Bone Density Assessment Through Sodium Poly-Tungstate Gradient Centrifugation: A Preliminary Study on Decades-Old Human Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Bone Pulverization
2.3. Gradient Centrifugation with SPT
2.4. ATR-FTIR
2.5. DNA Analyses
2.6. Data Analysis
3. Results and Discussion
3.1. Assessment of the Gradient Centrifugation Method with SPT
3.2. Bone Powder Recovery Across Bone Types
3.3. Density Assessment
3.4. ATR-FTIR Data
3.5. DNA Analyses Data
3.6. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPT | Sodium Poly-Tungstate |
CI | Confidence Interval |
WWII | Second World War |
ATR-FTIR | Attenuated Total Reflectance–Fourier Transformed Infrared spectroscopy |
BMD | Bone Mineral Density |
RSD | Relative Standard Deviation |
Am/P | Amide-to-phosphate ratio |
C/P | Carbonate-to-phosphate ratio |
BPI | B-type carbonate substitution index (BPI) |
IRSF | Infrared Splitting Factor (IRSF) |
PCA | Principal Component Analysis |
Appendix A
References
- Lyman, R. Bone density and differential survivorship of fossil classes. J. Anthr. Archaeol. 1984, 3, 259–299. [Google Scholar] [CrossRef]
- Hale, A.R.; Ross, A.H. Scanning Skeletal Remains for Bone Mineral Density in Forensic Contexts. J. Vis. Exp. 2018, 131, 56713. [Google Scholar] [CrossRef]
- Al-Akhras, M.-A.H.; Alebrahim, M.; Rajjash, A.S.B.; Al Jarrah, K.; Hammouri, H.; Mousa, M.; AlZoubi, T.; Makhadmeh, G.N.; Tavares, C.J. Ancient and modern bone diagnosis: Towards a better understanding of chemical and structural feature alterations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 326, 125259. [Google Scholar] [CrossRef]
- Henyš, P.; Vořechovský, M.; Kuchař, M.; Heinemann, A.; Kopal, J.; Ondruschka, B.; Hammer, N. Bone mineral density modeling via random field: Normality, stationarity, sex and age dependence. Comput. Methods Programs Biomed. 2021, 210, 106353. [Google Scholar] [CrossRef]
- Kelly, P.J.; Twomey, L.; Sambrook, P.N.; Eisman, J.A.D. Sex differences in peak adult bone mineral density. J. Bone Miner. Res. 1990, 5, 1169–1175. [Google Scholar] [CrossRef]
- Ettinger, B.; Sidney, S.; Cummings, S.R.; Libanati, C.; Bikle, D.D.; Tekawa, I.S.; Tolan, K.; Steiger, P. Racial Differences in Bone Density between Young Adult Black and White Subjects Persist after Adjustment for Anthropometric, Lifestyle, and Biochemical Differences. J. Clin. Endocrinol. Metab. 1997, 82, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Carter, Y.; Suchorab, J.L.; Thomas, C.D.L.; Clement, J.G.; Cooper, D.M.L. Normal variation in cortical osteocyte lacunar parameters in healthy young males. Am. J. Anat. 2014, 225, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.S.; Cox, G.; Sealy, J. Determining isotopic life history trajectories using bone density fractionation and stable isotope measurements: A new approach. Am. J. Phys. Anthr. 2001, 116, 66–79. [Google Scholar] [CrossRef]
