Variations in Quantitative Composition of Phenolic Compounds in Flowers, Leaves, and Fruits of Mespilus germanica L. During Harvesting Period
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Plant Material
- •
- 0 DAF (flowering; 19 May)—Full bloom: petals fully expanded, many open flowers per tree. No fruit yet. Leaves fully expanded and green.
- •
- 23 DAF (11 June)—Fruit set/early development: petals mostly fallen; young fruitlets visible, small and green; leaves fully expanded and green.
- •
- 56 DAF (14 July)—Early fruit development: fruit still green, skin smooth and firm; leaves green.
- •
- 96 DAF (23 August)—Mid fruit development: fruit increasing in size; skin still predominantly green to pale green-yellow; pulp firm and pale; leaves remain green.
- •
- 121 DAF (17 September)—Late development/early ripening: skin color begins to change (light brownish or yellow-brown in some fruits), pulp still mostly pale and firm—fruits are approaching consumption maturity for some cultivars but still firm. Leaves still present, mostly green.
- •
- 162 DAF (28 October)—Advanced ripening, skin brown to brownish-orange, pulp softening and browning. Leaves still present (yellowing to reddish-brown),and starting to fall down.
2.3. Extraction
2.4. High-Performance Liquid Chromatography (HPLC)
2.5. Antioxidant Activity and Total Phenolic Content
2.6. Statistical Analysis
3. Results
3.1. Quantitative Composition of the Phenolic Compounds in the Flowers and Fruits of M. germanica L. During the Harvest Period
Phenolic Profile Changes in Fruits During the Harvest Period
3.2. Quantitative Composition of the Phenolic Compounds in Leaves of M. germanica L. During the Harvest Period
Phenolic Profile Changes in Leaves During the Harvest Period
3.3. Antioxidant Activity and Total Ohenolic Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DAF | Days after flowering |
FLD | Fluorescence detector |
References
- Palos-Hernández, A.; González-Paramás, A.M.; Santos-Buelga, C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2025, 30, 55. [Google Scholar] [CrossRef] [PubMed]
- Szwajgier, D.; Borowiec, K.; Pustelniak, K. The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action. Nutrients 2017, 9, 477. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Popović-Djordjević, J.; Kostić, A.; Kamiloglu, S.; Tomas, M.; Mićanović, N.; Capanoglu, E. Chemical Composition, Nutritional and Health Related Properties of the Medlar (Mespilus germanica L.): From Medieval Glory to Underutilized Fruit. Phytochem. Rev. 2023, 22, 1663–1690. [Google Scholar] [CrossRef]
