Wastewater Sludge Dewatering Enhancement by Flocculant Selection and Electrochemical Pretreatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Wastewater Sludge
2.1.2. Flocculants
2.1.3. Electrolyte
2.2. Electrochemical Treatment
2.2.1. Electrochemical Reactor
2.2.2. Sludge Electrochemical Treatment
2.2.3. Flocculation
2.3. Analysis
2.3.1. General Indicators
2.3.2. EPS Content
2.3.3. Capillary Suction Time (CST)
2.3.4. Degree of Cell Lysis
2.3.5. Free Radical
3. Results and Discussion
3.1. Optimization of Electrochemical Treatment Conditions
3.1.1. Electrode Spacing Optimization
3.1.2. Electrolysis Time Optimization
3.1.3. Electrolyte Dosage Optimization
3.1.4. Stirring Speed Optimization
3.2. Flocculants Selection
3.2.1. Effects of PAM on Sludge Dewatering Performance
3.2.2. Effects of PDMPAAC on Sludge Dewatering Performance
3.2.3. Comparison of Effects of Two Flocculants
3.3. Electrochemical Pretreatment Mechanism
3.3.1. Generation of Free Radical
3.3.2. Change in EPS Content
3.3.3. Change in LDH Concentration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.; Ramachandran, S.; Mayilswamy, N.; Nighojkar, A.; Kandasubramanian, B. Dye-laden sludge-derived biochar for wastewater remediation: A review on pyrolytic engineering, adsorptive interactions, and environmental prospects. Sustain. Chem. Environ. 2025, 11, 100271. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Ling, Z.C.; Zhao, M.M.; Sha, L.; Li, C.; Lu, X.B. Investigation of the properties and mechanism of activated sludge in acid-magnetic powder conditioning and vertical pressurized electro-dewatering (AMPED) process. Sep. Purif. Technol. 2024, 328, 124973. [Google Scholar] [CrossRef]
- Hyrycz, M.; Ochowiak, M.; Krupinska, A.; Wlodarczak, S.; Matuszak, M. A review of flocculants as an efficient method for increasing the efficiency of municipal sludge dewatering: Mechanisms, performances, influencing factors and perspectives. Sci. Total Environ. 2022, 820, 153328. [Google Scholar] [CrossRef]
- Zhou, P.; Li, D.J.; Zhang, C.; Ping, Q.; Wang, L.; Li, Y.M. Comparison of different sewage sludge pretreatment technologies for improving sludge solubilization and anaerobic digestion efficiency: A comprehensive review. Sci. Total Environ. 2024, 921, 171175. [Google Scholar] [CrossRef]
- Zhang, X.D.; Ye, P.; Wu, Y.J. Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective: A review. J. Environ. Manag. 2022, 321, 115938. [Google Scholar] [CrossRef]
- Rumky, J.; Deb, A.; Shim, M.J.; Laakso, E.; Repo, E. A review on the recent advances in electrochemical treatment technologies for sludge dewatering and alternative uses. J. Hazard. Mater. Adv. 2023, 11, 100341. [Google Scholar] [CrossRef]
- Heng, G.C.; Isa, M.H. Electrochemical Disintegration of Activated Sludge Using Ti/RuO2 Anode. Appl. Mech. Mater. 2014, 567, 44–49. [Google Scholar] [CrossRef]
- He, Z.Q.; Han, W.; Zhou, X.; Jin, W.B.; Liu, W.T.; Gao, S.H.; Zhao, Z.C.; Chen, Y.D.; Jiang, G.M. Effect of on-site sludge reduction and wastewater treatment based on electrochemical-A/O combined process. Water 2021, 13, 941. [Google Scholar] [CrossRef]
- Sun, Y.J.; Liang, Y.K.; Sun, W.Q.; Zhou, J.; Shah, K.J. Oxidation-flocculation conditioning to improve the performance and mechanism of municipal sludge dewatering. Sep. Purif. Technol. 2024, 347, 127656. [Google Scholar] [CrossRef]
- Jin, L.Y.; Zhang, P.Y.; Zhang, G.M.; Li, J. Study of sludge moisture distribution and dewatering characteristic after cationic polyacrylamide (C-PAM) conditioning. Desalination Water Treat. 2016, 57, 29377–29383. [Google Scholar] [CrossRef]
- Dao, V.H.; Cameron, N.R.; Saito, K. Synthesis, properties and performance of organic polymers employed in flocculation applications. Polym. Chem. 2016, 7, 11–25. [Google Scholar] [CrossRef]
