Bacterial Potential for Bioremediation of Surfactants and Heavy Metals: Current Knowledge and Trends in Wastewater Treatment Processes
Abstract
1. Introduction
2. Bioremediation
2.1. Surfactants
2.1.1. Capacity of Free and Immobilized Bacterial Cells for SF Removal
2.1.2. Capacity of Metal-Tolerant Bacteria for SF Removal
2.1.3. Capacity of Free and Immobilized Bacterial Community in SF Removal
2.1.4. Removal of SFs in Bioreactors
2.1.5. Microbial Fuel Cell in Bioremediation of SFs
2.2. Heavy Metals
2.2.1. Single-Species Bacterial Biofilms in Removal of HMs
2.2.2. Multispecies Bacterial Biofilms in Removal of HMs
2.2.3. Removal of HMs in Bioreactors
2.2.4. Microbial Fuel Cells in HM Removal
3. Challenges, Limitations, and Future Perspectives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| SF(s) | Surfactant(s) |
| WWTP(s) | Wastewater treatment plant(s) |
| HM(s) | Heavy metal(s) |
| MFC(s) | Microbial fuel cell(s) |
| EPSs | Exopolysaccharides |
| SDS | Sodium dodecyl sulfate |
| LAS | Linear alkyl benzene sulfonate |
| SLES | Sodium lauryl ether sulfate |
| SLS | Sodium lauryl sulfate |
| SDBS | Sodium dodecyl benzene sulfonate |
| AE | Alcohol ethoxylated surfactant |
| APEOs | Alkylphenol ethoxylates |
| NPEOs | Nonylphenol ethoxylates |
| CTAB | Cetyltrimethylammonium bromide |
| BAC | Benzalkonium chloride |
| BDHAC | Benzyldimethyl hexadecylammonium chloride |
| BDTA | Benzyl dimethyl tetradecyl ammonium chloride |
| C14BDMA | Tetradecyl benzyl dimethyl ammonium chloride |
| C16TMA | Hexadecyl trimethyl ammonium chloride |
| CAPB | Cocamidopropyl betaine |
| QACs | Quaternary ammonium compounds |
| TTAB | Br-tetradecyltrimethylammonium |
| AWW | Automotive workshop wastewater |
| LWW | Laundry wastewater |
| DAPS | 3-(decyldimethylammonio)-propane sulfonate |
| CPC | Cetylpyridinium chloride |
| ASBR | Anaerobic sequential reactor |
| MBR | Membrane bioreactor |
| MBBR | Moving-bed biofilm reactor |
| O2-MBfR | Aerobic membrane biofilm reactor |
| DFSBR | Down-flow structured bed bioreactor |
| AMD | Acid mine drainage |
| SMFCs | Sediment microbial fuel cells |
| PBfR | Periphytic biofilm reactor |
| AnMBR | Anaerobic membrane bioreactor |
| HGT | Horizontal gene transfer |
| ARG(s) | Antibiotic resistance gene(s) |
| CAS | Conventional activated sludge |
References
- Jakovljević, V. Metabolic activity of Aspergillus niger and Fusarium lateritium induced by ethoxylated oleyl cetyl alcohol and their bioremediation and biotechnological potential. Appl. Biochem. Microbiol. 2016, 52, 406–412. [Google Scholar] [CrossRef]
- Arora, J.; Chauhan, A.; Ranjan, A.; Rajput, V.D.; Minkina, T.; Zhumbei, A.I.; Kumari, A.; Jindal, T.; Prasad, R. Degradation of SDS by psychrotolerant Staphylococcus saprophyticus and Bacillus pumilus isolated from Southern Ocean water samples. Braz. J. Microbiol. 2024, 55, 1507–1519. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 13, 643972. [Google Scholar] [CrossRef]
- Ikumapayi, O.M.; Laseinde, O.T.; Akinlabi, E.T. An overview of sustainable greywater treatment processes. E3S Web Conf. 2024, 552, 01047. [Google Scholar] [CrossRef]
- Jakovljević, V.; Vrvić, M. The effect of ethoxylated oleyl-cetyl alcohol on metabolism of some fungi and their potential application in mycoremediation. Hem. Ind. 2016, 70, 277–286. [Google Scholar] [CrossRef]
- Jakovljević, V.D. Synergistic effect of Fusarium lateritium LP7 and Trichoderma viride LP5 promotes ethoxylated oleyl-cetyl alcohol biodegradation. J. Environ. Sci. Health A 2020, 55, 438–447. [Google Scholar] [CrossRef]
- Radojević, I.D.; Jakovljević, V.D.; Ostojić, A.M. A mini-review on indigenous microbial biofilm from various wastewater for heavy-metal removal—New trends. World J. Microbiol. Biotechnol. 2023, 39, 309. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, V.; Grujić, S.; Simić, Z.; Ostojić, A.; Radojević, I. Finding the best combination of autochthonous microorganisms with the most effective biosorption ability for heavy metals removal from wastewater. Front. Microbiol. 2022, 13, 1017372. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Tewari, S.; Dwivedi, J.; Sharma, V. Biofilm-mediated wastewater treatment: A comprehensive review. Mater. Adv. 2023, 4, 1415–1443. [Google Scholar] [CrossRef]
- Sharma, K.; Shah, G.; Singh, H.; Bhatt, U.; Singhal, K.; Soni, V. Advancements in natural remediation management techniques for oil spills: Challenges, innovations, and future directions. Environ. Pollut. Manag. 2024, 1, 128–146. [Google Scholar] [CrossRef]
- Buzejić, A.; Grujić, S.; Radojević, I.; Ostojić, A.; Čomić, L.; Vasić, S. Pb and Hg metal tolerance of single and mixed-species biofilm (Rhodotorula mucilaginosa and Escherichia coli). Kragujev. J. Sci. 2016, 38, 115–124. [Google Scholar] [CrossRef]
- Grujić, S.; Vasić, S.; Radojević, I.; Čomić, L.; Ostojić, A. Comparison of the Rhodotorula mucilaginosa biofilm and planktonic culture on heavy metal susceptibility and removal potential. Water Air Soil Pollut. 2017, 228, 73. [Google Scholar] [CrossRef]
- Grujić, S.; Vasić, S.; Čomić, L.; Ostojić, A.; Radojević, I. Heavy metal tolerance and removal potential in mixed-species biofilm. Water Sci. Technol. 2017, 76, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Grujić, M.S.; Radojević, D.I.; Vasić, M.S.; Čomić, R.L.; Ostojić, M.A. Heavy metal tolerance and removal efficiency of the Rhodotorula mucilaginosa and Saccharomyces boulardii planktonic cells and biofilm. Kragujev. J. Sci. 2018, 40, 217–226. [Google Scholar] [CrossRef]
- Radojević, I.D.; Grujic, S.M.; Rankovic, B.R.; Comic, L.R.; Ostojic, A.M. Single-species biofilms from autochthonous microorganisms: Biotechnological potential in automotive wastewater treatment. Int. J. Environ. Sci. Technol. 2019, 16, 6189–6198. [Google Scholar] [CrossRef]
- Jakovljević, V.D.; Radojević, I.D.; Grujić, S.M.; Ostojić, A.M. Response of selected microbial strains and their consortia to the presence of automobile paints: Biofilm growth, matrix protein content and hydrolytic enzyme activity. Saudi J. Biol. Sci. 2022, 29, 103347. [Google Scholar] [CrossRef]
- Sohrabi, B. Amphiphiles. In Self-Assembly of Materials and Their Applications; Rathnayake, H., Pathiraja, G., Sharmin, E., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Anandkumar, M.A.; Sahariah, B.P. Surfactants and bioremediation. In Trends in Biological Processes in Industrial Wastewater Treatment; Shah, M.P., Ed.; IOP Publishing Ltd.: Bristol, UK, 2024; pp. 1–11. [Google Scholar]
- Olkowska, E.; Ruman, M.; Polkowska, Z. Occurrence of surface active agents in the environment. J. Anal. Methods Chem. 2014, 2014, 769708. [Google Scholar] [CrossRef]
- Nunes, R.F.; Teixeira, A.C.S.C. An overview on surfactants as pollutants of concern: Occurrence, impacts and persulfate-based remediation technologies. Chemosphere 2022, 300, 134507. [Google Scholar] [CrossRef]
- Badmus, S.O.; Amusa, H.K.; Oyehan, T.A.; Saleh, T.A. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104. [Google Scholar] [CrossRef]
- Jakovljević, V.D.; Vrvić, M.M. Potential of pure and mixed cultures of Cladosporium cladosporioides and Geotrichum candidum for application in bioremediation and detergent industry. Saudi J. Biol. Sci. 2018, 25, 529–536. [Google Scholar] [CrossRef]