- Shevroja, E.; Cafarelli, F.P.; Guglielmi, G.; Hans, D. DXA parameters, Trabecular Bone Score (TBS) and Bone Mineral Density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine 2021, 74, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Blake, G.M.; Fogelman, I. The clinical role of dual energy X-ray absorptiometry. Eur. J. Radiol. 2009, 71, 406–414. [Google Scholar] [CrossRef]
- Simmons, E.D.; Pritzker, K.P.H.; Grynpas, M.D. Age-related changes in the human femoral cortex. J. Orthop. Res. 1991, 9, 155–167. [Google Scholar] [CrossRef]
- Engfeldt, B.; Hjerpe, A. Density gradient fractionation of dentine and bone powder. Calcif. Tissue Int. 1974, 16, 261–275. [Google Scholar] [CrossRef]
- Bethard, J.D.; Berger, J.M.; Maiers, J.; Ross, A.H. Bone Mineral Density Adult Age Estimation in Forensic Anthropology: A Test of the DXAGE Application. J. Forensic Sci. 2018, 64, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Scaggion, C.; Sasso, G.D.; Nodari, L.; Pagani, L.; Carrara, N.; Zotti, A.; Banzato, T.; Usai, D.; Pasqualetto, L.; Gadioli, G.; et al. An FTIR-based model for the diagenetic alteration of archaeological bones. J. Archaeol. Sci. 2023, 161, 105900. [Google Scholar] [CrossRef]
- Hedges, R.E.M. Bone diagenesis: An overview of processes. Archaeometry 2002, 44, 319–328. [Google Scholar] [CrossRef]
- Ibrahim, J.; Brumfeld, V.; Addadi, Y.; Rubin, S.; Weiner, S.; Boaretto, E. The petrous bone contains high concentrations of osteocytes: One possible reason why ancient DNA is better preserved in this bone. PLoS ONE 2022, 17, e0269348. [Google Scholar] [CrossRef]
- Geršak, Ž.M.; Salapura, V.; Podovšovnik, E.; Zupanič-Pajnič, I. Targeting Optimal Bone Regions: Correlations Between Bone Density and DNA Quality in Small Skeletal Elements. Genes 2025, 16, 291. [Google Scholar] [CrossRef]
- Fernandes, D.M.; Sirak, K.A.; Cheronet, O.; Novak, M.; Brück, F.; Zelger, E.; Llanos-Lizcano, A.; Wagner, A.; Zettl, A.; Mandl, K.; et al. Density separation of petrous bone powders for optimized ancient DNA yields. Genome Res. 2023, 33, 622–631. [Google Scholar] [CrossRef]
- Kendall, C.; Eriksen, A.M.H.; Kontopoulos, I.; Collins, M.J.; Turner-Walker, G. Diagenesis of archaeological bone and tooth. Palaeogeogr. Palaeoclim. Palaeoecol. 2018, 491, 21–37. [Google Scholar] [CrossRef]
- de Sousa, D.V.; Eltink, E.; Oliveira, R.A.P.; Félix, J.F.; Guimarães, L.d.M. Diagenetic processes in Quaternary fossil bones from tropical limestone caves. Sci. Rep. 2020, 10, 21425. [Google Scholar] [CrossRef]
- Shin, J.Y.; Hedges, R.E. Diagenesis in bone and enamel apatite carbonate; the potential of density separation to assess the original composition. J. Archaeol. Sci. 2012, 39, 1123–1130. [Google Scholar] [CrossRef]
- Smith, D.R.; Martin, E.K.; Kaufman, B.L.; Callaghan, M.; Cardona, K.; Kovacevich, B.; Toyne, J.M. The bottom line: Exploring analytical methods for assessing bioapatite preservation in archaeological bone using FTIR-ATR. J. Archaeol. Sci. Rep. 2023, 50, 104014. [Google Scholar] [CrossRef]
- Trueman, C.N.; Behrensmeyer, A.K.; Tuross, N.; Weiner, S. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids. J. Archaeol. Sci. 2004, 31, 721–739. [Google Scholar] [CrossRef]
