- Azizi, N.; Jahanmahin, O.; Homayoon, R.; Khajouei, M. A new ternary membrane (PEBAX/PEG/MgO) to enhance CO2/CH4 and CO2/N2 separation efficiency, Korean. J. Chem. Eng. 2023, 40, 1457–1473. [Google Scholar]
- Yu, Z.; Guo, Z.H.; Yu, L. Xiao Feng and Bo Wang, Poliyethylene glycol-mediated high performance mixed matrix membranes via nesting effect for CO2 separation. ACS Appl. Polym. Mater. 2024, 6, 5443–5451. [Google Scholar] [CrossRef]
- Shin, J.E.; Lee, S.K.; Cho, Y.H.; Park, H.B. Effect of PEG-MEA and graphene oxide additives on the performances of Pebax®1657 mixed matrix membranes for CO2 separation. J. Membr. Sci. 2019, 572, 300–308. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, C.; Zheng, Y.; Wu, Y.; Song, C.; Liu, Q.; Wang, Z. Modification of CO2-selective mixed matrix membranes by a binary composition of poly(ethylene) glycol/NaY zeolite. J. Membr. Sci. 2021, 627, 119239. [Google Scholar] [CrossRef]
- He, R.; Cong, S.; Xu, S.; Han, S.; Guo, H.; Liang, Z.; Wang, J.; Zhang, Y. CO2-philic mixed matrix membranes based on low molecular weight polyethylene glycol and porous organic polymers. J. Membr. Sci. 2021, 624, 119081. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, H.; Sum, Q.; Deng, Y.; Zhang, Y.; Li, R.; Feng, G.; Wang, R.; Lian, A.; Wang, Y.; et al. Preparation of Pebax ternary mixed matrix membranes for enhancing CO2 separation. Sep. Purif. Technol. 2025, 355, 129607. [Google Scholar] [CrossRef]
- Wu, P.-C.; Wang, H.-Y.; Kang, D.-Y.; Tung, K.-L. Green delamination of 2D LDH nanosheets incorporated in mixed matrix membranes for CO2 capture. J. Membr. Sci. 2024, 702, 122797. [Google Scholar] [CrossRef]
- Wang, C.; Wu, J.; Wang, Y.; Cheng, P.; Sun, S.; Wang, T.; Lei, Z.; Niu, X.; Xu, L. CO2-philic nanocomposite polymer matrix incorporated with MXene nanosheets for ultraefficient CO2 capture. ACS Appl. Mater. Interfaces 2024, 16, 14152–14161. [Google Scholar] [CrossRef]
- Dai, Z.D.; Deng, J.; Peng, K.-J.; Liu, Y.-L.; Deng, L. Pebax/PEG grafted CNT hybrid membranes for enhanced CO2/N2 separation. Ind. Eng. Chem. Res. 2019, 58, 12226–12234. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Wu, S.; Song, S.; Guo, Z.; Ren, Y.; Zhao, R.; Yang, L.; Wu, Y.; Jiang, Z. Multifunctional covalent organic frameworks (COF)-based mixed matrix membranes for enhanced CO2 separation. J. Membr. Sci. 2021, 618, 118693. [Google Scholar] [CrossRef]
- Li, X.; Cheng, Y.; Zhang, H.; Wang, S.; Jiang, Z.; Guo, R.; Wu, H. Efficient CO2 capture by functionalized graphene oxide nanosheets as filler to fabricate multi-permselective mixed matrix membranes. ACS Appl. Mater. Interfaces 2015, 7, 5528–5537. [Google Scholar] [CrossRef] [PubMed]
- Vatanpour, V.; Teber, O.O.; Meharabi, M.; Koyuncu, I. Polyvinyl alcohol-based separation membranes: A comprehensive review on fabrication techniques, applications and future prospective. Mater. Today Chem. 2023, 28, 101381. [Google Scholar] [CrossRef]
- Dilshad, M.R.; Islam, A.; Sabir, A.; Shafiq, M.; Butt, M.T.Z.; Ijaz, A.; Jamil, T. Fabrication and performance characterization of novel zinc oxide filled cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation. J. Ind. Eng. Chem. 2017, 55, 65–73. [Google Scholar] [CrossRef]
- Dilshad, M.R.; Islam, A.; Haider, B.; Sabir, A.; Ijaz, A.; Khan, R.U.; Durrani, A.K. Novel PVA/PEG nano-composite membranes tethered with surface engineered multi-walled carbon nanotubes for carbon dioxide separation. Microporous Mesoporous Mat. 2020, 308, 110545. [Google Scholar] [CrossRef]