- Güler, E.; Taş, A.; Canan, I.; Gundogdu, M. Exploring the Morphometric and Biochemical Quality Characteristics of Local Medlar (Mespilus germanica L.) Genotypes in West Black Sea (Bolu) of Türkiye. Discov. Plants 2025, 2, 175. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Nabavi, S.M.; Ebrahimzadeh, M.A.; Asgarirad, H. The Antioxidant Activity of Wild Medlar (Mespilus germanica L.) Fruit, Stem Bark and Leaf. Afr. J. Biotechnol. 2010, 10, 283–289. [Google Scholar] [CrossRef]
- Nistor, D.I.; Marc, R.A.; Mureșan, C.C. Phytochemistry, Nutritional Composition, Health Benefits and Future Prospects of Mespilus germanica L. (Medlar): A Review. Food Chem. X 2024, 22, 101334. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X. A Comprehensive Review of Phenolic Compounds in Horticultural Plants. Int. J. Mol. Sci. 2025, 26, 5767. [Google Scholar] [CrossRef]
- Sadeghinejad, Z.; Erfani-Moghadam, J.; Khadivi, A. Bioactive Content and Phenolic Compounds of Common Medlar (Mespilus germanica L.) and Stern’s Medlar (M. canescens Phipps). Food Sci. Nutr. 2022, 10, 1988–1993. [Google Scholar] [CrossRef]
- Katanić Stanković, J.S.; Mićanović, N.; Grozdanić, N.; Kostić, A.Ž.; Gašić, U.; Stanojković, T.; Popović-Djordjević, J.B. Polyphenolic Profile, Antioxidant and Antidiabetic Potential of Medlar (Mespilus germanica L.), Blackthorn (Prunus Spinosa L.) and Common Hawthorn (Crataegus Monogyna Jacq.) Fruit Extracts from Serbia. Horticulturae 2022, 8, 1053. [Google Scholar] [CrossRef]
- Cosmulescu, S.N.; Trandafir, I.; Scrieciu, F.; Stoenescu, A.-M. Content in Organic Acids of Mespilus spp. and Crataegus spp. Genotypes. Not. Bot. Horti. Agrobo. 2020, 48, 171–176. [Google Scholar] [CrossRef]
- Voaides, C.; Radu, N.; Birza, E.; Babeanu, N. Medlar—A Comprehensive and Integrative Review. Plants 2021, 10, 2344. [Google Scholar] [CrossRef] [PubMed]
- Żołnierczyk, A.K.; Ciałek, S.; Styczyńska, M.; Oziembłowski, M. Functional Properties of Fruits of Common Medlar (Mespilus germanica L.) Extract. Appl. Sci. 2021, 11, 7528. [Google Scholar] [CrossRef]
- Gruz, J.; Ayaz, F.A.; Torun, H.; Strnad, M. Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem. 2011, 124, 271–277. [Google Scholar] [CrossRef]
- Nikolic, J.S.; Mitic, V.D.; Stankov Jovanovic, V.P.; Dimitrijevic, M.V.; Stojanovic, G.S. Chemometric characterization of twenty three culinary herbs and spices according to antioxidant activity. J. Food Meas. Charact. 2019, 13, 2167–2176. [Google Scholar] [CrossRef]
- Topal, F.; Sarıkaya, S.B.Ö.; Bursal, E.; Bilsel, G.; Gören, A.C. Polyphenol Contents and Antioxidant Properties of Medlar (Mespilus germanica L.). Rec. Nat. Prod. 2011, 5, 158–175. [Google Scholar]