- Yeldho, D.; Rebello, S.; Jisha, M.S. Plasmid-mediated biodegradation of the anionic surfactant sodium dodecyl sulphate, by Pseudomonas aeruginosa S7. Bull. Environ. Contam. Toxicol. 2011, 86, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Ambily, P.S.; Jisha, M.S. Biodegradation of anionic surfactant, sodium dodecyl sulphate by Pseudomonas aeruginosa MTCC 10311. Environ. Biol. 2012, 33, 717–720. [Google Scholar]
- Furmanczyk, E.M.; Lipinski, L.; Dziembowski, A.; Sobczak, A. Genomic and functional characterization of environmental strains of SDS-degrading Pseudomonas spp., providing a source of new sulfatases. Front. Microbiol. 2018, 9, 1795. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, V.; Kumar, A. Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi city, India. Int. Biodeterior. Biodegrad. 2011, 65, 961–971. [Google Scholar] [CrossRef]
- John, E.M.; Rebello, S.; Asok, A.K.; Jisha, M.S. Pseudomonas plecoglossicida S5, a novel nonpathogenic isolate for sodium dodecyl sulfate degradation. Environ. Chem. Lett. 2015, 13, 117–123. [Google Scholar] [CrossRef]
- Othman, A.R.; Yusof, M.T.; Shukor, M.Y. Biodegradation of sodium dodecyl sulphate (SDS) by Serratia marcescens strain DRY6. Bioremediat. Sci. Technol. Res. 2019, 7, 9–14. [Google Scholar] [CrossRef]
- Shukor, M.Y.; Husin, W.S.W.; Rahman, M.F.A.; Shamaan, N.A.; Syed, M.A. Isolation and characterization of an SDS-degrading Klebsiella oxytoca. J. Environ. Biol. 2009, 30, 129–134. [Google Scholar]
- Masdor, N.; Shukor, M.S.A.; Khan, A.; Halmi, M.I.E.; Abdullah, S.R.S.; Shamaan, N.A.; Shukor, M.Y. Isolation and characterization of a molybdenum-reducing and SDS-degrading Klebsiella oxytoca strain Aft-7 and its bioremediation application in the environment. Biodivesitas 2015, 16, 238–246. [Google Scholar] [CrossRef]
- Schulz, S.; Dong, W.; Groth, U.; Cook, A.M. Enantiomeric degradation of 2-(4-sulfophenyl)butyrate via 4- sulfocatechol in Delftia acidovorans SPB1. Appl. Environ. Microbiol. 2000, 66, 1905–1910. [Google Scholar] [CrossRef]
- Yilmaz, F.; İçgen, B. Characterization of SDS-degrading Delftia acidovorans and in situ monitoring of its temporal succession in SDS-contaminated surface waters. Environ. Sci. Pollut. Res. 2014, 21, 7413–7424. [Google Scholar] [CrossRef]
- Koshy, M.; Joseph, B.V. Spectrometric analysis of decrease in sodium dodecyl sulfate (SDS) concentration by Klebsiella species using the stains-all dye. Microbiology 2025, 94, 128–133. [Google Scholar] [CrossRef]
- Roig, M.G.; Pedraz, M.A.; Sanchez, J.M.; Huska, J.; Tóth, D. Sorption isotherms and kinetics in the primary biodegradation of anionic surfactants by immobilized bacteria: II. Comamonas terrigena N3H. J. Mol. Catal. 1998, 4, 271–281. [Google Scholar] [CrossRef]
- Hosseini, F.; Malekzadeh, F.; Amirmozafari, N.; Ghaemi, N. Biodegradation of anionic surfactants by isolated bacteria from activated sludge. Int. J. Environ. Sci. Technol. 2007, 4, 127–132. [Google Scholar] [CrossRef]
- Adekanmbi, A.; Oyeladun, W.; Olaposi, A. Degradation of surfactant and metal-removal by bacteria from a Nigerian laundry environment. Eur. J. Biol. Res. 2018, 8, 243–251. [Google Scholar]
- Khleifat, K.M.; Halasah, R.A.; Tarawneh, K.A.; Halasah, Z.; Shawabkeh, R.; Wedyan, M.A. Biodegradation of linear alkylbenzene sulfonate by Burkholderia sp.: Effect of some growth conditions. Int. J. Agr. Biol. 2010, 12, 17–25. [Google Scholar]
- Karamba, K.; Yakasai, H.M. Growth Characterization of Bacillus amyloliquefaciens strain KIK-12 on SDS. J. Biochem. Microbiol. Biotechnol. 2019, 7, 26–30. [Google Scholar] [CrossRef]
- Rahman, M.F.; Rusnam, M.; Gusmanizar, N.; Masdor, N.A.; Lee, C.H.; Shukor, M.S.; Roslan, M.A.H.; Shukor, M.Y. Molybdate-reducing and SDS-degrading Enterobacter sp. strain neni-13. Nova Biotechnol. Chim. 2016, 15, 166–181. [Google Scholar] [CrossRef][Green Version]
- Abboud, M.M.; Khleifat, K.M.; Batarseh, M.; Tarawneha, K.A.; Al-Mustafa, A.; Al-Madadhah, M. Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzym. Microb. Technol. 2007, 41, 432–439. [Google Scholar] [CrossRef]
- Singh, K.K.; Vaishya, R.C. Isolation of bacterial isolates from municipal wastewater for bioremediation of anionic surfactants. Int. J. Sci. Prog. Res. 2016, 23, 181–185. [Google Scholar]
- Najim, A.A.; Ismail, Z.Z.; Hummadi, K.K. Enhanced removal of the xenobiotic surfactant sodium dodecyl sulfate from actual nondomestic wastewaters using immobilized mixed bacterial cells. Chem. Biochem. Eng. Q. 2022, 36, 67–76. [Google Scholar] [CrossRef]
- Osadebe, A.U.; Onyiliogwu, C.A.; Suleiman, B.M.; Okpokwasili, G.C. Microbial degradation of anionic surfactants from laundry detergents commonly discharged into a riverine ecosystem. J. Appl. Life Sci. Int. 2018, 16, 1–11. [Google Scholar] [CrossRef]
- Fedeila, M.; Hachaïchi-Sadouk, Z.; Bautista, L.F.; Simarro, R.; Nateche, F. Biodegradation of anionic surfactants by Alcaligenes faecalis, Enterobacter cloacae and Serratia marcescens strains isolated from industrial wastewater. Ecotoxicol. Environ. Saf. 2018, 163, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiao, D.; Yuan, S.; Chen, H.; Dai, J.; Wang, X.; Guo, Y.; Qiu, D. Comparative analysis of microbial community under acclimation of linear alkylbenzene sulfonate (LAS) surfactants and degradation mechanisms of functional strains. J. Hazard. Mater. 2024, 477, 135370. [Google Scholar] [CrossRef] [PubMed]
- Fakhar, V.; Ghasemi, H.; Naghmachi, M.; Amini, J.; Amirmahani, F.; Danaei, M. Screening of bacteria in the biodegradation of linear alkyl benzene sulfonate (lbas) from car wash wastewater in Tehran (Iran). Res. Sq. 2021. [Google Scholar] [CrossRef]
- Askari, A.; Vahabzadeh, F.; Mardanpour, M.M. Quantitative determination of linear alkylbenzene sulfonate (LAS) concentration and simultaneous power generation in a microbial fuel cell-based biosensor. J. Clean. Prod. 2021, 294, 126349. [Google Scholar] [CrossRef]
- Al-Zamili, H.A.A.; Al-Mayaly, I.K. Biodegradation of linear alkylbenzene sulfonate contamination by Pseudomonas aeruginosa isolates. Iraqi J. Chem. Pet. Eng. 2024, 25, 87–95. [Google Scholar] [CrossRef]
- Asok, A.; Fathima, P.; Jisha, M. Biodegradation of linear alkylbenzene sulfonate (LAS) by immobilized Pseudomonas sp. Adv. Chem. Eng. Sci. 2015, 5, 465–475. [Google Scholar] [CrossRef]
- Maryani, Y.; Rahmayetti; Fatin, A.N.; Rohmawati. Optimization for determination of linear alkylbenzene sulfonate (las) and alkylbenzenesulfonat (abs) from biodegradation by Pseudomonas aeruginosa bacteria. Int. J. Biochem. Biotechnol. 2013, 2, 268–272. [Google Scholar]
- Khleifat, K.M. Biodegradation of linear alkylbenzene sulfonate by a two-member facultative anaerobic bacterial consortium. Enzym. Microb. Technol. 2006, 39, 1030–1035. [Google Scholar] [CrossRef]
- Ruikar, S.; Godse, Y.H.; Ghatage, A. Isolation and characterization of detergent degrading bacteria from natural environmental sources. Bull. Pure Appl. Sci. Sect. A Zool. 2024, 43B, 162–174. [Google Scholar]