- Dilshad, M.R.; Islam, A.; Hamidullah, U.; Jamshaid, F.; Ahmad, A.; Butt, M.T.Z.; Ijaz, A. Effect of alumina on the performance and characterization of cross-linked PVA/PEG 600 blend membranes for CO2/N2 separation. Sep. Purif. Technol. 2019, 210, 627–635. [Google Scholar] [CrossRef]
- Dilshad, M.R.; Islam, A.; Haider, B.; Sajid, M.; Ijaz, A.; Khan, R.U.; Khan, W.G. Effect of silica nanoparticles on carbon dioxide separation performances of PVA/PEG cross-linked membranes. Chem. Pap. 2021, 75, 3131–3153. [Google Scholar] [CrossRef]
- Barooh, M.; Mandal, B. Enhanced CO2 separation performances by PVA/PEG/silica mixed matrix membranes. J. Appl. Polym. Sci. 2018, 135, 46481. [Google Scholar] [CrossRef]
- Xing, R.; Winston Ho, W.S. Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation. J. Taiwan Inst. Chem. Eng. 2009, 40, 654–662. [Google Scholar] [CrossRef]
- Li, R.; Yang, Y.; Zhang, Z.; Lian, S.; Zhao, Q.; Song, C. PEO-based mixed matrix membranes containing N-doped microporous carbon microparticles for enhanced CO2/N2 separation. J. Membr. Sci. 2023, 685, 121983. [Google Scholar] [CrossRef]
- Zheng, G.; Wu, J.; Jia, Y.; Han, G.; Zhang, S. Dual-enhanced solubility and diffusivity via MOF-regulated impregnation of small molecules in crosslinked polymers for CO2/N2 and CO2/H2 separation. J. Membr. Sci. 2024, 705, 122924. [Google Scholar] [CrossRef]
- Luo, W.; Niu, Z.; Mu, P.; Li, J. M Xene/poly(ethylene glycol) mixed matrix membranes with excellent permeance for highly efficient separation of CO2/N2 and CO2/CH4. Coll. Surf. A Physicochem. Eng. Asp. 2022, 640, 128481. [Google Scholar] [CrossRef]
- Checchetto, R.; Facchinelli, T.; Cantalini, G.; Scarpa, M. Tunable gas selectivity of cellulose nanocrystals-polyethylene glycol composite membranes. Int. J. Hydrogen Energy 2024, 57, 688–695. [Google Scholar] [CrossRef]
- Park, H.B.; Han, S.H.; Jung, C.H.; Lee, Y.M.; Hill, A.J. Thermally rearranged (TR) polymer membranes for CO2 separation. J. Membr. Sci. 2010, 359, 11–24. [Google Scholar] [CrossRef]
- Guo, L.; Liu, W.; Yang, Y.; Ali, A.; Lau, C.H.; Bermeshev, M.V.; Shao, L. Recent progresses in thermally rearranged (TR) polymer-based membranes for sustainable gas separation. Sep. Purif. Technol. 2025, 355(Part A), 129690. [Google Scholar] [CrossRef]
- Bandehali, S.; Amooghin, A.E.; Sanaeepur, H.; Ahmadi, R.; Fuoco, A.; Jansen, J.C.; Shirazian, S. Polymer of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep. Purif. Technol. 2021, 278, 119513. [Google Scholar] [CrossRef]
- Lee, W.H.; Seong, J.G.; Hu, X.; Lee, Y.M. Recent progresses in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performances limits and revisiting trade-off lines. J. Polym. Sci. 2020, 58, 2450–2466. [Google Scholar] [CrossRef]
- Budd, P.M.; McKeown, N.B.; Fritsch, D. Free volume and intrinsic microporosity in polymers. J. Mater. Chem. 2005, 15, 1977–1986. [Google Scholar] [CrossRef]
- Li, P.; Chung, T.S.; Paul, D.R. Gas sorption and permeation in PIM-1. J. Membr. Sci. 2013, 432, 50–57. [Google Scholar] [CrossRef]
- Thomas, S.; Du, I.P.N.; Guiver, M.D. Pure and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1). J. Membr. Sci. 2009, 333, 125–131. [Google Scholar] [CrossRef]
- Qiu, B.; Gao, Y.; Gorgojo, P.; Fan, X. Membranes of polymer of intrinsic microporosity PIM-1 for gas separation: Modification strategies and meta-analysis. Nano-Micro Lett. 2025, 17, 114. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, X.; Ghanem, B.S.; Alghunaimi, F.; Pinnau, I.; Han, Y. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater. Today Nano 2018, 3, 69–95. [Google Scholar] [CrossRef]