- Mićanović, N.; Đurović, S.; Naumovski, N.; Mickovski Stefanović, V.; Li, H.; Popović Đorđević, J. Insight into selected quality parameters of medlar (Mespilus germanica L.) Fruit grown in Serbia. In Proceedings of the 2nd International Symposium on Biotechnology, Čačak, Serbia, 14–15 March 2024; pp. 559–564. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Jakljevic, K.; Veberic, R.; Hudina, M.; Rusjan, D. Changes in the Fruit Quality Parameters of Medlar Fruit (Mespilus germanica L.) after Heat Treatment, Storage, Freezing or Hoarfrost. Foods 2023, 12, 3077. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Suvanto, J.; Karppinen, K.; Riihinen, K.; Jaakola, L.; Salminen, J.-P. Changes in the Proanthocyanidin Composition and Related Gene Expression in Bilberry (Vaccinium myrtillus L.) Tissues. J. Agric. Food Chem. 2020, 68, 7378–7386. [Google Scholar] [CrossRef]
- Kobori, R.; Yakami, S.; Kawasaki, T.; Saito, A. Changes in the Polyphenol Content of Red Raspberry Fruits during Ripening. Horticulturae 2021, 7, 569. [Google Scholar] [CrossRef]
- Crowe-White, K.M.; Evans, L.W.; Kuhnle, G.G.C.; Milenkovic, D.; Stote, K.; Wallace, T.; Handu, D.; Senkus, K.E. Flavan-3-Ols and Cardiometabolic Health: First Ever Dietary Bioactive Guideline. Adv. Nutr. 2022, 13, 2070–2083. [Google Scholar] [CrossRef]
- Rop, O.; Sochor, J.; Jurikova, T.; Zitka, O.; Skutkova, H.; Mlcek, J.; Salas, P.; Krska, B.; Babula, P.; Adam, V.; et al. Effect of Five Different Stages of Ripening on Chemical Compounds in Medlar (Mespilus germanica L.). Molecules 2010, 16, 74–91. [Google Scholar] [CrossRef] [PubMed]
- Yunusa, U.; Ozturk Urek, R. Phenolic Composition, Antioxidant, and Cytotoxic Effects on HeLa and HepG2 Cancer Cell Lines of Mespilus germanica Grown in Turkey. Nat. Prod. Res. 2023, 38, 1972–1976. [Google Scholar] [CrossRef] [PubMed]
- Isbilir, S.S.; Kabala, S.I.; Yagar, H. Assessment of in Vitro Antioxidant and Antidiabetic Capacities of Medlar (Mespilus germanica). Not. Bot. Horti. Agrobot. 2019, 47, 384–389. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Viškelis, P.; Raudonis, R.; Kviklys, D.; Uselis, N.; Janulis, V. Phenolic Composition and Antioxidant Activity of Malus Domestica Leaves. Sci. World J. 2014, 2014, 306217. [Google Scholar] [CrossRef]
- Bouderias, S.; Teszlák, P.; Jakab, G.; Kőrösi, L. Age- and Season-Dependent Pattern of Flavonol Glycosides in Cabernet Sauvignon Grapevine Leaves. Sci. Rep. 2020, 10, 14241. [Google Scholar] [CrossRef]
- Henry-Kirk, R.A.; McGhie, T.K.; Andre, C.M.; Hellens, R.P.; Allan, A.C. Transcriptional Analysis of Apple Fruit Proanthocyanidin Biosynthesis. J. Exp. Bot. 2012, 63, 5437–5450. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J. Antioxidant Activity Modulated by Polyphenol Contents in Apple and Leaves during Fruit Development and Ripening. Antioxidants 2020, 9, 567. [Google Scholar] [CrossRef]