- Wright, L.E.; Schwarcz, H.P. Infrared and Isotopic Evidence for Diagenesis of Bone Apatite at Dos Pilas, Guatemala: Palaeodietary Implications. J. Archaeol. Sci. 1996, 23, 933–944. [Google Scholar] [CrossRef]
- Sponheimer, M.; Lee-Thorp, J.A. Isotopic Evidence for the Diet of an Early Hominid, Australopithecus africanus. Science 1999, 283, 368–370. [Google Scholar] [CrossRef]
- Weiner, S.; Bar-Yosef, O. States of preservation of bones from prehistoric sites in the Near East: A survey. J. Archaeol. Sci. 1990, 17, 187–196. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Penkman, K.; Mullin, V.E.; Winkelbach, L.; Unterländer, M.; Scheu, A.; Kreutzer, S.; Hansen, H.B.; Margaryan, A.; Teasdale, M.D.; et al. Screening archaeological bone for palaeogenetic and palaeoproteomic studies. PLoS ONE 2020, 15, e0235146. [Google Scholar] [CrossRef]
- Di Stefano, B.; Pajnič, I.Z.; Concato, M.; Bertoglio, B.; Calvano, M.G.; Ciglieri, S.S.; Bosetti, A.; Grignani, P.; Addoum, Y.; Vetrini, R.; et al. Evaluation of a New DNA Extraction Method on Challenging Bone Samples Recovered from a WWII Mass Grave. Genes 2024, 15, 672. [Google Scholar] [CrossRef] [PubMed]
- Pajnič, I.Z. Extraction of DNA from Human Skeletal Material. Methods Mol. Biol. 2016, 1420, 89–108. [Google Scholar] [CrossRef]
- Birarda, G.; Bedolla, D.; Piccirilli, F.; Stani, C.; Vondracek, H.; Vaccari, L. Chemical analyses at micro and nano scale at SISSI-Bio beamline at Elettra-Sincrotrone Trieste. In Proceedings of the Biomedical Vibrational Spectroscopy 2022: Advances in Research and Industry, Virtual, 20–24 February 2022; Volume 11957, p. 1195707. [Google Scholar] [CrossRef]
- Toplak, M.; Birarda, G.; Read, S.; Sandt, C.; Rosendahl, S.M.; Vaccari, L.; Demšar, J.; Borondics, F. Infrared Orange: Connecting Hyperspectral Data with Machine Learning. Synchrotron Radiat. News 2017, 30, 40–45. [Google Scholar] [CrossRef]
- Toplak, M.; Read, S.T.; Sandt, C.; Borondics, F. Quasar: Easy Machine Learning for Biospectroscopy. Cells 2021, 10, 2300. [Google Scholar] [CrossRef]
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool). Available online: http://gruppochemiometria.it/index.php/software (accessed on 17 August 2025).
- R Core Team, R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.r-project.org (accessed on 17 August 2025).
- Pedrosa, M.; Curate, F.; de Carvalho, L.A.E.B.; Marques, M.P.M.; Ferreira, M.T. Beyond metrics and morphology: The potential of FTIR-ATR and chemometrics to estimate age-at-death in human bone. Int. J. Leg. Med. 2020, 134, 1905–1914. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Penkman, K.; McAllister, G.D.; Lynnerup, N.; Damgaard, P.B.; Hansen, H.B.; Allentoft, M.E.; Collins, M.J. Petrous bone diagenesis: A multi-analytical approach. Palaeogeogr. Palaeoclim. Palaeoecol. 2019, 518, 143–154. [Google Scholar] [CrossRef]
- Hedges, R.E.; Millard, A.R. Bones and Groundwater: Towards the Modelling of Diagenetic Processes. J. Archaeol. Sci. 1995, 22, 155–164. [Google Scholar] [CrossRef]
- Turner-Walker, G. The Chemical and Microbial Degradation of Bones and Teeth. Adv. Hum. Palaeopathol. 2008, 592, 3–29. [Google Scholar] [CrossRef]