- Feng, X.; Zhu, J.; Jin, J.; Wang, Y.; Zhang, Y.; Van der Brugger, B. Polymers of intrinsic microporosity for membrane-based precise separations. Prog. Mater. Sci. 2024, 144, 101285. [Google Scholar] [CrossRef]
- Lau, H.S.; Eugenia, A.; Weng, Y.; Yong, W.F. Recent advances in polymers of intrinsic microporosity (PIMs) membranes: Delving into the intrinsic microstructure for carbon capture and arduous industrial applications. Prog. Mater. Sci. 2024, 145, 101297. [Google Scholar] [CrossRef]
- Zhang, M.; Semiat, R.; He, X. Recent advances in poly(ionic liquids) membranes for CO2 separation. Sep. Purif. Technol. 2022, 299, 121784. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.X.; Sun, L.; Ma, X. Progress in polymers of intrinsic microporosity for post-combustion carbon capture. Sep. Purif. Technol. 2025, 363, 132003. [Google Scholar] [CrossRef]
- Wang, J.; Luo, J.; Feng, S.; Li, H.; Wan, Y.; Zhang, X. Recent development of ionic liquid membranes. Green Energy Environ. 2016, 1, 43–61. [Google Scholar] [CrossRef]
- Friess, K.; Izak, P.; Karaszova, M.; Pasichnyk, M.; Lanc, M.; Nikolaeva, D.; Luis, P.; Jansen, J.C. A review of ionic liquid gas separation membranes. Membranes 2021, 11, 97. [Google Scholar] [CrossRef]
- Martizez-Palou, R.; Likhanova, N.V.; Olivares-Xometl, O. Supported ionic liquid membranes for separation of gases and liquids: An overview. Pet. Chem. 2015, 54, 595–607. [Google Scholar] [CrossRef]
- Santos, E.; Albo, J.; Irabien, A. Acetate based Supported Ionic Liquid Membranes (SILMs) for CO2 separation: Influence of the temperature. J. Membr. Sci. 2014, 452, 277–283. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, W.; Tu, Z.; Peng, L.; Wu, Y.; Hu, X. Supported Ionic Liquid Membranes with Dual-Site Interaction Mechanism for Efficient Separation of CO2, ACS Sustain. Chem. Eng. 2019, 7, 10792–10799. [Google Scholar]
- Cichowska-Kopczynska, I.; Joskowska, M.; Debski, B.; Łuczak, J.; Aranowski, R. Influence of Ionic Liquid Structure on Supported Ionic Liquid Membranes Effectiveness in Carbon Dioxide/Methane Separation. J. Chem. 2013, 1, 980689. [Google Scholar] [CrossRef]
- Tomé, L.C.; Patinha, D.J.S.; Ferreira, R.; Garcia, H.; Pereira, C.S.; Freire, C.S.R.; Rebelo, L.P.N.; Marrucho, I.M. Cholinium-based Supported Ionic Liquid Membranes: A Sustainable Route for Carbon Dioxide Separation. ChemSusChem 2014, 7, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Mulk, W.U.; Ali, S.A.; Shah, S.N.; Hassan Shah, M.U.; Zhang, Q.-J.; Younas, M.; Fatehizadeh, A.; Sheikh, M.; Rezakazemi, M. Breaking boundaries in CO2 capture: Ionic liquid-based membrane separation for post-combustion applications. J. CO2 Util. 2023, 75, 102555. [Google Scholar] [CrossRef]
- Tayyab, M.; Zizhe, L.; Rauf, S.; Xu, Z.; Sagar, R.U.R.; Faiz, F.; Tayyab, Z.; Rehman, R.U.; Imran, M.; Waheed, A.; et al. Advanced fabrication techniques for polymer-metal nanocomposites films: State-of-the-art innovations in energy and electronic application. Chem. Sci. 2025, 16, 3362–3407. [Google Scholar] [CrossRef]
- Islam, A.; Mobarak, H.; Rimon, I.H.; Al Mahmud, Z.; Ghosh, J.; Ahmed, M.S.; Hossain, N. Additive manufacturing in polymer research: Advances, synthesis and applications. Polym. Test. 2024, 132, 108364. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A. Compatibilization of biopolymer blends: A review. Ind. Eng. Polym. Res. 2024, 7, 373–404. [Google Scholar] [CrossRef]