- Peressutti, S.R.; Olivera, N.L.; Babay, P.A.; Costagliola, M.; Alvarez, H.M. Degradation of linear alkylbenzene sulfonate by a bacterial consortium isolated from the aquatic environment of Argentina. J. Appl. Microbiol. 2008, 105, 476–484. [Google Scholar] [CrossRef]
- Dhouib, A.; Hamad, N.; Hassaïri, I.; Sayadimand, S. Degradation of anionic surfactants by Citrobacter braakii. Process Biochem. 2003, 38, 1245–1250. [Google Scholar] [CrossRef]
- Paulo, A. Anaerobic Degradation of Anionic Surfactants by Denitrifying Bacteria. PhD Thesis, Wageningen University, Wageningen, NL, USA, 2014. [Google Scholar]
- Caracciolo, A.B.; Ademollo, N.; Cardoni, M.; Di Giulio, A.; Grenni, P.; Pescatore, T.; Rauseo, J.; Patrolecco, L. Assessment of biodegradation of the anionic surfactant sodium lauryl ether sulphate used in two foaming agents for mechanized tunnelling excavation. J. Hazard. Mater. 2019, 365, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Khleifat, K.M. Biodegradation of sodium lauryl ether sulfate (sles) by two different bacterial consortia. Curr. Microbiol. 2006, 53, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Paulo, A.M.S.; Aydin, R.; Dimitrov, M.R.; Vreeling, H.; Cavaleiro, A.J.; García-Encina, P.A.; Stams, A.J.M.; Plugge, C.M. Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria. Appl. Microbiol. Biotechnol. 2017, 101, 5163–5173. [Google Scholar] [CrossRef]
- Ibrahim, H.A.H.; Zahran, H.F.; Youssef, M. Microbial degradation of sodium lauryl sulfate (SLS) using bacterial consortium isolated from coastline of Alexandria city. Bull. High Inst. Public Health 2012, 42, 185–207. [Google Scholar] [CrossRef]
- Farzaneh, H.; Fereidon, M.; Noor, A.; Naser, G. Biodegradation of dodecylbenzene sulfonate sodium by Stenotrophomonas maltophila biofilm. Afr. J. Biotechnol. 2010, 9, 55–62. [Google Scholar]
- Kaida, H.; Syed, M.A.; Shukor, Y.; Othman, A.R. Biodegradation of linear alkylbenzene sulfonates (LAS): A mini review. Bioremediat. Sci. Technol. Res. 2021, 9, 1–6. [Google Scholar] [CrossRef]
- Patrao, S.; Acharya, A.; Suvarna, N.; Sequeira, M. Degradation of anionic surfactants by Bacillus subtilis and Bacillus cereus. J. Pharm. Biol. Sci. 2012, 3, 42–45. [Google Scholar] [CrossRef]
- Nowicka, D.; Ginter-Kramarczyk, D.; Holderna-Odachowska, A.; Budnik, I.; Kaczorek, E.; Lukaszewski, Z. Biodegradation of oxyethylated fatty alcohols by bacteria Microbacterium strain E19. Ecotoxicol. Environ. Saf. 2013, 91, 32–38. [Google Scholar] [CrossRef]
- Ji, J.; Kakade, A.; Znhang, R.; Zihao, S.; Khan, A.; Liu, P.; Li, X. Alcohol ethoxylate degradation of activated sludge is enhanced by bioaugmentation with Pseudomonas sp. LZ-B. Ecotoxicol. Environ. Saf. 2019, 169, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Zembrzuska, J.; Budnik, I.; Lukaszewski, Z. Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions. Sci. Total Environ. 2016, 557–558, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Budnik, I.; Zembrzuska, J.; Lukaszewski, Z. Bacterial strains isolated from river water having the ability to split alcohol ethoxylates by central fission. Environ. Sci. Pollut. Res. Int. 2016, 23, 14231–14239. [Google Scholar] [CrossRef] [PubMed]
- Obradors, N.; Aguilar, J. Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Appl. Environ. Microbiol. 1991, 57, 2383–2388. [Google Scholar] [CrossRef]
- Kawai, F.; Kimura, T.; Fukaya, M.; Tani, Y.; Ogata, K.; Ueno, T.; Fukami, H. Bacterial oxidation of polyethylene glycol. Appl. Environ. Microbiol. 1978, 35, 679–684. [Google Scholar] [CrossRef]
- Lin, Y.W.; Yang, C.C.; Tuan, N.N. Diversity of octylphenol polyethoxylate-degrading bacteria: With a special reference to Brevibacterium sp. TX4. Int. Biodeterior. Biodegrad. 2016, 115, 55. [Google Scholar] [CrossRef]
- Ruiz, Y.; Medina, L.; Borusiak, M.; Ramos, N.; Pinto, G.; Valbuena, O. Biodegradation of polyethoxylated nonylphenols. ISRN Microbiol. 2013, 2013, 284950. [Google Scholar] [CrossRef]
- Zheng, C.-W.; Luo, Y.-H.; Long, X.; Gu, H.; Cheng, J.; Zhang, L.; Lai, Y.J.S.; Rittmann, B.E. The structure of biodegradable surfactants shaped the microbial community, antimicrobial resistance, and potential for horizontal gene transfer. Water Res. 2023, 236, 119944. [Google Scholar] [CrossRef]
- Oh, S.; Kurt, Z.; Tsementzi, D.; Weigand, M.R.; Kim, M.; Hatt, J.K.; Tandukar, M.; Pavlostathis, S.G.; Spain, J.C.; Konstantinidis, K.T. Microbial community degradation of widely used quaternary ammonium disinfectants. Appl. Environ. Microbiol. 2014, 80, 5892–5900. [Google Scholar] [CrossRef]
- Bassey, D.E.; Grigson, S.J.W. Degradation of benzyldimethyl hexadecylammonium chloride by Bacillus niabensis and Thalassospira sp. isolated from marine sediments. Toxicol. Environ. Chem. 2010, 93, 44–56. [Google Scholar] [CrossRef]
- Khan, A.H.; Topp, E.; Scott, A.; Sumarah, M.; Macfie, S.M.; Ray, M.B. Biodegradation of benzalkonium chlorides singly and in mixtures by a Pseudomonas sp. isolated from returned activated sludge. J. Hazard. Mater. 2015, 299, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Bergero, M.F.; Lucchesi, G.I. Immobilization of Pseudomonas putida A (ATCC 12633) cells: A promising tool for effective degradation of quaternary ammonium compounds in industrial effluents. Int. Biodeterior. Biodegrad. 2015, 100, 38–43. [Google Scholar] [CrossRef]
- Bergero, M.F.; Lucchesi, G.I. Degradation of cationic surfactants using Pseudomonas putida A ATCC 12633 immobilized in calcium alginate beads. Biodegradation 2013, 24, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Bergero, M.F.; Lucchesi, G.I. Degradation of cationic surfactants using immobilized bacteria: Its effect on adsorption to activated sludge. J. Biotechnol. 2018, 272–273, 1–6. [Google Scholar] [CrossRef]
- Müller, E.; Fahlbusch, K.; Walther, R. Formation of N,N-dimethylglycine, acetic acid, and butyric acid from betaine by Eubacterium limosum. Appl. Environ. Microbiol. 1981, 42, 439–445. [Google Scholar] [CrossRef]
- Garcia, M.T.; Campos, E.; Marsal, A. Fate and effects of amphoteric surfactants in the aquatic environment. Environ. Int. 2008, 34, 1001–1005. [Google Scholar] [CrossRef]
- Heijthuijsen, J.H.F.G.; Hansen, T.A. Anaerobic degradation of betaine by marine Desulfobacterium strains. Arch. Microbiol. 1989, 152, 393–396. [Google Scholar] [CrossRef]
- Merkova, M.; Zalesak, M.; Ringlova, E.; Julinova, M.; Ruzicka, J. Degradation of the surfactant Cocamidopropyl betaine by two bacterial strains isolated from activated sludge. Int. Biodeterior. Biodegrad. 2018, 127, 236–240. [Google Scholar] [CrossRef]
- Scott, M.J.; Jones, M.N. The biodegradation of surfactants in the environment. Biochim. Biophys. Acta 2000, 1508, 235–251. [Google Scholar] [CrossRef]
- Chaturvedi, Y.; Kumar, A. Isolation of a strain of Pseudomonas putida capable of metabolizing anionic detergent sodium dodecyl sulfate (SDS). Iran. J. Microbiol. 2011, 3, 47–53. [Google Scholar]
- Singh, K.L.; Kumar, A.; Kumar, A. Bacillus cereus capable of degrading SDS shows growth with a variety of detergents. World J. Microbiol. Biotechnol. 1998, 14, 777–779. [Google Scholar] [CrossRef]