- Pfeiffer, J.; Kühnel, C.; Brandt, J.; Duy, D.; Punyasiri, P.A.N.; Forkmann, G.; Fischer, T.C. Biosynthesis of Flavan 3-Ols by Leucoanthocyanidin 4-Reductases and Anthocyanidin Reductases in Leaves of Grape (Vitis vinifera L.), Apple (Malusx domestica Borkh.) and Other Crops. Plant Physiol. Biochem. 2006, 44, 323–334. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of Phenolic Compounds and Antioxidant Potential between Selected Edible Fruits and Their Leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- Serteser, A.; Kargioğlu, M.; Gök, V.; Bağci, Y.; Özcan, M.M.; Arslan, D. Determination of antioxidant effects of some plant species wild growing in Turkey. Int. J. Food Sci. Nutr. 2008, 59, 643–651. [Google Scholar] [CrossRef]
Compound | Calibration Curve | (R2) | LOD 1 (µg/mL) | LOQ 2 (µg/mL) | Recovery (%) | Matrix Effect (%) |
---|---|---|---|---|---|---|
p-Hydroxybenzoic acid | 0.9998 | 0.003 | 0.010 | 102 ± 1 | −3.3 | |
Caffeic acid | 0.9998 | 0.035 | 0.116 | 89.7 ± 0.8 | 1.55 | |
Vanilic acid | 0.9995 | 0.003 | 0.010 | 93.1 ± 0.6 | 3.12 | |
Chlorogenic acid | 0.9998 | 0.035 | 0.116 | 101 ± 1 | 2.65 | |
Syringic acid | 0.9999 | 0.011 | 0.037 | 99 ± 0.9 | −3.23 | |
p-Coumaric acid | 0.9997 | 0.042 | 0.140 | 97.6 ± 0.5 | −1.65 | |
Ferulic acid | 0.9998 | 0.029 | 0.097 | 104 ± 1 | 2.53 | |
Sinapic acid | 0.9998 | 0.032 | 0.106 | 98.4 ± 0.3 | 2.33 | |
Rutin | 0.9999 | 0.052 | 0.173 | 102.1 ± 0.8 | 4.21 | |
Quercetin | 0.9996 | 0.033 | 0.110 | 96 ± 1 | 2.43 | |
Kampferol | 0.9997 | 0.029 | 0.097 | 98.6 ± 0.9 | −3.21 | |
Luteolin | 0.9998 | 0.030 | 0.100 | 100 ± 1 | 1.45 | |
Apigenin | 0.9999 | 0.055 | 0.183 | 94.4 ± 0.9 | −1.76 | |
B2 | 0.9998 | 0.032 | 0.106 | 100.3 ± 0.3 | −2.96 | |
Catechin | 0.9998 | 0.011 | 0.037 | 97.9 ± 0.5 | 4.01 | |
Epicatechin | 0.9999 | 0.011 | 0.037 | 99.3 ± 0.5 | −3.10 |
Phenolic Compounds | MFlo | MF 23 DAF | MF 56 DAF | MF 96 DAF | MF 121 DAF | MF 162 DAF |
---|---|---|---|---|---|---|
Caffeic acid | 0.570 ± 0.002 b | 0.620 ± 0.008 a | 0.230 ± 0.001 c | 0.110 ± 0.001 d | 0.120 ± 0.001 d | 0.090 ± 0.001 d |
Chlorogenic acid | 1.730 ± 0.009 a | 1.65 ± 0.02 b | - | - | - | - |
4-Caffeoylquinic acid | - | - | 0.440 ± 0.004 a | 0.380 ± 0.003 b | 0.340 ± 0.003 b | 0.280 ± 0.002 c |
p-Coumaric acid | - | 0.080 ± 0.001 a | 0.030 ± 0.001 c,d | 0.030 ± 0.001 c,d | 0.050 ± 0.001 b | 0.040 ± 0.002 c |
Sinapic acid | 0.290 ± 0.002 a | 0.210 ± 0.002 b | 0.150 ± 0.001 c | 0.081 ± 0.003 d | 0.050 ± 0.001 e | 0.030 ± 0.001 f |
Ferulic acid | 0.290 ± 0.002 a | 0.160 ± 0.001 b | 0.050 ± 0.001 c | 0.050 ± 0.001 c | 0.040 ± 0.001 c | 0.040 ± 0.001 c |
4-Hydroxybenzoic acid | - | - | 1.45 ± 0.01 c | 1.55 ± 0.01 c | 1.77 ± 0.02 b | 2.68 ± 0.03 a |