- Nemestóthy, N.; Bakonyi, P.; Szentgyörgyi, E.; Kumar, G.; Nguyen, D.D.; Chang, S.W.; Kim, S.-H.; Bélafi-Bakó, K. Evaluation of a membrane permeation system for biogas upgrading using model and real gaseous mixtures: The effect of operating conditions on separation behaviour, methane recovery. J. Clean. Prod. 2018, 185, 44–51. [Google Scholar] [CrossRef]
- Rowe, B.W.; Freeman, B.D.; Paul, D.R. Physical aging of ultrathin glassy polymer films tracked by gas permeability. Polymer 2009, 50, 5565–5575. [Google Scholar] [CrossRef]
- Murphy, T.M.; Langhe, D.S.; Ponting, M.; Baer, E.; Freeman, B.D.; Paul, D.R. Physical aging of layered glassy polymer films via gas permeability tracking. Polymer 2011, 52, 6117–6125. [Google Scholar] [CrossRef]
- Wessling, M.; Schoeman, S.; van der Boomgaard, T.; Smolders, C.A. Plasticization of gas separation membranes. Gas Sep. Purif. 1991, 5, 222–228. [Google Scholar] [CrossRef]
- Horn, N.R.; Paul, D.R. Carbon dioxide plasticization and conditioning effects in thick vs. thin glassy polymer films. Polymer 2011, 52, 1619–1627. [Google Scholar] [CrossRef]
- Bos, A.; Pünt, I.G.M.; Wessling, M.; Strathmann, H. CO2-induced plasticization phenomena in glassy polymers. J. Membr. Sci. 1999, 155, 67–78. [Google Scholar] [CrossRef]
- Baker, R.W.; Low, B.T. Gas separation membranes: A perspective. Macromolecules 2014, 47, 6999. [Google Scholar] [CrossRef]
- Favre, E. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? J. Membr. Sci. 2007, 294, 50–59. [Google Scholar] [CrossRef]
- Merkel, T.C.; Lin, H.Q.; Wei, X.T.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
Gas | Molecular Weight (g/mol) | Critical Temperature (K) | Kinetic Diameter (nm) | (K) |
---|---|---|---|---|
44.01 | 304 | 0.33 | 195 | |
28.013 | 126 | 0.364 | 71 | |
16.043 | 190.5 | 0.38 | 149 |
(g/cm3) | (°C) | (°C) | (%) | |
---|---|---|---|---|
PEG200 | 1.12 | −77 | −50 | 35 |
PEG300 | 1.13 | −73.6 | −15 ÷ −10 | - |
PEG400 | 1.13 | −70 | 4 ÷ 6 | 54 |
PEG1000 | 1.2 | −81 | 33 ÷ 40 | 75 ÷ 86 |
PEG1500 | 1.28 | −67 | 43 ÷ 49 | 85 |
PEG4000 | 1.2 | −22.4 | 53 ÷ 58 | 99 |
PEG10000 | 1.2 | −41 | 58 ÷ 63 | 92 |
PEG20000 | 1.2 | −34.4 | 58 ÷ 63 | 84 |
PEG300 Content | (Barrer) | Mass Density (g/cm3) | -Spacing (Å) | (°C) | |
---|---|---|---|---|---|
neat | 5.7 | 27 | 1.140 | 5.038 | 135.58 |
1 wt. % | 5.4 | 28 | 1.167 | 4.582 | 126.22 |
3 wt. % | 5.4 | 32 | 1.193 | 3.619 | 117.02 |
5 wt. % | 4.5 | 36 | 1.223 | 4.065, 14.939 | 105.82 |
PEG200 Content | (Barrer) | (°C) | (°C) | (°C) | |
---|---|---|---|---|---|
- | 7.68 | 34.9 | 310.7 | - | - |
3 wt. % | 8.37 | 36.0 | 305 | - | - |
5 wt. % | 9.62 | 40.1 | 302.2 | - | - |
10 wt. % | 10.07 | 28.8 | 189.5 | −27.4 | 15.4 |
15 wt. % | 13.20 | 21.3 | 284.3 | −29.9 | 6.7 |
20 wt. % | 22.04 | 13.8 | 278.8 | −32.3 | 1.4 |
Additive Type | Additive Content | -Spacing (nm) | Tensile Strength (MPa) | Young’s Modulus (GPa) |
---|---|---|---|---|
- | - | 0.211 | 70.6 | 2.49 |
PEG4000 | 10 wt. % | 0.243 | 63.1 | 2.04 |
PEG6000 | 10 wt. % | 0.298 | 63.2 | 1.73 |
PEG10000 | 10 wt. % | 0.334 | 69.8 | 2.31 |
PEG10000 | 20 wt. % | 0.387 | 74.2 | 2.65 |
Additive Content | Mass Density (g/cm3) | (Barrer) | ||
---|---|---|---|---|
- | 1.122 | 3799 | 16.6 | 12.2 |
0.5 wt. % | 1.125 | 3125 | 16.1 | 17.8 |
1.5 wt. % | 1.129 | 2564 | 15.3 | 22.9 |
2.5 wt. % | 1.132 | 2278 | 16.6 | 33.3 |