- Awi, A.A.M.; Yasid, N.A.; Shukor, M.Y. Characterization of sodium dodecyl sulphate–degrading Enterobacter cloacae sp. strain AaMa. J. Environ. Microbiol. Toxicol. 2023, 11, 18–24. [Google Scholar] [CrossRef]
- Prats, D.; López, C.; Vallejo, D.; Varó, P.; León, V.M. Effect of temperature on the biodegradation of linear alkylbenzene sulfonate and alcohol ethoxylate. J. Surfactants Deterg. 2006, 9, 69–75. [Google Scholar] [CrossRef]
- Rusnam; Syafrawati, S.; Rahman, M.F.; Nasution, F.I.; Othman, A.R. SDS-degrading bacterium isolated from a paddy field. Asian J. Plant Biol. 2022, 4, 38–44. [Google Scholar] [CrossRef]
- Nikoloudaki, O.; Aheto, F.; Di Cagno, R.; Gobbetti, M. Synthetic microbial communities: A gateway to understanding resistance, resilience, and functionality in spontaneously fermented food microbiomes. Food Res. Int. 2024, 192, 114780. [Google Scholar] [CrossRef]
- Enoila, K.I.T. Effect of nitrogen supplementation on aerobic degradation of linear alkylbenzene sulfonate by consortia of bacteria. J. Xenobiot. 2012, 2, 24–27. [Google Scholar] [CrossRef][Green Version]
- Mollaei, J.; Mortazavi, S.B.; Jafari, A.J. Removal of sodium dodecylbenzene sulfonate by moving bed biofilm reactor, using synthetic media. Health Scope 2014, 3, e16721. [Google Scholar] [CrossRef]
- Karray, F.; Mezghani, M.; Mhiri, N.; Djelassi, B.; Sayadi, S. Scale-down studies of membrane bioreactor degrading anionic surfactants wastewater: Isolation of new anionic-surfactant degrading bacteria. Int. Biodeterior. Biodegrad. 2016, 114, 14–23. [Google Scholar] [CrossRef]
- Cheng, Z.; Wei, Y.; Zhang, Q.; Zhang, J.; Lu, T.; Pei, Y. Enhancement of surfactant biodegradation with an anaerobic membrane bioreactor by introducing microaeration. Chemosphere 2018, 208, 343–351. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Oh, S. Impacts of antiseptic cetylpyridinium chloride on microbiome and its removal efficiency in aerobic activated sludge. Int. Biodeterior. Biodegrad. 2019, 137, 23–29. [Google Scholar] [CrossRef]
- Paun, I.; Mitru, D.; Covaliu, C.I.; Paraschiv, G.; Nechifor, G.; Moga, I.C.; Datcu-manea, A.; Niţă-lazăr, M. Biodegradation of anionic and cationic surfactants using bacterial strains from activated sludge. Int. J. Conserv. Sci. 2021, 12, 1171–1178. [Google Scholar]
- Cui, X.; Ren, Q.; Zhang, J.; Zhou, Y. Removal kinetics of linear alkylbenzene sulfonate in a batch-operated oxygen based membrane biofilm reactor treating greywater: Quantitative differentiation of adsorption and biodegradation. Sci. Total Environ. 2022, 806, 150523. [Google Scholar] [CrossRef] [PubMed]
- Lepikash, R.; Lavrova, D.; Stom, D.; Meshalkin, V.; Ponamoreva, O.; Alferov, S. State of the art and environmental aspects of plant microbial fuel cells’ application. Energies 2024, 17, 752. [Google Scholar] [CrossRef]
- Sathe, S.M.; Bhowmick, G.D.; Dubey, B.K.; Ghangrekar, M.M. Surfactant removal from wastewater using photo-cathode microbial fuel cell and laterite-based hybrid treatment system. Bioprocess Biosyst. Eng. 2020, 43, 2075–2084. [Google Scholar] [CrossRef]
- Chakraborty, I.; Bhowmick, G.D.; Nath, D.; Khuman, C.N.; Dubey, B.K.; Ghangrekar, M.M. Removal of sodium dodecyl sulphate from wastewater and its effect on anodic biofilm and performance of microbial fuel cell. Int. Biodeterior. Biodegrad. 2021, 156, 105108. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef]
- Oladimeji, T.E.; Oyedemi, M.; Emetere, M.E.; Agboola, O.; Adeoye, J.B.; Odunlami, O.A. Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon 2024, 10, e40370. [Google Scholar] [CrossRef]
- Saha, J.; Adhikary, S.; Pal, A. Analyses of the heavy metal resistance pattern and biosorption potential of an indigenous Bacillus tropicus strain isolated from Arable soil. Geomicrobiol. J. 2022, 39, 891–905. [Google Scholar] [CrossRef]
- Torres, E. Biosorption: A review of the latest advances. Processes 2020, 8, 1584. [Google Scholar] [CrossRef]
- Haque, M.M.; Mosharaf, M.K.; Haque, M.A.; Tanvir, M.Z.H.; Alam, M.K. Biofilm formation, production of matrix compounds and biosorption of copper, nickel and lead by different bacterial strains. Front. Microbiol. 2021, 12, 615113. [Google Scholar] [CrossRef]
- Hussain, A.; Sherzada, S.; Noor, T.; Ahmad, S.; Kaoma, M.; Elsehly, E.M. Biosorptive removal of selected metal ions from simulated wastewater using highly metal-resistant bacteria. Water Reuse 2023, 13, 448–458. [Google Scholar] [CrossRef]
- El-Motaleb, A.M.; El-Sabbagh, S.; Mohamed, W.; Wafy, K. Biosorption of Cu2+, Pb2+ and Cd2+ from wastewater by dead biomass of Streptomyces cyaneus Kw42. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 422–435. [Google Scholar] [CrossRef]
- Mwandira, W.; Nakashima, K.; Kawasaki, S.; Arabelo, A.; Banda, K.; Nyambe, I.; Chirwa, M.; Ito, M.; Sato, T.; Igarashi, T.; et al. Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Sci. Rep. 2020, 10, 21189. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, K.K.; Kumar, M.; Singh, D.K. Multi-metal resistance and potential of Alcaligenes sp. MMA for the removal of heavy metals. SN Appl. Sci. 2020, 2, 1885. [Google Scholar] [CrossRef]
- Kumaran, N.S.; Sundaramanicam, A.; Bragadeeswaran, S. Adsorption studies on heavy metals by isolated cyanobacterial strain (Nostoc sp.) from uppanar estuarine water, southeast coast of India. J. Appl. Sci. Res. 2011, 7, 1609–1615. [Google Scholar]
- Hamdan, A.M.; Abd-El-Mageed, H.; Ghanem, N. Biological treatment of hazardous heavy metals by Streptomyces rochei ANH for sustainable water management in agriculture. Sci. Rep. 2021, 11, 9314. [Google Scholar] [CrossRef]
- Banerjee, G.; Pandey, S.; Ray, A.K.; Kumar, R. Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloacae and its antioxidant enzyme activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water Air Soil. Pollut. 2015, 226, 91–99. [Google Scholar] [CrossRef]
- Orji, O.U.; Awoke, J.N.; Aja, P.M.; Aloke, C.; Obasi, O.D.; Alum, E.U.; Udu-Ibiam, O.E.; Oka, G.O. Halotolerant and metallotolerant bacteria strains with heavy metals biorestoration possibilities isolated from Uburu Salt Lake, Southeastern, Nigeria. Heliyon 2021, 7, e07512. [Google Scholar] [CrossRef]
- Njokua, K.L.; Rakinyedea, R.A.; Obidi, O. Microbial remediation of heavy metals contaminated media by Bacillus megaterium and Rhizopus stolonifer. Sci. Afr. 2020, 10, e00545. [Google Scholar] [CrossRef]
- Hwang, S.K.; Jho, E.H. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. Sci. Total Environ. 2019, 635, 1308–1316. [Google Scholar] [CrossRef]
- Ghosh, A.; Pramanik, K.; Bhattacharya, S.; Mondal, S.; Ghosh, S.K.; Maiti, T.K. A potent cadmium bioaccumulating Enterobacter cloacae strain displays phytobeneficial property in Cd-exposed rice seedlings. Curr. Res. Microb. Sci. 2021, 3, 100101. [Google Scholar] [CrossRef] [PubMed]
- Saranya, K.; Sundaramanickam, A.; Shekhar, S.; Swaminathan, S. Biosorption of mercury by Bacillus thuringiensis (CASKS3) isolated from mangrove sediments of southeast coast India. Indian J. Geo-Mar. Sci. 2019, 48, 143–150. [Google Scholar]
- Saranya, K.; Sundaramanickam, A.; Shekhar, S.; Swaminathan, S.; Balasubramanian, T. Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. BioMed Res. Int. 2017, 2017, 6509648. [Google Scholar] [CrossRef] [PubMed]