Vanillic acid | - | - | 0.270 ± 0.002 d | 0.320 ± 0.002 c | 0.560 ± 0.006 a | 0.470 ± 0.003 b |
Syringic acid | - | - | 0.240 ± 0.001 b | 0.140 ± 0.002 c | 0.390 ± 0.002 a | 0.210 ± 0.001 b |
∑Hydroxycinnamic acid | 2.88 ± 0.010 a | 2.72 ± 0.01 a | 0.900 ± 0.005 b | 0.650 ± 0.001 c | 0.601 ± 0.003 c | 0.480 ± 0.001 d |
w(Hydroxycinnamic acid) | 26.42 | 42.30 | 16.22 | 11.68 | 7.77 | 6.41 |
∑Hydroxybenzoic acid | - | - | 1.96 ± 0.01 c | 2.01 ± 0.01 c | 2.72 ± 0.02 b | 3.36 ± 0.02 a |
w(Hydroxybenzoic acid) | - | - | 35.31 | 36.08 | 35.13 | 44.80 |
Rutin | 0.090 ± 0.001 b | 0.090 ± 0.001 b | 0.120 ± 0.001 a | 0.140 ± 0.001 a | 0.060 ± 0.003 c | 0.050 ± 0.001 c |
Hyperoside | 0.060 ± 0.001 a | 0.050 ± 0.003 b | - | - | - | - |
Isoquercetin | 0.780 ± 0.001 a | 0.140 ± 0.001 b | - | - | - | - |
Quercetin-3-rhamnoside | 0.930 ± 0.005 a | 0.160 ± 0.001 b | - | - | - | - |
Quercetin-3-pentoside | 0.320 ± 0.002 a | 0.170 ± 0.001 b | - | - | - | - |
Kaempferol-3-rutinoside | 3.11 ± 0.03 a | 0.160 ± 0.002 b | - | - | - | - |
Quercetin-glucoside | 0.120 ± 0.002 a | 0.120 ± 0.001 a | - | - | - | |
Quercetin | 0.180 ± 0.001 a | 0.080 ± 0.001 b | 0.020 ± 0.001 c | 0.020 ± 0.001 c | 0.010 ± 0.001 d | 0.010 ± 0.001 d |
Kaempferol | 0.130 ± 0.001 b | 0.170 ± 0.002 a | - | - | - | |
∑Flavonols and Flavonol Glycosides | 5.72 ± 0.013 a | 1.140 ± 0.001 b | 0.140 ± 0.001 c | 0.160 ± 0.001 c | 0.070 ± 0.003 d | 0.060 ± 0.003 d |
w (Flavonols) | 52.47 | 17.73 | 2.52 | 2.87 | 0.90 | 0.80 |
∑Quercetin glycosides | 2.300 ± 0.007 a | 0.730 ± 0.001 b | 0.120 ± 0.001 a | 0.140 ± 0.001 a | 0.060 ± 0.003 d | 0.050 ± 0.004 d |
∑Kaempferol glycosides | 3.11 ± 0.03 a | 0.160 ± 0.001 b | - | - | - | - |
Luteolin glycoside | 0.80 ± 0.01 a | 0.0600 ± 0.0001 | - | - | - | - |
Apigenin glycoside | 0.450 ± 0.006 a | 0.100 ± 0.001 | - | - | - | - |
∑ Flavones | 1.25 ± 0.02 a | 0.1600 ± 0.0004 | - | - | - | - |
w (Flavones) | 11.47 | 2.49 | - | - | - | - |
Procyanidin B2 | 0.270 ± 0.002 f | 0.610 ± 0.008 e | 0.970 ± 0.014 d | 1.28 ± 0.01 c | 2.11 ± 0.02 a | 1.81 ± 0.02 b |
Procyanidin B5 | - | 0.450 ± 0.003 b | 0.530 ± 0.001 a | 0.160 ± 0.001 d | 0.210 ± 0.002 c | 0.520 ± 0.004 a |
Epicatechin | 0.780 ± 0.006 d | 1.35 ± 0.01 b | 0.810 ± 0.006 d | 0.970 ± 0.008 c | 1.93 ± 0.02 a | 1.210 ± 0.004 b |
Catechin | - | - | 0.240 ± 0.002 b | 0.340 ± 0.003 a | 0.100 ± 0.001 c | 0.060 ± 0.0005 d |
∑ Flavan-3-ols | 1.050 ± 0.004 d | 2.41 ± 0.001 c | 2.55 ± 0.01 c | 2.75 ± 0.01 c | 4.350 ± 0.003 a | 3.60 ± 0.02 b |
w (Flavan-3-ols) | 9.63 | 37.48 | 45.95 | 49.37 | 56.19 | 48.00 |
∑ Individual phenolics | 10.90 ± 0.004 a | 6.43 ± 0.01 c | 5.55 ± 0.01 d | 5.57 ± 0.01 d | 7.74 ± 0.02 b | 7.50 ± 0.03 b |
Sample | TPC (mg GAE g−1) | DPPH (μmol TE g−1) | FRAP (μmol TE g−1) |