3.5 wt. % | 1.149 | 1952 | 17.0 | 39.0 |
5.0 wt. % | 1.126 | 2551 | 12.9 | 26.0 |
Pebax Formulation | PE Group | PA Group | PE:PA Ratio (wt. %) | Mass Density (g/cm3) | (°C) |
---|---|---|---|---|---|
2533 | PTMO | PA 12 | 80:20 | 1.01 | 134 |
3533 | PTMO | PA 12 | 70:30 | 1.01 | 144 |
4033 | PTMO | PA 12 | 53:47 | 1.01 | 160 |
5533 | PTMO | PA 12 | 38:62 | 1.01 | 159 |
6333 | PTMO | PA 12 | 24:76 | 1.01 | 169 |
7033 | PTMO | PA 12 | 25:75 | 1.01 | 172 |
MH1657 | PEO | PA 6 | 60:40 | 1.14 | 204 |
MV1074 | PEO | PA 12 | 55:45 | 1.09 | 158 |
MV1041 | PTMO | PA 12 | 75:25 | 1.04 | 170 |
PEG200 Content | (°C) | (°C) (PEO) | (°C) (PA) | (%) | (Barrer) | ||||
---|---|---|---|---|---|---|---|---|---|
- | −53 | 7 | 209 | 38 | 24.8 | 4.6 | 5.3 | 45 | 15.6 |
10 wt. % | −60 | 7 | 198 | 30 | 25.6 | 4.9 | 5.2 | 47 | 15.8 |
20 wt. % | −67 | 6 | 191 | 24 | 27.2 | 5.1 | 5.4 | 45 | 15.9 |
30 wt. % | −68 | 3 | 192 | 10 | 35.8 | 6.2 | 5.8 | 46 | 15.1 |
40 wt. % | −75 | −2 | 184 | 2 | 44.9 | 8.0 | 5.6 | 45 | 15.1 |
50 wt. % | −76 | −5 | - | - | 51.3 | 9.6 | 5.3 | 47 | 15.2 |
PEG Content (wt.%) | (%) | (Barrer) | ||
---|---|---|---|---|
Neat Pebax®1657 | 24 | 52 | 75 | 23 |
10 wt. % PEG600 | 16 | 54 | 74 | 23 |
20 wt. % PEG600 | 15 | 63 | 83 | 24 |
30 wt. % PEG600 | 14 | 64 | 80 | 22 |
40 wt. % PEG600 | 13 | 69 | 84 | 21 |
10 wt. % PEG1500 | 26 | 36 | 65 | 18 |
20 wt. % PEG1500 | 28 | 20 | 64 | 20 |
30 wt. % PEG1500 | 30 | 16 | 90 | 19 |
40 wt. % PEG1500 | 32 | 18 | 75 | 18 |
10 wt. % PEG4000 | 36 | 24 | 50 | 13 |
20 wt. % PEG4000 | 38 | 10 | 74 | 15 |
30 wt. % PEG4000 | 40 | 9 | 87 | 16 |
40 wt. % PEG4000 | 43 | 10 | 105 | 17 |
PEG1000 (wt.%) | C-MWCNT Content (wt. %) | Elongation at Break (%) | Stress at Break (MPa) | Tensile Modulus (MPa) |
---|---|---|---|---|
- | - | 2.33 | 3.21 | 0.93 |
- | 5 | 5.60 | 6.26 | 1.56 |
- | 10 | 6.75 | 21.57 | 5.21 |
10 | 5 | 5.92 | 12.06 | 3.21 |
Filler Content | Tensile Stress at Break (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) |
---|---|---|---|
PC/PVFHFP/PEG | 51.9 | 34.3 | 60.2 |
P-MWCNT 1 wt. % | 53.4 | 33.6 | 70.2 |
P-MWCNT 3 wt. % | 56.6 | 30.5 | 75.3 |
P-MWCNT 5 wt. % | 62.1 | 29.7 | 1011.2 |
P-MWCNT 7 wt. % | 45.3 | 28.9 | 68.1 |
A-MWCNT 1 wt. % | 63.6 | 27.2 | 110.6 |
A-MWCNT 3 wt. % | 65.7 | 24.4 | 116.6 |
A-MWCNT 5 wt. % | 72.5 | 22.3 | 122.1 |
A-MWCNT 7 wt. % | 54.8 | 20.8 | 112.3 |
PEG1000 Content | MWCNT Content | (Barrer) | |
---|---|---|---|
- | - | 38 | 5 |
5 wt. % | - | 17 | 36 |
10 wt. % | - | 19.3 | 39.5 |
15 wt. % | - | 17 | 30 |
- | - | 18.5 (**) | 2.2 (**) |
10 wt. % | - | 9.6 (**) | 29 (**) |
10 wt. % | 10 wt. % | 13.2 (**) | 39 (**) |
PEG1000 Content (wt. %) | Filler Content, Type | Elongation at Break (%) | Stress at Break (MPa) | Tensile Modulus (MPa) |
---|---|---|---|---|
- | - | 2.24 | 2.93 | 1.22 |
- | 0.25 wt.%, C-MWCNT | 2.78 | 9.11 | 2.10 |
- | 0.65 wt.%, C-MWCNT | 3.08 | 23.54 | 7.45 |
- | 1.00 wt.%, C-MWCNT | 3.22 | 38.76 | 10.99 |
10 | 1.0 wt.%, C-MWCNT | 3.65 | 9.11 | 4.37 |
PEG200 Content | ZIF-8 Content | (°C) |
---|---|---|
- | - | 310.1 |
4 wt. % | - | 314 |
4 wt. % | 10 wt. % | 371.5 |
- | 10 wt. % | 371.57 |
4 wt. % | 20 wt. % | 372 |
- | 20 wt. % | 373 |
4 wt. % | 30 wt. % | 371.4 |
- | 30 wt. % | 371.5 |
PEG200 Content | ZSM-5 Content | (Barrer) | |
---|---|---|---|
- | - | 7.68 | 34.91 |
3 wt. % | - | 8.37 | 36.0 |
5 wt. % | - | 9.62 | 40.08 |
10 wt. % | - | 10.07 | 28.77 |
15 wt. % | - | 13.20 | 21.26 |