- Revathy, P.K.; Abraham, K.M. Nickel abatement using fresh water biofilm bacteria: An in vitro efficiency assay. JABF 2025, 13, 24–28. [Google Scholar]
- Bhattacharya, A.; Gupta, A. Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ. Sci. Pollut. Res. 2013, 20, 6628–6637. [Google Scholar] [CrossRef]
- Casalini, L.C.; Piazza, A.; Masotti, F.; Pacini, V.A.; Sanguinetti, G.; Ottado, J.; Gottig, N. Manganese removal efficiencies and bacterial community profiles in non-bioaugmented and in bioaugmented sand filters exposed to different temperatures. J. Water Process Eng. 2020, 36, 101261. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Ha, M.-G.; Kang, H.Y.; Nguyen, D.D. Biological manganese removal by novel halotolerant bacteria isolated from river water. Biomolecules 2020, 10, 941. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Y.; Qin, Z.; Luo, P.; Ma, Z.; Tan, M.; Kang, H.; Huang, Z. A novel manganese oxidizing bacterium-Aeromonas hydrophila strain DS02: Mn(II) oxidization and biogenic Mn oxides generation. J. Hazard. Mater. 2019, 367, 539–545. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Liu, B.; Xie, G.; Xing, D. Characterization of manganese oxidation by Brevibacillus at different ecological conditions. Chemosphere 2018, 205, 553–558. [Google Scholar] [CrossRef]
- Choińska-Pulit, A.; Sobolczyk-Bednarek, J.; Łaba, W. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design. Ecotoxicol. Environ. Saf. 2018, 149, 275–283. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, H.; Ma, Y.; Zhou, J.; Zhang, Y. Bio-removal of cadmium by growing deep-sea bacterium Pseudoalteromonas sp. SCSE709-6. Extremophiles 2013, 17, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Qiu, Y.; Xiao, T.; Wang, J.; Chen, Y.; Xu, X.; Kang, Z.; Fan, L.; Yu, H. Comparative studies on Pb(II) biosorption with three spongy microbe-based biosorbents: High performance, selectivity and application. J. Hazard. Mater. 2019, 373, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Rathore, G.S.; Ankush, H.K.; Lone, S.A.; Chopade, B.A.; John, S.M.; Verma, N. Heavy metal removal by bacteria: Mechanism and challenges. In Heavy Metal Contamination in Wastewater and Its Bioremediation by Microbial-Based Approaches; Singh, V., Mishra, V., Rai, S.N., Shah, M.P., Eds.; Advances in Wastewater Research; Springer: Singapore, 2025; pp. 309–329. [Google Scholar] [CrossRef]
- Pepi, M.; Borra, M.; Tamburrino, S.; Saggiomo, M.; Viola, A.; Biffali, E.; Balestra, C.; Sprovieri, M.; Casotti, R. A Bacillus sp. isolated from sediments of the Sarno River mouth, Gulf of Naples (Italy) produces a biofilm biosorbing Pb(II). Sci. Total Environ. 2016, 562, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Meliani, A.; Bensoltane, A. Biofilm-mediated heavy metals bioremediation in PGPR Pseudomonas. J. Bioremediat. Biodegrad. 2016, 7, 370. [Google Scholar] [CrossRef]
- Suryatmana, P.; Handayani, S.; Bang, S.; Hindersah, R. Screening and profiling of mercury-resistant Azotobacter isolated from gold mine tailing in Pongkor, West Java. J. Degrad. Min. Lands Manag. 2024, 11, 5287–5300. [Google Scholar] [CrossRef]
- Mosharaf, M.K.; Tanvir, M.Z.H.; Haque, M.M.; Haque, M.A.; Khan, M.A.A.; Molla, A.H.; Alam, M.Z.; Islam, M.S.; Talukder, M.R. Metal-adapted bacteria isolated from wastewaters produce biofilms by expressing proteinaceous curli fimbriae and cellulose nanofibers. Front. Microbiol. 2018, 9, 1334. [Google Scholar] [CrossRef]
- Irawati, W.; Yuwono, T.; Ompusunggu, N.P. Growth characteristics and copper accumulation of bacterial consortium Acinetobacter sp. and Cupriavidus sp. isolated from a wastewater treatment plant. Biodiversitas 2018, 19, 1884–1890. [Google Scholar] [CrossRef]
- Völkel, S.; Hein, S.; Benker, N.; Pfeifer, F.; Lenz, C.; Losensky, G. How to cope with heavy metal ions: Cellular and proteome-level stress response to divalent copper and nickel in Halobacterium salinarum R1 planktonic and biofilm cells. Front. Microbiol. 2020, 10, 3056. [Google Scholar] [CrossRef]
- Bhagat, N.; Vermani, M.; Bajwa, H.S. Characterization of heavy metal (cadmium and nickle) tolerant gram negative enteric bacteria from polluted Yamuna River, Delhi. Afr. J. Microbiol. Res. 2016, 10, 127–137. [Google Scholar] [CrossRef]
- Maurya, A.; Kumar, R.; Singh, A.; Raj, A. Investigation on biofilm formation activity of Enterococcus faecium under various physiological conditions and possible application in bioremediation of tannery effluent. Bioresour. Technol. 2021, 339, 125586. [Google Scholar] [CrossRef]
- Syed, A.; Zeyad, M.T.; Shahid, M.; Elgorban, A.M.; Alkhulaifi, M.M.; Ansari, I.A. Heavy metals induced modulations in growth, physiology, cellular viability, and biofilm formation of an identified bacterial isolate. ACS Omega 2021, 6, 25076–25088. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; Halema, A.A.; Almutairi, Z.M.; Almutairi, H.H.; Elarabi, N.I.; Abdelhadi, A.A.; Henawy, A.R.; Abdelhaleem, H.A.R. Draft genome analysis for Enterobacter kobei, a promising lead bioremediation bacterium. Front. Bioeng. Biotechnol. 2024, 11, 1335854. [Google Scholar] [CrossRef] [PubMed]
- Abdul Raheem, N.; Selvaraj, G.K.; Karuppanan, K.; Ganesan, G.; Soorangkattan, S.; Subramanian, B.; Ramamurthy Baluraj, S.; Rajaiah, D.K.; Hasan, I. Bioremediation of heavy metals by an unexplored bacterium, Pseudoxanthomonas mexicana strain GTZY isolated from aerobic-biofilm wastewater system. Environ. Sci. Pollut. Res. 2024, 32, 22036–22050. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, S.K.; Patil, A.; Verma, A.; Kaintura, M.; Arya, M. Comparative assessment of live and dead thermophilic bacterial isolates of surya kund hot spring, yamunotri for the bioremediation of Cu2+. Geomicrobiol. J. 2025, 42, 420–427. [Google Scholar] [CrossRef]
- Dadrasnia, A.; Chuan Wei, K.S.; Shahsavari, N.; Azirun, M.S.; Ismail, S. Biosorption potential of Bacillus salmalaya strain 139SI for removal of Cr(VI) from aqueous solution. Int. J. Environ. Res. Public Health 2015, 12, 15321–15338. [Google Scholar] [CrossRef]
- Radojević, I.; Jakovljević, V.; Grujić, S.; Ostojić, A.; Ćirković, K. Biofilm formation by selected microbial strains isolated from wastewater and their consortia: Mercury resistance and removal potential. Res. Microbiol. 2024, 175, 104092. [Google Scholar] [CrossRef]
- Priyadarshanee, M.; Das, S. Bioremediation potential of bioBlm forming multi-metal resistant marine bacterium Pseudomonas chengduensis PPSS-4 isolated from contaminated site of Paradip Port, Odisha. J. Earth Syst. Sci. 2021, 130, 125. [Google Scholar] [CrossRef]
- Maity, S.; Sarkar, D.; Poddar, K.; Patil, P.; Sarkar, A. Biofilm-mediated heavy metal removal from aqueous system by multi-metal-resistant bacterial strain Bacillus sp. GH-s29. Appl. Biochem. Biotechnol. 2023, 195, 4832–4850. [Google Scholar] [CrossRef]
- Disi, Z.A.A.; Mohamed, D.O.; Al-Ghouti, M.A.; Zoua, N. Insights into the interaction between mineral formation and heavy metals immobilization, mediated by Virgibacillus exopolymeric substances. Environ. Technol. Innov. 2024, 33, 103477. [Google Scholar] [CrossRef]