---|---|---|---|
MFlo | 74.59 ± 0.39 a | 527.62 ± 6.60 a | 416.11 ± 3.90 a |
ML1 | 109.26 ± 0.94 b | 687.79 ± 19.02 b | 563.44 ± 30.53 b |
ML 23DAF | 120.72 ± 0.85 c | 790.67 ± 10.21 c | 701.34 ± 7.81 c |
ML 56DAF | 122.03 ± 0.37 c | 762.35 ± 16.74 c | 777.02 ± 3.43 d |
ML4 96DAF | 123.93 ± 0.57 c | 816.53 ± 4.83 d | 797.34 ± 4.67 d |
ML5 121DAF | 144.45 ± 1.79 d | 918.91 ± 3.18 e | 883.31 ± 5.68 e |
MF 23DAF | 10.27 ± 0.09 a | 17.95 ± 0.09 a | 69.97 ± 2.29 a |
MF 56DAF | 12.23 ± 0.09 b | 19.84 ± 0.09 a | 85.18 ± 1.05 b |
MF 96DAF | 17.71 ± 0.15 c | 30.90 ± 0.09 b | 106.39 ± 2.53 c |
MF 121DAF | 41.63 ± 2.46 d | 34.13 ± 0.08 b | 304.32 ± 0.64 d |
MF 162DAF | 32.92 ± 0.68 e | 35.21 ± 0.46 b | 556.82 ± 6.60 e |
Phenolic Compounds | ML1 | ML 23 DAF | ML 56 DAF | ML 96 DAF | ML 121 DAF |
---|---|---|---|---|---|
Neochlorogenic acid | 0.470 ± 0.004 a | 0.210 ± 0.002 b | 0.130 ± 0.001 c | 0.100 ± 0.001 d | - |
Caffeic acid | 0.450 ± 0.005 c | 0.570 ± 0.007 a | 0.370 ± 0.002 d | 0.510 ± 0.006 b | 0.310 ± 0.003 e |
4-Caffeoylquinic acid | 3.16 ± 0.02 b | 3.85 ± 0.03 a | 2.32 ± 0.02 c | 1.93 ± 0.02 d | 1.43 ± 0.02 e |
Feruloylquinic acid | 0.330 ± 0.002 e | 0.420 ± 0.002 d | 0.570 ± 0.004 b | 0.520 ± 0.004 c | 0.680 ± 0.006 a |
Sinapic acid | 0.400 ± 0.002 b | 0.594 ± 0.006 a | 0.400 ± 0.003 b | 0.391 ± 0.007 b | - |
Ferulic acid | 27.96 ± 0.24 a | 21.38 ± 0.16 c | 23.17 ± 0.08 b | 20.45 ± 0.14 c | 18.18 ± 0.17 d |
∑Hydroxycinnamic acid | 32.77 ± 0.24 a | 27.03 ± 0.13 b | 26.96 ± 0.07 b | 23.90 ± 0.13 c | 20.60 ± 0.19 c |
w (Hydroxycinnamic acid) | 64.52 | 54.67 | 55.14 | 50.19 | 50.15 |
Rutin | 0.390 ± 0.005 c | 2.34 ± 0.02 a,b | 2.61 ± 0.02 a | 2.62 ± 0.02 a | 2.06 ± 0.02 b |
Hyperoside | 0.430 ± 0.003 d | 0.480 ± 0.004 d | 1.261 ± 0.005 c | 1.789 ± 0.006 b | 2.16 ± 0.01 a |
Isoquercetin | 0.150 ± 0.001 a | 0.110 ± 0.001 b | 0.100 ± 0.001 b | 0.120 ± 0.001 b | 0.110 ± 0.001 b |
Quercetin-3-pentoside | 3.60 ±0.03 b | 3.59 ± 0.03 b | 3.41 ± 0.02 b | 4.27 ± 0.03 a | 2.37 ± 0.01 c |
Kaempferol-3-rutinoside | 3.69 ± 0.01 a | 3.37 ± 0.03 a | 2.68 ± 0.02 b | 3.49 ± 0.01 a | 2.70 ± 0.02 b |
Quercetin-3-rhamnoside | 0.460 ± 0.003 a | 0.400 ± 0.004 b | 0.470 ± 0.002 a | 0.420 ± 0.002 b | 0.400 ± 0.002 b |
Kaempferol-glucoside | 0.530 ± 0.007 b | 0.340 ± 0.004 a | 0.360 ± 0.003 a | 0.540 ± 0.003 b | 1.27 ± 0.01 a |
Quercetin | 0.530 ± 0.006 a | 0.280 ± 0.003 c | 0.350 ± 0.002 b | 0.270 ± 0.002 c | 0.270 ± 0.002 c |
Kaempferol | 0.090 ± 0.0005 c | 0.040 ± 0.0001 d | 0.119 ± 0.0001 b | 0.102 ± 0.002 b,c | 0.360 ± 0.003 a |
∑Flavonols | 9.87 ± 0.01 d | 10.95 ± 0.02 c,d | 11.36 ± 0.004 b,c | 13.62 ± 0.02 a | 11.70 ± 0.03 b |
w (Flavonols) | 19.43 | 22.10 | 23.26 | 28.60 | 28.48 |