20 wt. % | - | 22.04 | 13.84 |
8 wt. % | 5 wt. % | 14.7 | 22 |
15 wt. % | 5 wt. % | 15.7 | 19 |
PEG Content | Content | (°C) |
---|---|---|
- | - | 190.4 |
5 wt. % | - | 186.1 |
10 wt. % | - | 183.5 |
5 wt. % | 1 wt. % | 186.8 |
5 wt. % | 3 wt. % | 188.2 |
5 wt. % | 5 wt. % | 190.1 |
10 wt. % | 1 wt. % | 184.1 |
10 wt. % | 3 wt. % | 185.6 |
10 wt. % | 5 wt. % | 186.4 |
Content (wt. %) | -Spacing (nm) | (°C) | Tensile Strength (MPa) | Young’s Modulus (MPa) |
---|---|---|---|---|
neat | - | 179.7 | 70.6 | 2.49 |
- | 0.39 | 165.1 | 4.2 | 2.65 |
2.5 | - | 167.4 | 75.6 | 2.79 |
5 | 0.43 | 168.5 | 77.2 | 2.86 |
10 | 0.49 | 170.9 | 79.8 | 2.97 |
15 | - | 172.4 | 70.2 | 2.51 |
20 | 0.52 | 173.9 | 64.4 | 2.23 |
PEG-g-CNT Content (wt. %) | Tensile Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
- | 4900 ± 300 | 32 ± 2 | 3.8 ± 0.5 |
2 | 5900 ± 300 | 33 ± 2 | 3.3 ± 0.3 |
5 | 6400 ± 300 | 35 ± 2 | 2.4 ± 0.5 |
7.5 | 7000 ± 300 | 36 ± 2 | 1.7 ± 0.2 |
MOF (wt. %) | ||||||
---|---|---|---|---|---|---|
- | 0.66 | 21.6 | 6 | 3.7 | 7.3 | 3.8 |
0.5 | 0.94 | 22.3 | 6.7 | 3.8 | 8.6 | 4.0 |
1 | 1.33 | 23.0 | 7.4 | 4.0 | 9.5 | 4.1 |
3 | 1.76 | 24.2 | 7.7 | 4.2 | 9.3 | 4.4 |
5 | 2.29 | 25.4 | 8.5 | 4.4 | 10.4 | 4.6 |
7 | 2.53 | 26.3 | 7.0 | 4.6 | 8.7 | 4.8 |
Matrix | MOF Content (wt. %) | Tensile Strength (MPa) | Strain at Break (%) |
---|---|---|---|
PSF | - | 2.8 | 2.6 |
PSF | 0.05 | 2.7 | 2.8 |
PSF | 0.1 | 2.6 | 2.7 |
PSF | 0.15 | 2.5 | 3.2 |
PSF | 0.2 | 2.3 | 2.9 |
PES/PEG | - | 3.3 | 3.1 |
PES/PEG | 0.2 | 4.1 | 2.7 |
Filler Content | (Barrer) | (10−7 cm2/s) | ||||
---|---|---|---|---|---|---|
- | 6211 | 7.91 | 22 | 1.1 | 15 | 3.4 |
1 wt. % MWCNT | 6219 | - | 17 | - | 8 | - |
0.5 wt. % f-MWCNT | 7535 | 9.45 | 24 | 1.1 | 11 | 4.0 |
1 wt. % f-MWCNT | 7813 | 13.7 | 19 | 1.1 | 10 | 2.5 |
2 wt. % f-MWCNT | 12,274 | 19.4 | 17 | 0.9 | 8 | 1.9 |
3 wt. % f-MWCNT | 4816 | 6.72 | 22 | 1.3 | 16 | 3.9 |
f-MWCNT Content (wt. %) | ) (kJ/mol) | ) (kJ/mol) | ) (kJ/mol) | Young’s Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|---|---|
- | 9.4 | 14.7 | −3.1 | 530.152 | 39.4 | 6.1 |
0.5 | 10.3 | 15.5 | −2.2 | 626.122 | 44.6 | 6.2 |
1 | 5.5 | 6.2 | −7.4 | 666.153 | 47.7 | 8.2 |
2 | 4.0 | 2.5 | −1.0 | 685.175 | 48.6 | 9.3 |
3 | 6.8 | 14.3 | −2.2 | 640.170 | 46.6 | 8.2 |
Additive (40 wt. %) | MWCNT (wt. %) | (Barrer) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
- | - | 80.1 | 1.35 | 59.36 | 52.7 | 2.3 | 22.9 | 16.2 | 2.8 | 5.8 |
- | 2 | 121.3 | 1.58 | 76.80 | 50.7 | 1.9 | 26.7 | 18.1 | 2.7 | 6.7 |
PEG20000 | - | 23.4 | 0.96 | 24.40 | 18.4 | 2.7 | 6.8 | 30.3 | 5.5 | 5.5 |
PEG20000 | 2 | 35.0 | 1.02 | 34.29 | 23.0 | 2.3 | 10.0 | 23.8 | 3.5 | 6.8 |
PEGDME | - | 425.6 | 3.75 | 113.53 | 64.4 | 1.6 | 40.4 | 13.3 | 2.3 | 5.8 |
PEGDME | 2 | 555.4 | 4.02 | 138.15 | 81.8 | 1.5 | 54.5 | 14.3 | 2.2 | 6.5 |
Additive (30 wt. %) | Filler Content | (°C) | (°C) | (°C) | ||
---|---|---|---|---|---|---|
- | - | −49 | 18 | 198 | 14% | 11% |
- | 7 wt. % | −47 | 15 | 204 | 11% | 11% |
- | 13 wt. % | −47 | 15 | 205 | 8% | 6% |
PEG300 | 7 wt. % | −65 | −20 to 50 | 201 | 36% | 9% |
PEG300 | 13 wt. % | n.d. | −20 to 50 | 204 | 7% | 6% |
PEG300 | 23 wt. % | −58 | 10 to 50 | 202 | 12% | 6% |
Additive (30 wt. %) | ZIF-8 Content (wt. %) | (Barrer) | ||
---|---|---|---|---|
- | - | 52 | 54 | 16 |
PEG300 | - | 75 | 71 | 12 |
- | 7 | 74 | 64 | 22 |
- | 13 | 130 | 59 | 20 |
PEG300 | 7 | 84 | 65 | 12 |
PEG300 | 13 | 136 | 60 | 16 |
PEG300 | 23 | 160 | 61 | 12 |
Membrane | |||