- Hernández-Guerrero, A.A.; Castrejón-Godínez, M.L.; Mussali-Galante, P.; Tovar-Sánchez, E.; Rodríguez, A. In vitro removal of cd and pb through the bacterial strain Burkholderia zhejiangensis CEIB S4-3: Efficiency and cellular mechanisms implicated in the process. Processes 2025, 13, 276. [Google Scholar] [CrossRef]
- Villegas, L.C.; Llamado, A.L.; Catsao, K.V.; Raymundo, A.K. Removal of heavy metals from aqueous solution by biofilm-forming bacteria isolated from mined-out soil in Mogpog, Marinduque, Philippines. Philipp. Sci. Lett. 2018, 11, 18–27. [Google Scholar]
- Heidari, P.; Sanaeizade, S.; Mazloomi, F. Removal of nickel, copper, lead and cadmium by new strains of Sphingomonas melonis E8 and Enterobacter hormaechei WW28. J. Appl. Biotechnol. Rep. 2020, 7, 208–214. [Google Scholar] [CrossRef]
- Herath, H.M.L.I.; Rajapaksha, A.U.; Vithanage, M.; Seneviratne, G. Developed fungal-bacterial biofilms as a novel tool for bioremoval of hexavelant chromium from wastewater. Chem. Ecol. 2014, 30, 418–427. [Google Scholar] [CrossRef]
- De, J.; Ramaiah, N.; Vardanyan, L. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar. Biotechnol. 2008, 10, 471–477. [Google Scholar] [CrossRef]
- Khidr, R.; Qurbani, K.; Muhammed, V.; Salim, S.; Abdulla, S.; Wsw, H. Synergistic effects of indigenous bacterial consortia on heavy metal tolerance and reduction. Environ. Geochem. Health 2025, 47, 79. [Google Scholar] [CrossRef]
- Oyetibo, G.O.; Enahoro, J.A.; Ikwubuzo, C.A.; Ukwuoma, C.S. Microbiome of highly polluted coal mine drainage from Onyeama, Nigeria, and its potential for sequestrating toxic heavy metals. Sci. Rep. 2021, 11, 17496. [Google Scholar] [CrossRef]
- Kang, C.-H.; Kwon, Y.-J.; So, J.-S. Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. 2016, 89, 64–69. [Google Scholar] [CrossRef]
- Nwagwu, E.C.; Yilwa, V.M.; Egbe, N.E.; Onwumere, G.B. Isolation and characterization of heavy metal tolerant bacteria from Panteka stream, Kaduna, Nigeria and their potential for bioremediation. Afr. J. Biotechnol. 2017, 16, 32–40. [Google Scholar] [CrossRef]
- Kiran, M.G.; Pakshirajan, K.; Das, G. Heavy metal removal from aqueous solution using sodium alginate immobilized sulfate reducing bacteria: Mechanism and process optimization. J. Environ. Manag. 2018, 218, 486–496. [Google Scholar] [CrossRef]
- Ibrahim, A.E.D.M.; Hamdona, S.; El-Naggar, M.; El-Hassayeb, H.A.; Hassan, O.; Tadros, H.; El-Naggar, M.M.A. Heavy metal removal using a fixed bed bioreactor packed with a solid supporter. Beni-Suef Univ. J. Basic Appl. Sci. 2019, 8, 1. [Google Scholar] [CrossRef]
- Giordani, A.; Rodriguez, R.P.; Sancinetti, G.P.; Hayashi, E.A.; Beli, E.; Brucha, G. Effect of low pH and metal content on microbial community structure in an anaerobic sequencing batch reactor treating acid mine drainage. Miner. Eng. 2019, 141, 105860. [Google Scholar] [CrossRef]
- Tang, C.; Sun, P.; Yang, J.; Huang, Y.; Wu, Y. Kinetics simulation of Cu and Cd removal and the microbial community adaptation in a periphytic biofilm reactor. Bioresour. Technol. 2019, 276, 199–203. [Google Scholar] [CrossRef]
- Torbagan, M.E.; Torgabeh, G.H.K. Biological removal of iron and sulfate from synthetic wastewater of a cotton delinting factory using halophilic sulfate-reducing bacteria. Heliyon 2019, 5, e02948. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Yu, S.; Huang, Z.; Xiao, X.; Tang, M.; Li, B.; Zhang, X. Simultaneous removal of elemental mercury and NO by a mercury-induced thermophilic community in a membrane biofilm reactor. Ecotoxicol. Environ. Saf. 2019, 176, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Paradez-Aguilar, J.; Reyes-Martinez, V.; Bustamante, G.; Almendáriz-Tapia, F.J. Removal of nickel(II) from wastewater using a zeolite-packed anaerobic bioreactor: Bacterial diversity and community structure shifts. J. Environ. Manag. 2020, 279, 111558. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, T.; Ning, Z.; Li, Q.; Xiao, E.; Liu, Y.; Xiao, Q.; Lan, X.; Ma, L.; Lu, F. In situ remediation of acid mine drainage from abandoned coal mine by filed pilot scale passive treatment system: Performance and response of microbial communities to low pH and elevated Fe. Bioresour. Technol. 2020, 317, 123985. [Google Scholar] [CrossRef]
- Jokai, K.; Nakamura, T.; Okabe, S.; Ishii, S. Simultaneous removal of nitrate and heavy metals in a continuous flow nitrate-dependent ferrous iron oxidation (NDFO) bioreactor. Chemosphere 2021, 262, 127838. [Google Scholar] [CrossRef]
- Villa Gomez, D.K.; Serrano, A.; Peces, M.; Ryan, B.; Hofmann, H.; Southam, G. A sequential bioreactor adaption strategy enhanced the precipitation of metals from tailings’ leachates. Min. Eng. 2021, 170, 107051. [Google Scholar] [CrossRef]
- Nogueira, E.W.; de Godoi, L.A.G.; Yabuki, L.N.M.; Brucha, G.; Damianovic, M.H.R.Z. Sulfate and metal removal from acid mine drainage using sugarcane vinasse as electron donor: Performance and microbial community of the down-flow structured-bed bioreactor. Bioresour. Technol. 2021, 330, 124968. [Google Scholar] [CrossRef]
- Miran, W.; Jang, J.; Nawaz, M.; Shahzad, A.; Jeong, S.E.; Jeon, C.O.; Lee, D.S. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper. Chemosphere 2017, 189, 134–142. [Google Scholar] [CrossRef]
- Wu, M.S.; Xu, X.; Zhao, Q.; Wang, Z.Y. Simultaneous removal of heavy metals and biodegradation of organic matter with sediment microbial fuel cells. RSC Adv. 2017, 7, 53433–53438. [Google Scholar] [CrossRef]
- Fadzli, F.S.; Rashid, M.; Yaqoob, A.A.; Ibrahim, M.N.M. Electricity generation and heavy metal remediation by utilizing yam (Dioscorea alata) waste in benthic microbial fuel cells (BMFCs). Biochem. Eng. J. 2021, 172, 108067. [Google Scholar] [CrossRef]
- Singh, A.; Kaushik, A. Removal of Cd and Ni with enhanced energy generation using biocathode microbial fuel cell: Insights from molecular characterization of biofilm communities. J. Clean. Prod. 2021, 315, 127940. [Google Scholar] [CrossRef]
- Amanze, C.; Zheng, X.; Man, M.; Yu, Z.; Ai, C.; Wu, X.; Xiao, S.; Xia, M.; Yu, R.; Wu, X.; et al. Recovery of heavy metals from industrial wastewater using bioelectrochemical system inoculated with novel Castellaniella species. Environ. Res. 2022, 205, 112467. [Google Scholar] [CrossRef]
- Aleid, G.M.; Alshammari, A.S.; Ahmad, A.R.D.; Hussain, F.; Oh, S.-E.; Ahmad, A.; Ibrahim, M.N.M.; Umar, K. Advancement in microbial fuel cells technology by using waste extract as an organic substrate to produce energy with metal removal. Processes 2023, 11, 2434. [Google Scholar] [CrossRef]
- Munoz-Cupa, C.; Bassi, A. Investigation of heavy metal removal from salty wastewater and voltage production using S. oneidensis MR-1 nanowires in a dual-chamber microbial fuel cell. Environ. Prog. Sustain. Energy 2024, 43, e14237. [Google Scholar] [CrossRef]
- Ahmad, A.; Alshammari, M.B.; Ibrahim, M.N.M.; Dao, W.Y. Energy production with removal of lead and chromium from wastewater through microbial fuel cells energized by organic waste substrate. Biomass Conv. Biorefin. 2025, 15, 17341–17353. [Google Scholar] [CrossRef]
