Development of a Green Extraction Process from Residues of Assyrtiko Wine Production for Cosmetic Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. NaDES Preparation
2.3.1. Betaine/D,L-Lactic Acid (Bet/La/W*) (1:2:2.5*)
2.3.2. Betaine/Glycerol (Bet/Gly) (1:2)
2.3.3. Betaine/Glycerol (Bet/Gly) (1:3)
2.3.4. Betaine/1,3-Propanediol (Bet/Prop-1,3) (1:5)
2.4. Physicochemical Properties of NaDESs
2.4.1. Polarity Measurements
2.4.2. pH Measurements
2.5. Extraction Process Using NaDES/Water System as Extraction Medium
2.6. Extraction with Conventional Solvents
2.7. Qualitative High Performance Liquid Chromatography (HPLC) Analysis of the Extracts
2.8. Extraction Process Optimization Using Response Surface Methodology (RSM)
2.9. Colorimetric Determination of Total Phenolic Content (TPC) of Extracts
2.10. Colorimetric Determination of Total Flavonoid Content (TFC) of Extracts
2.11. In Vitro Evaluation of Antioxidant Activity of Extracts
2.11.1. Colorimetric Determination of DPPH Radical Scavenging Ability of the Extracts
2.11.2. Inhibition of Linoleic Acid Oxidation Induced by 2,2′-Azobis(2-amidinopropane) Dihydrochloride (AAPH)
2.12. Cosmetic Cream Preparation
2.13. Cosmetic Cream Characterization
2.13.1. Organoleptic Characteristics
2.13.2. pH Measurement
2.13.3. Physical Stability of Cream
2.14. Release Studies of the NaDES-Extract from the Cream
3. Results and Discussion
3.1. Task-Specific Design of NaDESs
3.2. NaDES Physicochemical Characterization and Screening for Use as Extraction Media from AWPR
3.3. Comparison with Results Obtained from the Use of Conventional Extraction Solvents
3.4. Qualitative High Performance Liquid Chromatography (HPLC) Analysis of the Extracts
3.5. Preliminary Extraction Experiments
3.6. Experimental Design for the Extraction Process Using NaDES
3.7. Stability Studies of NaDES-Extract After Long Storage
3.8. Cosmetic Cream Preparation and Characterization
3.9. Release Studies of the NaDES-Extract from the Cream
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AWPR | “Assyrtiko” Wine Production Residue |
NaDES | Natural Deep Eutectic Solvent |
TPC | Total Phenolic Content |
TFC | Total Flavonoid Content |
PDO | Protected Designation of Origin |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
Bet | Betaine |
La | D, L-Lactic acid |
W | Water |
Gly | Glycerol |
Prop-1,3 | 1,3-Propanediol |
RSM | Response Surface Methodology |
HPLC | High Performance Liquid Chromatography |
BBD | Box–Behnken design |
ANOVA | Analysis of Variance |
GAE | Gallic Acid Equivalents |
CE | Catechin Equivalents |
AAPH | 2,2′-Azobis(2-amidinopropane) dihydrochloride |
W/O | Water-in-Oil (emulsion) |
MWCO | Molecular Weight Cut-Off |
References
- Tzamourani, A.; Paramithiotis, S.; Favier, M.; Coulon, J.; Moine, V.; Paraskevopoulos, I.; Dimopoulou, M. New Insights into the Production of Assyrtiko Wines from the Volcanic Terroir of Santorini Island Using Lachancea thermotolerans. Microorganisms 2024, 12, 786. [Google Scholar] [CrossRef]
- Belenioti, M.; Mathioudaki, E.; Spyridaki, E.; Ghanotakis, D.; Chaniotakis, N. Biodegradation of Phenolic Compounds from Grape Pomace of Vitis Vinifera Asyrtiko by Chlamydomonas reinhardtii. J. Chem. Technol. Biotechnol. 2023, 99, 2149–2154. [Google Scholar] [CrossRef]