---|---|---|---|
Pebax | 18 | 35 | 34 |
Pebax/PEG300 | 8 | 35 | 36 |
Pebax + 13 wt. % ZIF-8 | 13 | 30 | 30 |
Pebax/PEG300 + 13 wt. % ZIF-8 | 14 | 32 | 32 |
Additive Content (wt.%) | (Barrer) (PEG400) | (PEG400) | (Barrer) (PEG200) | (PEG200) | (PEG200) |
---|---|---|---|---|---|
- | 65 | 20 | 65 | 49 | 20 |
10 | 100 | 20 | 102 | 50 | 20 |
20 | 140 | 20 | 137 | 51 | 21 |
30 | 145 | 20 | 153 | 52 | 21 |
40 | 153 | 21 | 165 | 51 | 21 |
50 | - | - | 169 | 53 | 21 |
Additive Content | (Barrer) | Density (g/cm3) | |||||
---|---|---|---|---|---|---|---|
- | 84 | 0.31 | 0.027 | 44.6 | 72 | 0.62 | 1.160 |
10 wt. % | 198 | 0.52 | 0.038 | 45.6 | 80 | 0.57 | 1.14 |
20 wt. % | 304 | 0.78 | 0.039 | 44.0 | 80 | 0.55 | 1.136 |
30 wt. % | 316 | 0.79 | 0.040 | 42.1 | 81 | 0.52 | 1.135 |
40 wt. % | 409 | 0.95 | 0.043 | 43.6 | 89 | 0.49 | 1.115 |
50 wt. % | 572 | 1.30 | 0.044 | 44.6 | 93 | 0.48 | 1.108 |
60 wt. % | 814 | 1.77 | 0.046 | 43.2 | 94 | 0.46 | 1.108 |
70 wt. % | 898 | 1.87 | 0.048 | 43.2 | 96 | 0.45 | 1.102 |
Additive Content | Filler Content | (°C) | (PEO) (°C) | (PA) (°C) | (PEO) (%) | (PA) (%) |
---|---|---|---|---|---|---|
- | - | −53.3 | 16.1 | 206.0 | 9.1 | 11.3 |
50 wt. % | - | −62.4 | 12.8 | 204.9 | 28.0 | 5.0 |
50 wt. % | 0.02 wt. % | - | - | - | - | - |
50 wt. % | 0.06 wt. % | −61.1 | 12.6 | 205.9 | 24.5 | 3.7 |
50 wt. % | 0.1 wt. % | −60.8 | 12.9 | 205.7 | 24.5 | 3.4 |
50 wt. % | 0.2 wt. % | - | - | - | - | - |
50 wt. % | 0.3 wt. % | −59.7 | 12.9 | 205.4 | 23.6 | 2.2 |
50 wt. % | 0.4 wt. % | - | - | - | - | - |
50 wt. % | 0.5 wt. % | .54.9 | 12.9 | 205.5 | 23.4 | 1.5 |
50 wt. % | 0.75 wt. % | −53.7 | 12.9 | 206.1 | 23.3 | 1.2 |
PEG600 (wt. %) | Content (wt. %) | (kJ/mol) |
---|---|---|
- | - | 9.97 |
20 | - | 19.21 |
20 | 10 | 20.29 |
20 | 20 | 18.64 |
20 | 30 | 18.33 |
20 | 40 | 17.07 |
Filler Content | PEG400 Content | ||||
---|---|---|---|---|---|
- | - | 33.9 | 3.2 | 2.95 | 6.45 |
- | 1.5 wt. % | - | - | - | - |
1.0 | 1.5 wt. % | 41.6 | 4.8 | 9.4 | 22.9 |
2.0 | 1.5 wt. % | - | - | - | - |
3.0 | 1.5 wt. % | - | - | - | - |
1 | - | 33.1 | 3.4 | 4.3 | 13.0 |
1 | 0.5 wt. % | 31.3 | 3.6 | 6.7 | 17.2 |
1 | 1.0 wt. % | 36.4 | 4.2 | 6.9 | 16.8 |
1 | 1.5 wt. % | 41.6 | 4.8 | 9.4 | 22.9 |
1 | 2.0 wt. % | 35.3 | 3.7 | 7.4 | 15.1 |
Additive Type and Content | (Barrer) | |
---|---|---|
- | 60 | 45 |
PEGDME250, 10 wt. % | 81 | 45 |
PEGDME250, 20 wt. % | 206 | 46 |
PEGDME250, 30 wt. % | 207 | 48 |
PEGDME250, 40 wt. % | 314 | 43 |
PEGDME500, 10 wt. % | 120 | 48 |
PEGDME500, 20 wt. % | 228 | 51 |
PEGDME500, 30 wt. % | 268 | 48 |
PEGDME500, 40 wt. % | 372 | 50 |
PEGDME500, 30 wt. %
+ PEI-MIL-101, 4 wt. % | 286 | 54 |
PEGDME Content | ALDH Content | (°C) | (PEO) (%) | (PA) (%) |
---|---|---|---|---|
- | - | −50.0 | 11.0 | 7.8 |
50 wt. % | - | −54.2 | 34.3 | 4.0 |
50 wt. % | 2 wt. % | −53.8 | 36.7 | 4.1 |
50 wt. % | 4 wt. % | −53.1 | 37.5 | 4.6 |
50 wt. % | 6 wt. % | −51.8 | 40.3 | 4.8 |
MXene Content (wt. %) | -Spacing (nm) | (°C) | (Barrer) | |||||
---|---|---|---|---|---|---|---|---|
- | 0.408 | −56.9 | 621 | 45 | 0.92 | 0.067 | 1.8 | 25 |
0.2 | 0.413 | −60.4 | 692 | 50 | 0.92 | 0.072 | 1.4 | 36 |
0.5 | 0.416 | - | 942 | 60 | 1.24 | 0.076 | 1.4 | 43 |
1 | 0.417 | −61.1 | 1265 | 64 | 1.65 | 0.076 | 1.4 | 45 |
2 | 0.422 | - | 940 | 55 | 1.41 | 0.067 | 1.3 | 42 |
5 | 0.427 | −62.4 | 800 | 50 | 1.26 | 0.062 | 1.3 | 38 |
10 | 0.429 | −63.1 | 646 | 51 | 1.00 | 0.065 | 1.4 | 37 |
CNT-PEG (wt. %) | (Barrer) | |
---|---|---|