- Mkilima, T.; Baimukasheva, S. Performance of a multi-chamber microbial fuel cell with biochar anode for industrial wastewater treatment and energy recovery. J. Ecol. Eng. 2025, 26, 367–380. [Google Scholar] [CrossRef]



| Surfactant Type | Microorganism | Biodegradation Efficacy and Experimental Conditions | Reference |
|---|---|---|---|
| SDS | |||
| Single strains | Pseudomonas aeruginosa S7 p | (i.c. 0.1%), b.e. 71.27% | [23] |
| Pseudomonas aeruginosa (MTCC 10311) | (i.c. 0.15%, 48 h, pH 7.5, 30 °C), b.e. 96% | [24] | |
| Pseudomonas jessenii | (i.c. 0.1%), b.e. 96.9–99.2% | [25] | |
| Pseudomonas putida SP3 | (i.c. 0.3%, 24 h), b.e. 100% | [26] | |
| Pseudomonas plecoglossicida | (i.c. 1%), b.e. 89.28% | [27] | |
| Serratia marcescens DRY6 | (i.c. 0.1%, 10 days), b.e. 100% | [28] | |
| Klebsiella oxytoca | (i.c. 0.2%, 4 days), b.e. 80% | [29] | |
| Klebsiella oxytoca aft-7 | (i.c. 0.02%, 48 h), support growth | [30] | |
| Delftia acidovorans SPB1 | - | [31] | |
| Delftia acidovorans | (i.c. 0.1%, 11 days), b.e. 87% | [32] | |
| K. pneumoniae MSK86, K. variicola MSK86, and Klebsiella sp. MSK86 | (i.c. 0.05%, 6 days), b.e. 86%, 84%, and 84%, respectively | [33] | |
| Comamonas terrigena strain N3H immobilized | Efficient in primary biodegradation | [34] | |
| Pseudomonas betelli, Acinetobacter johnsoni, and consortium | (i.c. 1.5 mM, 10 days), b.e. 97.2%, 96.4%, and 97.6%, respectively | [35] | |
| Staphylococcus aureus WAW1 and Bacillus cereus WAW2 | (i.c. 10 mM), b.e. 36.8% and 51.4%, respectively | [36] | |
| Burkholderia sp. | (i.c. 0.01%, 24 h, pH 7.4, 37 °C, 150 rpm), b.e. 100% | [37] | |
| Bacillus amyloliquefaciens kik-12 | (i.c. 0.05%, 7 days, pH 7.0, 37 °C), b.e. 100% | [38] | |
| Enterobacter sp. strain neni-13 | (i.c. 0.05%, 3 days, 27 °C), support growth | [39] | |
| Serratia marcescens strain DRY6 | (i.c. 0.05–0.1%, 6–10 days), b.e. 100% | [28] | |
| Staphylococcus saprophyticus ASOI-01 and Bacillus pumilus ASOI-02 | (i.c. 0.01%, pH 7.0, 20 °C), b.e. 88.9% and 93.4%, respectively | [2] | |
| Bacterial community | Acinetobacter calcoaceticus and Pantoea agglomerans | (i.c. 0.4%, 120 h, pH 8.0, 30 °C), b.e. 100% | [40] |
| Serratia sp., Pseudomonas betelii, and Acinetobacter johnsoni | (i.c. 1.5 mM, 10 days), b.e. 97.6% | [41] | |
| Pseudomonas mendocina and Bacillus sp. | (i.c. 0.001–0.1%, 48 h, 7% inoculum), b.e. 99.93–94.89% | [42] | |
| Bacillus, Pseudomonas, Klebsiella, Enterobacter, Escherichia coli, and Staphylococcus aureus | (28 days), b.e. 97% | [43] | |
| Alcaligenes faecalis, Enterobacter cloacae, and Serratia marcescens | (i.c. 0.001%, 140 h, pH 7.0, 30 °C, 150 rpm), b.e. 94.2% | [44] | |
| P. aeruginosa, P. mendocina, P. stutzeri, P. alcaligenes, P. pseudoalcaligenes, P. putida, and P. otitidis | (12 h), b.e. 97.2% | [26] | |
| LAS | |||
| Single strains | Klebsiella pneumoniae isolate L1 | (i.c. 0.0025%, 72 h), b.e. 60% | [45] |
| Burkholderia sp. | (i.c. 0.01%, 14 h), b.e. 100% | [37] | |
| Bacillus licheniformis | (i.c. 0.0001%, 8 days, pH 7.0, 35 °C), b.e. 86% | [46] | |
| Pseudomonas zhaodongensis | (i.c. 0.006%, 4 days), b.e. 76% | [47] | |
| Pseudomonas aeruginosa | (i.c. 0.0025%, pH 7.0 and 9.0, 30 °C), b.e. 93.76% and 90.4 | [48] | |
| Pseudomonas nitroreducens (L9) and immobilized L9 | (i.c. 1%), b.e. 57.35% and 85.15%, respectively | [49] | |
| Pseudomonas aeruginosa (L12) and immobilized L12 | (i.c. 1%), b.e. 57.41% and 62.98%, respectively | [49] | |
| Pseudomonas aeruginosa | (i.c. 0.01%), b.e. 99.73% | [50] | |
| Pantoea agglomerans and Serratia odorifera 2 | (i.c. 0.02%, 48–72 h, 32 °C, 250 rpm), b.e. 25% and 30%, respectively | [51] | |
| Acinetobacter calcoaceticus and Pantoea agglomerans | (i.c. 0.03%, 150 h), b.e. 60% | [40] | |
| Bacillus, Pseudomonas, and Acinetobacter | (i.c. 0.01%, 14 days, 30 °C, 150 rpm), b.e. 60–74%, 65–80%, and 70%, respectively | [52] | |
| Bacterial community | Acinetobacter calcoaceticus and Pantoea agglomerans | (i.c. 0.03%, 150 h, pH 8.5, 30 °C, 250 rpm), b.e. 60% | [40] |
| Pantoea agglomerans and Serratia odorifera 2 | (i.c. 0.02%, 48–72 h, 32 °C, 250 rpm), b.e. 100% | [51] | |
| Aeromonas caviae (two strains), Pseudomonas alcaliphila, and Vibrio sp.; individual strains | (i.c. 0.002%, 12 days, 25 °C, rotary shaker), b.e. 86% b.e. 21–60% | [53] | |
| SLES | |||
| Single strains | Citrobacter braakii | - | [54] |
| Pseudomonas nitroreducens S11 | (i.c. 1.1 mmol/L, 14 days), b.e. 65.6% (anox)—99.6% (oxic) | [55] | |
| Gamma-Proteobacteria | (i.c. 83–85 mg/kg, 28 days), degraded | [56] | |
| Pseudomonas aeruginosa | (i.c. 0.0025%, pH 9.0 and 7.0, 30 °C), b.e. 98.44% and 96.36% | [48] | |
| Bacterial community | Alcaligenes faecalis, Enterobacter cloacae, and Serratia marcescens | (i.c. 0.001%, 140 h, pH 7.0, 30 °C, 150 rpm), b.e. 47.53% | [44] |
| Acinetobacter calcoaceticus and Klebsiella oxytoca; Serratia odorifera and Acinetobacter calcoaceticus; A. calcoaceticus, S. odorifera, and K. oxytoca | (i.c. 0.03%, 144 h, pH 7.4), b.e. 100%, 100%, and 100%, respectively | [57] | |
| Aeromonas hydrophila S7, Pseudomonas stutzeri S8, and Pseudomonas nitroreducens S11 | (i.c. 0.025%, 21 days), b.e. 85.9% | [58] | |
| SLS Bacterial community | Enterobacter gergoviae, Enterobacter cloacae, and Bacillus alvei; Enterobacter gergoviae and Bacillus alvei; Enterobacter cloacae and Bacillus alvei; B. alvei (single) | (i.c. 0.01%, 15 days, 30 °C), b.e. 95.1%, 95%, 89.9%, 85.2%, and 18%, respectively | [59] |
| SDBS | |||
| Single strains | Stenotrophomonas maltophyla | (15 days), b.e. 59.45% | [60] |
| Ochrobactrum anthropi | (i.c. <400 mg/L, 7.0, 30 °C), b.e. 80% | [61] | |
| Bacterial community | Pantoea agglomerans and Acinetobacter calcoaceticus | (pH 8.5, 30 °C, 200 rpm), b.e. 60–90% | [61] |
| Alcaligenes faecalis, Enterobacter cloacae, and Serratia marcescens | (i.c. 0.001%, 140 h, pH 7.0, 30 °C, 150 rpm), b.e. 85.10% | [44] | |
| SDS and commercial detergents | |||
| Bacillus, Pseudomonas, Klebsiella, Enterobacter, Escherichia coli, and Staphylococcus aureus | (i.c. 3%, 28 days), b.e. 97% of SDS, 56–85% of locally manufactured detergents, and 92–95% of imported brand | [43] | |
| Single strains | Bacillus subtilis and Bacillus cereus | (i.c. detergent 2%, 24 h, 31 °C, 60 rpm), b.e. 97.6–94.3% and 96.6–99%, respectively | [62] |
| Surfactant Type | Microorganism | Biodegradation Efficacy and Experimental Conditions | Reference |
|---|---|---|---|
| Non-ionic SFs | |||
| AE | Microbacterium strain E19 | (30 days), b.e. 97 | [63] |
| Pseudomonas sp., strain LZ-B | (24 h), b.e. 96.8% | [64] | |
| Enterobacter strain Z3 | / | [65] | |
| Enterobacter strain Z2, Enterobacter strain Z3, Citrobacter freundii strain Z4, and Stenotrophomonas strain Z5 | i.c. 0.001% Stenotrophomonas strain Z5 < Enterobacter strain Z2 < Enterobacter strain Z3 = Citrobacter freundii strain Z4 | [66] | |
| AEO | Pseudomonas aerugirosa JA1001; consortium Pseudomonas stutzeri and Flavobacterium sp. | (i.c. 0.2%, 24–72 h), b.e. 100%; (i.c. 0.5%, 8 days), b.e. 100% | [67] [68] |
| APEOs | Pseudomonas sp., Moraxella osloensis, Cupriavidus sp., and Brevibacterium sp. TX4 | / | [69] |
| NPEOs, single | Bacillus, Pseudomonas, and Acinetobacter | (i.c. 0.01%, 14 days, 30 °C, 150 rpm), b.e. 65–80%, 70–75%, and 75%, respectively | [52] |