- Leonhartsberger, S.; Carmona, P.; Seidl, B.; Mann, K.J.; Kozich, M.; Sulaeva, I.; Stanetty, C.; Mihovilovic, M.D. Polysaccharide-based green flocculants: A systematic and comparative study of their coagulation-flocculation efficiency. Carbohydr. Polym. 2025, 358, 123527. [Google Scholar] [CrossRef]
- Xie, H.K.; Zhao, C.F.; Yu, W.D.; Shao, S.; Zhang, L.P.; Zhang, Y.L.; Guo, F.; Li, H.G.; Xie, L.N. Study on the radiation synthesis of polydimethyldiallylammonium chloride and its application in the deep dewatering of Sludge deposited. Chem. Res. Appl. 2022, 34, 904–908. [Google Scholar]
- Hu, X.; Shen, Y.H.; Zhang, H.J.; Xia, J.; Kong, F.G.; Zhang, W.H. Insight into the effect of calcium carbonate filler on the dewatering performance of simulated pulp & paper mill sludge. J. Environ. Chem. Eng. 2022, 10, 108863. [Google Scholar] [CrossRef]
- Hoane, A.G.; Zheng, Q.L.; Maldonado, N.D.; Espinosa-Marzal, R.M.; Gewirth, A.A. Impact of multivalent cations on interfacial layering in water-in-salt electrolytes. ACS Appl. Energy Mater. 2024, 7, 5179–5192. [Google Scholar] [CrossRef]
- GB/T 11901-1989; Water Quality-Determination of Suspended Substance-Gravimetric Method. Standards Press of China: Beijing, China, 1989.
- Ministry of Ecology and Environment the People’s Republic of China’s Water and Wastewater Monitoring and Analysis Methods Committee. Water and Wastewater Monitoring and Analysis Method, 4th ed.; China Environmental Science Press Pub.: Beijing, China, 2002. [Google Scholar]
- Li, X.Y.; Yang, S.F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 2007, 41, 1022–1030. [Google Scholar] [CrossRef]
- Ben Hamed, H.; Mainardis, M.; Moretti, A.; Toye, D.; Léonard, A. Extracellular polymeric substances (EPS) in sewage sludge management: A call for methodological standardization. J. Environ. Manag. 2025, 376, 124407. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, J.; Wang, G.; Liu, J.; Zhang, S.; Li, Y.; Wang, X.; Wang, X.; Zhu, S.; Chen, H. Development and protective mechanism of a freeze-drying protectants against freeze-drying for Lactiplantibacillus plantarum W1. Food Bioprod. Process. 2025, 151, 258–267. [Google Scholar] [CrossRef]
- Cao, B.D.; Zhang, T.; Zhang, W.J.; Wang, D.S. Enhanced technology based for sewage sludge deep dewatering: A critical review. Water Res. 2021, 189, 116650. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.R.; Xu, Y.; Wang, J.L.; Qiu, S.X.; Rao, B.Q.; Xu, P. A pore-scale physical model for electric dewatering of municipal sludge based on fractal geometry. J. Environ. Eng. 2023, 149, 04022099. [Google Scholar] [CrossRef]
- Silva, F.L.; Lanza, M.R.V.; Saez, C.; Rodrigo, M.A. Electrochemical dewatering for the removal of hazardous species from sludge. J. Environ. Manag. 2019, 233, 768–773. [Google Scholar] [CrossRef]
- Jiang, L.P.; Hu, Z.; Wang, Y.A.; Ru, D.Y.; Li, J.W.; Fan, J.L. Effect of trace elements on the development of co-cultured nitrite-dependent anaerobic methane oxidation and methanogenic bacteria consortium. Bioresour. Technol. 2018, 268, 190–196. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Wu, S.Q.; Liu, Z.W.; Zheng, X.Y.; Zhao, M.; Liu, S.H.; Wang, L.J.; Fan, C.Z. Optimization of flocculation-precipitation dewatering treatment for river sludge: Flocculant and conditioner dosage, organic matter content. J. Environ. Chem. Eng. 2025, 13, 118720. [Google Scholar] [CrossRef]
- Yang, Y.H.; Yang, X.F.; Yang, Q.Y.; Zhang, H.N.; Xu, W.X.; Zhu, L.F.; Ma, P.J.; Li, Y.Y. Exploring the feasibility and potential mechanism of synergistic enhancement of sludge dewaterability by ultrasonic cracking, chitosan re-flocculation and sludge-based biochar adsorption of water-holding substances. J. Environ. Chem. Eng. 2022, 10, 108303. [Google Scholar] [CrossRef]