0 | 91 | 37 |
1 | 152 | 39 |
2 | 152 | 38 |
3 | 251 | 95 |
5 | 136 | 76 |
7 | 138 | 78 |
10 | 120 | 40 |
20 | 115 | 36 |
PEG-PEI-GO (wt. %) | (Barrer) | ||
---|---|---|---|
0 | 82 | 54 | 18 |
1 | 109 | 54 | 21 |
3 | 116 | 55 | 22 |
5 | 140 | 58 | 22 |
10 | 145 | 62 | 24 |
12 | 139 | 58 | 21 |
PEG600 Content (wt. %) | DOC (mol %) | Content (wt. %) | Tensile Strength (MPa) | Young’s Modulus (MPa) |
---|---|---|---|---|
60 | 20 | - | 11 | 169 |
60 | 30 | - | 23 | 230 |
60 | 40 | - | 36 | 305 |
60 | 60 | - | 65 | 403 |
60 | 80 | - | 90 | 495 |
60 | 60 | - | 65 | 403 |
60 | 60 | 0.5 | - | - |
60 | 60 | 1 | 72.5 | 465 |
60 | 60 | 2 | 107.5 | 727.3 |
60 | 60 | 4 | 65 | 334 |
Filler Content (wt. %) | (°C) | Storage Modulus (MPa) |
---|---|---|
- | 68 | 296 |
0.25 | 74 | 416 |
0.5 | 79.5 | 606 |
0.75 | 85 | 819 |
Al2O3 Content (wt. %) | (°C) | (°C) | Tensile Strength (MPa) | Young’s Modulus (%) |
---|---|---|---|---|
0 | 70 | 258 | 62 | 96.4 |
1 | - | - | - | - |
2 | - | - | 100 | 152.6 |
4 | 76 | 265 | 135 | 196 |
6 | 79 | 268 | 175 | 245 |
8 | - | - | 54 | 85 |
10 | 83 | 271 | 30 | 55 |
Content (wt. %) | (°C) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
0 | 70 | 27 | 77.8 |
5 | 72 | 40.7 | 94.8 |
10 | 75 | 103.8 | 117.8 |
15 | - | 41.4 | 30.93 |
20 | 82 | 25.4 | 10.13 |
PVA/PEG200 | ) (Barrer) | ) (kJ/mol) | ) (Barrer) | ) (kJ/mol) |
---|---|---|---|---|
crosslinked | 1.1 × 104 | 12.3 | 8.1 × 105 | 31.9 |
crosslinked + 58 wt. % zeolite | 7.6 × 106 | 26.8 | 1.9 × 108 | 42.9 |
NMCP Content | (Barrer) | (°C) | -Spacing (nm) | |||
---|---|---|---|---|---|---|
- | 221 | 187.6 | 1.189 | 47 | −59.5 | 0.397 |
0.5 wt. % | 345 | - | - | 50 | −55.6 | 0.399 |
1.0 wt. % | 360 | - | - | 55 | −58.1 | 0.405 |
1.5 wt. % | 430 | - | - | 51 | −58.4 | 0.408 |
2.0 wt. % | 510 | - | - | 56 | −57.1 | 0.418 |
2.5 wt. % | 605 | 209.5 | 2.894 | 57 | −57.2 | 0.408 |
3.0 wt. % | 1020 | - | - | 39 | −60.3 | 0.402 |
-Spacing (Å) | (°C) | (Barrer) | ||
---|---|---|---|---|
CLM | 4.114 | −49.65 | 93 | 42 |
C-ATA | 4.129 | Slight shift | 261 | 41 |
C-ZIF | 4.144 | Slight shift | 266 | 43 |
C-I | 4.238 | −78.83 | 1600 | 23 |
C-I-ATA | 4.270 | −80.1 | 2300 | 23 |
C-I-ZIF | 4.311 | −80.17 | 2600 | 40 |
Membrane | Permeance (GPU) | ||
---|---|---|---|
MXene | 8106 | 1.03 | 0.98 |
MXene/PEG400 | 1543 | 31 | 25 |
MXene/PEG600 | 1626 | 32 | 26 |
MXene/PEG800 | 456 | 17 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Checchetto, R. Polyethylene Glycol (PEG) Additive in Polymer Membranes for Carbon Dioxide Separation: A Critical Review on Performances and Correlation with Membrane Structure. Separations 2025, 12, 71. https://doi.org/10.3390/separations12030071
Checchetto R. Polyethylene Glycol (PEG) Additive in Polymer Membranes for Carbon Dioxide Separation: A Critical Review on Performances and Correlation with Membrane Structure. Separations. 2025; 12(3):71. https://doi.org/10.3390/separations12030071
Chicago/Turabian StyleChecchetto, Riccardo. 2025. "Polyethylene Glycol (PEG) Additive in Polymer Membranes for Carbon Dioxide Separation: A Critical Review on Performances and Correlation with Membrane Structure" Separations 12, no. 3: 71. https://doi.org/10.3390/separations12030071
APA StyleChecchetto, R. (2025). Polyethylene Glycol (PEG) Additive in Polymer Membranes for Carbon Dioxide Separation: A Critical Review on Performances and Correlation with Membrane Structure. Separations, 12(3), 71. https://doi.org/10.3390/separations12030071