- Tzani, A.; Lymperopoulou, T.; Pitterou, I.; Karetta, I.; Belfquih, F.; Detsi, A. Development and Optimization of Green Extraction Process of Spent Coffee Grounds Using Natural Deep Eutectic Solvents. Sustain. Chem. Pharm. 2023, 34, 101144. [Google Scholar] [CrossRef]
- Chevé-Kools, E.; Choi, Y.H.; Roullier, C.; Ruprich-Robert, G.; Grougnet, R.; Chapeland-Leclerc, F.; Hollmann, F. Natural Deep Eutectic Solvents (NaDES): Green Solvents for Pharmaceutical Applications and Beyond. Green Chem. 2025, 27, 8360–8385. [Google Scholar] [CrossRef] [PubMed]
- Cannavacciuolo, C.; Pagliari, S.; Frigerio, J.; Giustra, C.M.; Labra, M.; Campone, L. Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods 2023, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Jauregi, P.; Esnal-Yeregi, L.; Labidi, J. Natural Deep Eutectic Solvents (NADES) for the Extraction of Bioactives: Emerging Opportunities in Biorefinery Applications. PeerJ Anal. Chem. 2024, 6, e32. [Google Scholar] [CrossRef]
- Molnar, M.; Gašo-Sokač, D.; Komar, M.; Jakovljević Kovač, M.; Bušić, V. Potential of Deep Eutectic Solvents in the Extraction of Organic Compounds from Food Industry By-Products and Agro-Industrial Waste. Separations 2024, 11, 35. [Google Scholar] [CrossRef]
- Tzani, A.; Pitterou, I.; Divani, F.; Tsiaka, T.; Sotiroudis, G.; Zoumpoulakis, P.; Detsi, A. Green Extraction of Greek Propolis Using Natural Deep Eutectic Solvents (NADES) and Incorporation of the NADES-Extracts in Cosmetic Formulation. Sustain. Chem. 2022, 4, 8–25. [Google Scholar] [CrossRef]
- Rente, D.; Cvjetko Bubalo, M.; Panić, M.; Paiva, A.; Caprin, B.; Radojčić Redovniković, I.; Duarte, A.R.C. Review of Deep Eutectic Systems from Laboratory to Industry, Taking the Application in the Cosmetics Industry as an Example. J. Clean. Prod. 2022, 380, 135147. [Google Scholar] [CrossRef]
- Ling, J.K.U.; Hadinoto, K. Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review. Int. J. Mol. Sci. 2022, 23, 3381. [Google Scholar] [CrossRef]
- Nascimento, L.B.D.S.; Gori, A.; Raffaelli, A.; Ferrini, F.; Brunetti, C. Phenolic Compounds from Leaves and Flowers of Hibiscus Roseus: Potential Skin Cosmetic Applications of an Under-investigated Species. Plants 2021, 10, 522. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant Extracts as Skin Care and Therapeutic Agents. Int. J. Mol. Sci. 2023, 24, 15444. [Google Scholar] [CrossRef] [PubMed]
- Tzani, A.; Kalafateli, S.; Tatsis, G.; Bairaktari, M.; Kostopoulou, I.; Pontillo, A.R.N.; Detsi, A. Natural Deep Eutectic Solvents (NaDESs) as Alternative Green Extraction Media for Ginger (Zingiber officinale Roscoe). Sustain. Chem. 2021, 2, 576–598. [Google Scholar] [CrossRef]
- Karadendrou, M.A.; Botsi, Y.; Detsi, A.; Tzani, A. Investigation of the Ability of Natural Deep Eutectic Solvents to Act as Efficient Extraction Media for Chamomille (Matricaria chamomilla L.). Food Bioprocess Technol. 2024, 18, 4010–4024. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential Oil Composition, Total Phenolic, Flavonoid Contents, and Antioxidant Activity of Thymus Species Collected from Different Regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef]