| Single strains | K. pneumonie (Yas1) and P. fluorescens (Yas2) | (i.c. 3%, 24 h), b.e. 96% and 85%, respectively | [70] |
| Cationic SFs | |||
| CTAB | Pseudomonas and Stenotrophomonas | b.e. 98% | [71] |
| BAC | P. nitroreducens | (12 h), b.e. 80% | [72] |
| BDHAC | Bacillus niabensis and Thalassospira sp. | (7 days), b.e. 90% | [73] |
| BDTA | Pseudomonas sp., strain C505 | / | [74] |
| BAC C14BDMA C16TMA | Pseudomonas putida A (ATCC 12633) immobilized | (i.c. 0.0035–0.0315%, after 24 h, pH 7.0, 30 °C, 100 rpm), b.e. 90% | [75] |
| TTAB | P. putida A (ATCC 12633) immobilized | (i.c. 0.033%, 24 h), b.e. 75% | [76] |
| TTAB BAC | Aeromonas hydrophila MFB03 free and immobilized cells | (i.c. 0.003% TTAB), b.e. 65%; (i.c. 0.0025–0.0125% BAC), b.e. 90% | [77] |
| TTAB BAC | Pseudomonas putida A (ATCC 12633) and Aeromonas hydrophila MFB03 immobilized | (i.c. 0.003% TTAB), b.e. 65%; (i.c.0.0025–0.0125% BAC), b.e. 100% and b.e. 90% | [77] |
| Amphoteric SFs | |||
| Betain type | Desulfobacterium, Eubacterium limosum, and Sporomusa ovata | / | [78] [79] [80] |
| CAPB | Pseudomonas sp. FV and Rhizobium sp. FM | / | [81] |
| Bacterial Strains | Bioreactor Type | Surfactant Type and Removal Efficiency (%) | Reference |
|---|---|---|---|
| Citrobacter braakii | 20 L continuous-flow bioreactor | SLES (0.065 g/lh); HRT (20 h) | [54] |
| Activated sludge | MBBR | SDBS (98–99.2%); HRT 72 h | [90] |
| Pseudomonas aeruginosa (A4), Pseudomonas stutzeri (A10), Bacillus safensis (A13), and Staphylococcus arlettae (A14) | MBR | SLES (99.6%) | [91] |
| Aquamicrobium, Flaviflexus, Pseudomonas, and Thiopseudomonas | AnMBR | SLS and SLES (decreased from 9000 to 2000 mg/L) | [92] |
| Rhodobacter and Asticcacaulis | Continuous reactor | CPC (95%), 3 days | [93] |
| Coliform bacteria and their subgroups; Escherichia coli (E. coli) and fecal coliform bacteria | 1.5 L glass reactor | SDS (100%), 48 h DBDAC (40%), 30 min | [94] |
| Activated sludge | O2-MBfR | LAS (98%) | [95] |
| SDS-degraded biofilms contained Pseudomonas nitroreducens, Pseudomonas knackmussi, and Diella ginsengisoli; CTAB biofilms degraded: P. aeruginosa, P. saponiphila, and Acidovorax spp., as well as S. maltophilia; DAPS-degraded biofilms contained Phenylobacterium sp. and Pseudomonas sichuanensis | O2-MBfR | SDS (98%); CTAB (98%); DAPS (98%) | [71] |
| Heavy Metal | Bacterial Strain | Removal Capacity (%) | References |
|---|---|---|---|
| Cu | Ochrobactrum MT180101 | >90% | [102] |
| Vitreoscilla sp. ENSG301 | 97.1% | [103] | |
| B. thuringiensis ENSW401 | 96.8% | [104] | |
| E. asburiae ENSD102 | 92.7% | [103] | |
| E. ludwigii ENSH201 | 90.2% | [104] | |
| A. lwoffii ENSG302 | 92.5% | [103] | |
| Bacillus sp. | 75.75% | [104] | |
| Zn | Oceanobacillus profundus | 54% | [105] |
| Desulfovibrio desulfuricans | 100% | [106] | |
| Alcaligenes sp. MMA | 70% | [107] | |
| Pseudomonas sp. | 49.8% | [108] | |
| Pb | Streptomyces sp. | 83.4% | [109] |
| Bacillus sp. | 82.5% | [104] | |
| E. cloacae | 95.25% | [110] | |
| Oceanobacillus profundus | 97% | [105] | |
| Klebsiella sp. USL2D | 97.13% | [111] | |
| B. thuringiensis ENSW401 | 93.5% | [103] | |
| Vitreoscilla sp. ENSG301 | 91.5% | [103] | |
| E. asburiae ENSD102 (89.8%) | 89.8% | [103] | |
| A. lwoffii ENSG302 | 87.6% | [103] | |
| E. ludwigii ENSH201 (84.2%) | 84.2% | [103] | |
| Rhizopus stolonifera | 44.44% | [112] | |
| Hg | Pseudomonas aeruginosa FZ-2 | 99.7% | [113] |
| Enterobacter cloacae | 81% | [114] | |
| Bacillus thuringiensis | 62% | [115] | |
| Vibrio fluvialis | 60% | [116] | |
| Ni | Pseudomonas sp. | 52.9% | [108] |
| Staphylococcus cohnii | 80% | [117] | |
| Vitreoscilla sp. ENSG301 | 94.2% | [103] | |
| Bacillus | 77% | [104] | |
| Acinetobacter sp. B9 | 69% | [118] | |
| E. cloacae | 36.77% | [110] | |
| Mn | Pseudomonas sagittaria MOB-181 | 95% | [119] |
| Ochrobactrum sp. NDMn-6 | 99.15% | [120] | |
| Acinetobacter sp. NDMn-1 | 80.6% | [121] | |
| Aeromonas hydrophila strain DS02 | 89.6% | [121] | |
| Brevibacillus parabrevis MO2 | 94% | [122] | |
| Lysinibacillus sp. 6P | 82.7% | [120] | |
| Stenotrophomonas sp. 7P | 70.9% | [120] | |
| Brevibacillus brevis MO1 | 83.6% | [122] | |
| Cd | Pseudomonas azotoformans JAW1 | 98.57% | [123] |
| Pseudoalteromonas sp. SCSE709-6 | >90% | [124] | |
| Enterobacter cloaceae | 72.11% | [114] | |
| Alcaligenes sp. MMA | 63% | [107] | |
| Shewanella putrefaciens | 86.5% | [125] |
| Bacterial Strains | Bioreactor Type | Removal Efficiency (%) | Reference |
|---|---|---|---|
| Desulfovibrio sp. | Continuous downstream flow reactor | Cu (99%) and Zn (95.8%) | [153] |
| Pseudomonas aeruginosa | Fixed-bed glass bioreactor | Cu, Zn, and Cd (100%); Pb (47%); and Fe (62%) | [154] |
| Syntrophobacter, Methanosaeta, Geobacter, Anaerolinea, and Longilinea spp. | Anaerobic sequential reactor (ASBR) | Fe (99.9%), Zn (99.4%), and Cu (99.3%) | [155] |
| Proteobacteria, Cyanobacteria, Bacterioidetes, Acidobacteria, Firmicutes, Acinobacteria, Chlorobium, Spirochaetes, Nitrospirae, and Armatimonadetes | Periphytic biofilm reactor (PBfR) | Cu (99%) and Cd (99.7%) | [156] |
| Desulfovibrio halophilus | Fluidized bed reactor under anaerobic conditions | Fe (85.3%) | [157] |
| Comamonas, Pseudomonas, Desulfomicrobium, Burkholderia, Halomonas. Brucella, Paracoccus, Tepidiphilus, Proteobacteria, Pseudomonas, and Symbiobacterium | Membrane biofilm reactor (TMBR) | Hg0 (88.9%) | [158] |
| Kosmotogae, Firmicutes, Ruminococcus, and Clostridium | Anaerobic bioreactor with zeolite | Ni (99%) | [159] |
| Ferrovum, Delftia, Acinetobacter, Metallibacterium, Acidibacter, and Acidiphilium | Field bioreactor | Fe total soluble (93.7%) and Fe(II) (99%) | [160] |
| Pseudogulbenkiania sp. NH8B | Continuous flow reactor | Zn (83%) and Fe (50%) | [161] |
| Desulfovibrionaceae | Sulfate reduction bioreactor | Zn, Fe, and Pb (95%), Mn (80%), Ca (50%), and Mg (38%) | [162] |
| Geobacter and Desulfovibrio | Down-flow structured bed bioreactor (DFSBR) | Co, Ni, and Zn (80%), Cu (73%), Fe (70%), and Mn (60%) | [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radojević, I.D.; Jakovljević, V.D. Bacterial Potential for Bioremediation of Surfactants and Heavy Metals: Current Knowledge and Trends in Wastewater Treatment Processes. Separations 2025, 12, 308. https://doi.org/10.3390/separations12110308
Radojević ID, Jakovljević VD. Bacterial Potential for Bioremediation of Surfactants and Heavy Metals: Current Knowledge and Trends in Wastewater Treatment Processes. Separations. 2025; 12(11):308. https://doi.org/10.3390/separations12110308
Chicago/Turabian StyleRadojević, Ivana D., and Violeta D. Jakovljević. 2025. "Bacterial Potential for Bioremediation of Surfactants and Heavy Metals: Current Knowledge and Trends in Wastewater Treatment Processes" Separations 12, no. 11: 308. https://doi.org/10.3390/separations12110308
APA StyleRadojević, I. D., & Jakovljević, V. D. (2025). Bacterial Potential for Bioremediation of Surfactants and Heavy Metals: Current Knowledge and Trends in Wastewater Treatment Processes. Separations, 12(11), 308. https://doi.org/10.3390/separations12110308