- Tao, S.Y.; Liang, S.; Chen, X.Y.; Zhu, Y.W.; Yu, W.B.; Hou, H.J.; Hu, J.P.; Xiao, K.K.; Yuan, S.S.; Yang, J.K. Enhanced sludge dewatering by PDMDAAC coupled with Fenton-like reaction initiated by Fe-rich sludge biochar with in-situ generation of H2O2: Fe/C structure as an electron shuttle. Resour. Conserv. Recycl. 2023, 198, 107184. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, B.Y.; Yue, Q.Y.; Wei, J.C.; Li, Q. The characterization and flocculation efficiency of composite flocculant iron salts-polydimethyldiallylammonium chloride. Chem. Eng. J. 2008, 142, 175–181. [Google Scholar] [CrossRef]
- Xu, T.Y.; Zhu, R.L.; Shang, H.; Xia, Y.B.; Liu, X.; Zhang, L.Z. Photochemical behavior of ferrihydrite-oxalate system: Interfacial reaction mechanism and charge transfer process. Water Res. 2019, 159, 10–19. [Google Scholar] [CrossRef]
- Ding, X.; Wang, S.Y.; Shen, W.Q.; Mu, Y.; Wang, L.; Chen, H.; Zhang, L.Z. Fe@Fe2O3 promoted electrochemical mineralization of atrazine via a triazinon ring opening mechanism. Water Res. 2017, 112, 9–18. [Google Scholar] [CrossRef]
- Liu, J.L.; Yang, R.; Chai, Y.Q.; Yuan, R. Versatile luminol/dissolved oxygen/Fe@Fe2O3 nanowire ternary electrochemiluminescence system combined with highly efficient strand displacement amplification for ultrasensitive microRNA detection. Anal. Chem. 2021, 93, 13334–13341. [Google Scholar] [CrossRef]
- Zhao, H.L.; Ke, J.; Zhu, S.K.; Li, M.T.; Chen, J.Q.; Yang, Q.L. Natural hematite and oxalic acid co-enhance electrochemical system for degradation of sulfamethoxazole: Role of oxalic acid and ROS generation. Electrochim. Acta 2025, 530, 146399. [Google Scholar] [CrossRef]
- den Hartog, S.; Samanipour, M.; Ching, H.Y.V.; Van Doorslaer, S.; Breugelmans, T.; Hubin, A.; Ustarroz, J. Reactive oxygen species formation at Pt nanoparticles revisited by electron paramagnetic resonance and electrochemical analysis. Electrochem. Commun. 2021, 122, 106878. [Google Scholar] [CrossRef]
- Li, X.Q.; Yu, Z.; Ge, X.L.; Zhang, W.Z.; Fang, Y.K.; Liu, W.Z.; Wang, A.J. Volatile fatty acids bio-production using extracellular polymeric substances disengaged from sludge for carbon source recycling. Bioresour. Technol. 2023, 386, 129565. [Google Scholar] [CrossRef]
- Zhang, W.J.; Chen, J.; Tang, M.Y.; Wu, H.J.; Liu, M.; Ai, J.; Wang, D.S. Citric acid chelated Fe(II) catalyzed peroxidation for simultaneously improving sludge dewaterability and antibiotic resistance genes (ARGs) removal. Sep. Purif. Technol. 2022, 280, 119925. [Google Scholar] [CrossRef]
Group | Concentration of Flocculants (g/L) | Moisture Content (%) | Reduction Rate of Moisture Content (%) | CST (s) | Reduction Rate of CST (%) | Cost (RMB/t) |
---|---|---|---|---|---|---|
RS | —— | 82.4 | —— | 164.5 | —— | —— |
PDMDAAC | 0.32 | 56.6 | 37 | 15.4 | 90.7 | 2.24 |
PAM | 1.60 | 58.1 | 35.4 | 16.6 | 90.0 | 6.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Sun, Y.; Liu, Q.; Wang, X.; Zhang, X. Wastewater Sludge Dewatering Enhancement by Flocculant Selection and Electrochemical Pretreatment. Separations 2025, 12, 264. https://doi.org/10.3390/separations12100264
Yang B, Sun Y, Liu Q, Wang X, Zhang X. Wastewater Sludge Dewatering Enhancement by Flocculant Selection and Electrochemical Pretreatment. Separations. 2025; 12(10):264. https://doi.org/10.3390/separations12100264
Chicago/Turabian StyleYang, Binbin, Yingxue Sun, Quanze Liu, Xiaobo Wang, and Xiaolei Zhang. 2025. "Wastewater Sludge Dewatering Enhancement by Flocculant Selection and Electrochemical Pretreatment" Separations 12, no. 10: 264. https://doi.org/10.3390/separations12100264
APA StyleYang, B., Sun, Y., Liu, Q., Wang, X., & Zhang, X. (2025). Wastewater Sludge Dewatering Enhancement by Flocculant Selection and Electrochemical Pretreatment. Separations, 12(10), 264. https://doi.org/10.3390/separations12100264