- Sabljak, I.; Grubelić, M.; Vlahović, D.; Dukić, J.; Samardžija, A.; Režek Jambrak, A. Betaine and Total Dietary Fiber Recovery from Red Beetroot Peels by Means of Ultrasound and Pulsed Electric Fields. Clean Technol. 2025, 7, 37. [Google Scholar] [CrossRef]
- Ojo, A.O.; de Smidt, O. Lactic Acid: A Comprehensive Review of Production to Purification. Processes 2023, 11, 688. [Google Scholar] [CrossRef]
- Pirzadi, Z.; Meshkani, F. From Glycerol Production to Its Value-Added Uses: A Critical Review. Fuel 2022, 329, 125044. [Google Scholar] [CrossRef]
- Mawazi, S.M.; Ann, J.; Othman, N.; Khan, J.; Alolayan, S.O.; Al Thagfan, S.S.; Kaleemullah, M. A Review of Moisturizers; History, Preparation, Characterization and Applications. Cosmetics 2022, 9, 61. [Google Scholar] [CrossRef]
- Li, C.C.; Lin, C.C.; Lee, C.Y.; Sheu, M.L.; Tsai, Y.C.; Tsai, C.Y.; Wu, H.T.; Wu, R.J.; Lai, D.W. Therapeutic Effect of Lecigel, Cetiol®CC, Activonol-6, Activonol-M, 1,3-Propanediol, Soline, and Fucocert® (LCAA-PSF) Treatment on Imiquimod-Induced Psoriasis-like Skin in Mice. Int. J. Mol. Sci. 2024, 25, 7720. [Google Scholar] [CrossRef]
- Mussi, L.; Baby, A.R.; Camargo Junior, F.B.; Padovani, G.; Sufi, B.d.S.; Magalhães, W.V. Propanediol (and) Caprylic Acid (and) Xylitol as a New Single Topical Active Ingredient against Acne: In Vitro and in vivo Efficacy Assays. Molecules 2021, 26, 6704. [Google Scholar] [CrossRef]
- Zhu, F.; Liu, D.; Chen, Z. Recent Advances in Biological Production of 1,3-Propanediol: New Routes and Engineering Strategies. Green Chem. 2022, 24, 1390–1403. [Google Scholar] [CrossRef]
- Lukić, M.; Pantelić, I.; Savić, S.D. Towards Optimal Ph of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Mišan, A.; Pojić, M. Applications of NADES in Stabilizing Food and Protecting Food Compounds against Oxidation. In Advances in Botanical Research; Academic Press Inc.: San Diego, CA, USA, 2021; Volume 97, pp. 333–359. ISBN 9780128216910. [Google Scholar]
- Sommer, S.; Salie, M.; Garcia, E.; Reyes, A.; Ebersole, S.C.; Naegele, R.P.; Van Zyl, S. A New Method for Fractionation and Characterization of Polyphenols and Tannins from Grapevine Leaf Tissue. Plants 2023, 12, 1706. [Google Scholar] [CrossRef] [PubMed]
- Rautio, P.; Bergvall, U.A.; Karonen, M.; Salminen, J.P. Bitter Problems in Ecological Feeding Experiments: Commercial Tannin Preparations and Common Methods for Tannin Quantifications. Biochem. Syst. Ecol. 2007, 35, 257–262. [Google Scholar] [CrossRef]
- Abu-Lafi, S. HPLC Separation of Phenolic Phytochemicals from Grape Peels and Seeds Water Extracts and Their In-Vitro Antimalarial Activities. Pharm. Pharmacol. Int. J. 2018, 6, 253–259. [Google Scholar] [CrossRef]
- Wang, S.T.; Feng, Y.J.; Lai, Y.J.; Su, N.W. Complex Tannins Isolated from Jelly Fig Achenes Affect Pectin Gelation through Non-Specific Inhibitory Effect on Pectin Methylesterase. Molecules 2019, 24, 1601. [Google Scholar] [CrossRef]