∑Quercetin glycosides | 5.03 ± 0,04 d | 6.92 ± 0.01 c | 7.85 ± 0.04 b | 9.22 ± 0.02 a | 7.10 ± 0.03 c |
∑Kaempferol glycosides | 4.22 ± 0.02 a | 3.71 ± 0.03 c | 3.04 ± 0.02 d | 4.03 ± 0.01 a,b | 3.97 ± 0.03 b,c |
Luteolin glycoside | 0.320 ± 0.001 e | 0.360 ± 0.004 d | 0.390 ± 0.003 c | 0.520 ± 0.003 a | 0.420 ± 0.004 b |
Apigenin glycoside | 0.0406 ± 0.0006 e | 0.120 ± 0.001 d | 0.230 ± 0.001 c | 0.350 ± 0.002 b | 0.440 ± 0.002 a |
∑ Flavones | 0.3606 ± 0.0001 d | 0.480 ± 0.003 c | 0.620 ± 0.004 b | 0.870 ± 0.001 a | 0.860 ± 0.002 a |
w (Flavones) | 0.71 | 0.97 | 1.27 | 1.83 | 2.09 |
PC | 0.420 ± 0.006 b | 0.520 ± 0.004 a | 0.390 ± 0.002 c | 0.380 ± 0.001 c | 0.410 ± 0.003 b |
Procyanidin B2 | 2.36 ± 0.01 c | 3.09 ± 0.01 a | 2.64 ± 0.02 b | 2.25 ± 0.01 c | 1.76 ± 0.01 d |
Epicatechin | 3.67 ± 0.04 c | 4.88 ± 0.03 a | 4.38 ± 0.04 b | 4.40 ± 0.04 b | 3.89 ± 0.02 c |
Procyanidin B5 | 1.06 ± 0.01 d | 1.790 ± 0.003 b | 2.10 ± 0.02 a | 1.84 ± 0.01 b | 1.580 ± 0.002 c |
Catechin | 0.281 ± 0.002 d | 0.790 ± 0.008 a | 0.440 ± 0.001 b | 0.360 ± 0.002 c | 0.280 ± 0.002 d |
∑ Flavan-3-ols | 7.79 ± 0.05 d | 11.07 ± 0.03 a | 9.95 ± 0.04 b | 9.23 ± 0.03 c | 7.92 ± 0.01 d |
w (Flavan-3-ols) | 15.34 | 22.35 | 20.35 | 19.38 | 19.28 |
∑ Individual phenolics | 50.80 ± 0.26 a | 49.53 ± 0.14 a,b | 48.89 ± 0.11 b | 47.62 ± 0.09 c | 41.08 ± 0.12 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolić, J.; Stankov Jovanović, V.; Pavlović, J.; Nikolić, M.D.; Barjaktarević, A.; Obradović, K.; Mitić, M. Variations in Quantitative Composition of Phenolic Compounds in Flowers, Leaves, and Fruits of Mespilus germanica L. During Harvesting Period. Separations 2025, 12, 268. https://doi.org/10.3390/separations12100268
Nikolić J, Stankov Jovanović V, Pavlović J, Nikolić MD, Barjaktarević A, Obradović K, Mitić M. Variations in Quantitative Composition of Phenolic Compounds in Flowers, Leaves, and Fruits of Mespilus germanica L. During Harvesting Period. Separations. 2025; 12(10):268. https://doi.org/10.3390/separations12100268
Chicago/Turabian StyleNikolić, Jelena, Vesna Stankov Jovanović, Jovana Pavlović, Milica D. Nikolić, Ana Barjaktarević, Ksenija Obradović, and Milan Mitić. 2025. "Variations in Quantitative Composition of Phenolic Compounds in Flowers, Leaves, and Fruits of Mespilus germanica L. During Harvesting Period" Separations 12, no. 10: 268. https://doi.org/10.3390/separations12100268
APA StyleNikolić, J., Stankov Jovanović, V., Pavlović, J., Nikolić, M. D., Barjaktarević, A., Obradović, K., & Mitić, M. (2025). Variations in Quantitative Composition of Phenolic Compounds in Flowers, Leaves, and Fruits of Mespilus germanica L. During Harvesting Period. Separations, 12(10), 268. https://doi.org/10.3390/separations12100268