- Geana, E.I.; Dinca, O.R.; Ionete, R.E.; Artem, V.; Niculescu, V.C. Monitoring Trans-Resveratrol in Grape Berry Skins During Ripening and in Corresponding Wines by HPLC. Food Technol. Biotechnol. 2015, 53, 73–80. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, H.; Lou, X.; Wu, X.; Wang, Y.; Zhao, K.; Du, X.; Xia, X. Analysis of NADES and Its Water Tailoring Effects Constructed from Inulin and L-Proline Based on Structure, Physicochemical and Antifreeze Properties. Int. J. Biol. Macromol. 2024, 277, 134049. [Google Scholar] [CrossRef]
NaDES | Component 1 | Component 2 | Component 3 |
---|---|---|---|
Bet/La/W* (1:2:2.5*) | Betaine | D, L-Lactic acid | Water |
Bet/Gly (1:2) | Glycerol | - | |
Bet/Gly (1:3) | |||
Bet/Prop-1,3 (1:5) | 1,3-Propanediol |
Parameters | Chromatographic Conditons |
---|---|
HPLC | Shimadzu Prominance-i LC-2030C 3D Plus |
Detector | LC-2030/2040 PDA Detector |
Column | Reverse Phase Spherisorb ODS-2 Column C18 5 µm particle size, L × I.D. = 250 μm × 4.6 mm |
Column temperature | 30 °C |
Detection wavelength | 280, 370 nm |
Flow rate | 1 mL/min |
Injection volume | 10 μL |
Mobile phase | Solvent A: water with 0.2% v/v phosphoric acid Solvent Β: methanol |
Gradient program | 0 min (90%, 10% B), 9.50 min (75% A, 25% B), 18 min (40% A, 60% B), 25 min (30% A, 70% B), 35 min (90% A, 10% B) |
No of Experiment | NaDES Content (%w/w) | A | Solid/ Liquid Ratio (mg/g) | B | Extraction Time (min) | C |
---|---|---|---|---|---|---|
1 | 75 | 0 | 25 | −1 | 260 | +1 |
2 | 75 | 0 | 50 | 0 | 160 | 0 |
3 | 60 | −1 | 25 | −1 | 160 | 0 |
4 | 60 | −1 | 50 | 0 | 60 | −1 |
5 | 75 | 0 | 25 | −1 | 60 | −1 |
6 | 90 | +1 | 75 | +1 | 160 | 0 |
7 | 90 | +1 | 50 | 0 | 60 | −1 |
8 | 90 | +1 | 50 | 0 | 260 | +1 |
9 | 75 | 0 | 75 | +1 | 60 | −1 |
10 | 90 | +1 | 25 | −1 | 160 | 0 |
11 | 75 | 0 | 75 | +1 | 260 | +1 |
12 | 60 | −1 | 75 | +1 | 160 | 0 |
13 | 75 | 0 | 50 | 0 | 160 | 0 |
14 | 60 | −1 | 50 | 0 | 260 | +1 |
15 | 75 | 0 | 50 | 0 | 160 | 0 |
Ingredient | Control Base Cream (Blank) | NaDES-Extract Cream |
---|---|---|
Almond oil | 3 mL | 3 mL |
Avocado oil | 3 mL | 3 mL |
Beeswax | 0.75 g | 0.75 g |
Vegetable-based emulsifier | 0.75 g | 0.75 g |
Aloe jelly | 6 g | 6 g |
NaDES-extract | - | 10% w/w |
NaDES | TPC (mg GAE/gAWPR) of Extract | TFC (mg CE/gAWPR) of Extract | λmax (nm) | ENR (kcal mol−1) |
---|---|---|---|---|
Bet/La/W* (1:2:2.5*) | 15.9 ± 1.5 | 12.1 ± 1.4 | 572 | 49.98 |
Bet/Gly (1:2) | 22.0 ± 2.0 | 6.4 ± 0.1 | 568 | 50.34 |
Bet/Gly (1:3) | 22.2 ± 1.4 | 9.4 ± 0.3 | 570 | 50.16 |
Bet/Prop-1,3 (1:5) | 52.4 ± 1.0 | 14.4 ± 0.9 | 564 | 50.69 |
No. of Preliminary Experiment | NaDES Content (%w/w) | Solid/Liquid Ratio (mg/g) | Extraction Time (h) | TFC (mg CE/g) |
---|---|---|---|---|
1 | 80 | 50 | 1 | 14.4 ± 0.9 |
2 | 80 | 50 | 4 | 20.8 ± 1.1 |
3 | 80 | 5 | 1 | 14.3 ± 0.5 |
4 | 50 | 50 | 1 | 18.1 ± 0.4 |
No. of Experiment | Factors | Responses | |||
---|---|---|---|---|---|
A: NaDES Content (%w/w) | B: Solid/ Liquid Ratio (mg/g) | C: Extraction Time (min) | R1: TPC (mg GAE/g) | R2: TFC (mg CE/g) | |
1 | 75 | 25 | 260 | 40.7 ± 3.3 | 25.2 ± 0.6 |
2 | 75 | 50 | 160 | 37.3 ± 0.3 | 24.7 ± 1.7 |
3 | 60 | 25 | 160 | 38.7 ± 1.3 | 26.4 ± 1.0 |
4 | 60 | 50 | 60 | 36.7 ± 2.8 | 20.2 ± 1.2 |
5 | 75 | 25 | 60 | 36.6 ± 0.8 | 22.1 ± 0.6 |
6 | 90 | 75 | 160 | 22.3 ± 0.8 | 14.5 ± 0.9 |
7 | 90 | 50 | 60 | 24.1 ± 0.4 | 14.5 ± 1.3 |
8 | 90 | 50 | 260 | 31.0 ± 0.1 | 22.8 ± 0.1 |
9 | 75 | 75 | 60 | 33.5 ± 2.7 | 18.6 ± 0.1 |
10 | 90 | 25 | 160 | 22.8 ± 1.4 | 16.0 ± 1.5 |
11 | 75 | 75 | 260 | 36.0 ± 0.4 | 25.7 ± 0.7 |
12 | 60 | 75 | 160 | 37.3 ± 1.2 | 20.7 ± 0.5 |
13 | 75 | 50 | 160 | 35.5 ± 0.6 | 20.7 ± 0.9 |
14 | 60 | 50 | 260 | 45.0 ± 1.6 | 30.3 ± 0.5 |
15 | 75 | 50 | 160 | 35.1 ± 0.5 | 25.4 ± 0.5 |
Model | Lack-of-Fit | A | B | C | A2 | B2 | C2 | |
---|---|---|---|---|---|---|---|---|
p-value | <0.0001 | 0.3582 | <0.0001 | 0.0618 | 0.0012 | 0.0011 | 0.0883 | 0.0221 |
F-value | 38.72 | 2.09 | 165.42 | 4.71 | 23.78 | 24.79 | 3.76 | 8.02 |
Model | Lack-of-Fit | A | B | C | A2 | B2 | |
---|---|---|---|---|---|---|---|
p-value | 0.0008 | 0.7724 | 0.0006 | 0.1102 | 0.0008 | 0.0336 | 0.1428 |
F-value | 12.58 | 0.5429 | 26.79 | 3.14 | 24.67 | 6.28 | 2.58 |
NaDES Content (%w/w) | Solid/Liquid Ratio (mg/g) | Extraction Time (min) | TPC (mg GAE/gAWPR) of Extract | TFC (mg CE/gAWPR) of Extract |
---|---|---|---|---|
60.4 | 25.4 | 260 | 39.9 ± 0.1 | 20.7 ± 0.4 |
NaDES Content (%w/w) | Solid/Liquid Ratio (mg/g) | Extraction Time (min) | Response | Value Predicted by Model | 95% Prediction Interval (Low) | Experimental Mean Value | 95% Prediction Interval (High) |
---|---|---|---|---|---|---|---|
63.8 | 26.9 | 210 | TPC | 40.8 | 36.6 | 40.6 | 44.9 |
TFC | 27.0 | 21.7 | 24.7 | 32.2 |
Extraction Solvent | TPC (mg GAE/gAWPR) on 1st Day | TPC (mg GAE/gAWPR) After Three-Month Storage | TFC (mg CE/gAWPR) on 1st Day | TFC (mg CE/gAWPR) After Three-Month Storage |
---|---|---|---|---|
60.4% w/w NaDES–39.6% w/w water | 39.9 ± 0.1 | 41.0 ± 0.4 | 20.7 ± 0.4 | 19.8 ± 0.5 |
80% w/w ethanol–20% w/w water | 22.3 ± 0.3 | 14.4 ± 0.2 | 19.8 ± 1.9 | 8.5 ± 0.7 |
Cosmetic Formulation | pH of Aqueous Dispersion |
---|---|
Blank cream | 7.68 ± 0.07 |
Cream with NaDES-extract | 7.71 ± 0.09 |
NaDES-Extract Release Time (min) | DPPH Radical Scavenging Activity (%) |
---|---|
20 | 14.0 ± 1.0 |
60 | 15.8 ± 2.4 |
120 | 16.3 ± 0.8 |
180 | 17.9 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalafateli, S.; Freri, A.-A.; Stavropoulos, G.; Tzani, A.; Detsi, A. Development of a Green Extraction Process from Residues of Assyrtiko Wine Production for Cosmetic Applications. Separations 2025, 12, 265. https://doi.org/10.3390/separations12100265
Kalafateli S, Freri A-A, Stavropoulos G, Tzani A, Detsi A. Development of a Green Extraction Process from Residues of Assyrtiko Wine Production for Cosmetic Applications. Separations. 2025; 12(10):265. https://doi.org/10.3390/separations12100265
Chicago/Turabian StyleKalafateli, Styliani, Agni-Areti Freri, Georgios Stavropoulos, Andromachi Tzani, and Anastasia Detsi. 2025. "Development of a Green Extraction Process from Residues of Assyrtiko Wine Production for Cosmetic Applications" Separations 12, no. 10: 265. https://doi.org/10.3390/separations12100265
APA StyleKalafateli, S., Freri, A.-A., Stavropoulos, G., Tzani, A., & Detsi, A. (2025). Development of a Green Extraction Process from Residues of Assyrtiko Wine Production for Cosmetic Applications. Separations, 12(10), 265. https://doi.org/10.3390/separations12100265