- Carretero, J.; Rodríguez, L.; García-González, R.; Quam, R.; Arsuaga, J. Exploring bone volume and skeletal weight in the Middle Pleistocene humans from the Sima de los Huesos site (Sierra de Atapuerca, Spain). Am. J. Anat. 2018, 233, 740–754. [Google Scholar] [CrossRef] [PubMed]
- Andronowski, J.M.; Mundorff, A.Z.; Pratt, I.V.; Davoren, J.M.; Cooper, D.M. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach. Forensic Sci. Int. Genet. 2017, 28, 211–218. [Google Scholar] [CrossRef]
- Hansen, H.B.; Damgaard, P.B.; Margaryan, A.; Stenderup, J.; Lynnerup, N.; Willerslev, E.; E Allentoft, M. Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum. PLoS ONE 2017, 12, e0170940. [Google Scholar] [CrossRef] [PubMed]
- Hollund, H.I.; Teasdale, M.D.; Mattiangeli, V.; Sverrisdóttir, O.Ó.; Bradley, D.G.; O’COnnor, T. Pick the Right Pocket. Sub-sampling of Bone Sections to Investigate Diagenesis and DNA Preservation. Int. J. Osteoarchaeol. 2017, 27, 365–374. [Google Scholar] [CrossRef]
- Di Stefano, B.; Bertoglio, B.; Melchionda, F.; Concato, M.; Ciglieri, S.S.; Bosetti, A.; Grignani, P.; Azzalini, E.; Addoum, Y.; Vetrini, R.; et al. Molecular Identification of the Italian Soldiers Found in the Second World War Mass Grave of Ossero. Genes 2025, 16, 326. [Google Scholar] [CrossRef]
Sample | Bone Type | Age | Burial (y) | Burial Site | RT (y) | % | DNA |
---|---|---|---|---|---|---|---|
#6 | Femur | 40–50 | 3 * | Italian Karst | 40 | 98.2 | 0.0200 |
#7 | Femur | 35–45 | 15 * | Italian Karst | 35 | 85.7 | 0.0900 |
#8 | Femur | 20–30 | 9 * | Italian Karst | 40 | 85.5 | 0.5600 |
#16 | Femur | 25–35 | 74 | Mass grave | 5 | 83.7 | 0.0900 |
#17 | Femur | 25–35 | 74 | Mass grave | 5 | 87.1 § | 0.0700 |
#18 | Femur | 25–35 | 74 | Mass grave | 5 | 97.9 | 0.0800 |
#23 | Femur | 41 | 0 | / | 0.1 | 98.3 | 12.120 |
#24 | Femur | 41 | 0 | / | 0.1 | 89.3 | 58.810 |
#25 | Femur | 41 | 0 | / | 0.1 | 74.5 | 2.2800 |
#26 | Femur | 41 | 0 | / | 0.1 | 95.6 § | 51.690 |
#27 | Petrous bone | 25–35 | 74 | Mass grave | 5 | 94.4 | n.p. |
#28 | Petrous bone | 25–35 | 74 | Mass grave | 5 | 94.3 | n.p. |
#29 | Petrous bone | 25–35 | 74 | Mass grave | 5 | 76.9 | n.p. |
#30 | Metacarpal | 25–35 | 74 | Mass grave | 5 | 84.0 | n.p. |
#31 | Metacarpal | 25–35 | 74 | Mass grave | 5 | 90.0 | n.p. |
#32 | Metacarpal | 25–35 | 74 | Mass grave | 5 | 96.2 | n.p. |
#33 | Metatarsal | 25–35 | 74 | Mass grave | 5 | 92.5 | n.p. |
#34 | Metatarsal | 25–35 | 74 | Mass grave | 5 | 94.3 | n.p. |
#35 | Metatarsal | 25–35 | 74 | Mass grave | 5 | 90.6 | n.p. |
n | Aged Femur (#17) | Fresh Ctrl (#26) | ||||
---|---|---|---|---|---|---|
Recovery (g) | RSD % | Recovery (g) | RSD % | |||
Intra-day | day 1 | 3 | 0.047 ± 0.013 | 10.8 | 0.050 ± 0.016 | 12.8 |
day 2 | 3 | 0.048 ± 0.004 | 3.2 | 0.051 ± 0.005 | 4.0 | |
Inter-day | day 1 + 2 | 6 | 0.047 ± 0.004 | 7.2 | 0.050 ± 0.004 | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stefano, B.; Stani, C.; Marrubini, G.; Bertoglio, B.; Sorçaburu Ciglieri, S.; Bonin, S.; Previderè, C.; Birarda, G.; Fattorini, P. Bone Density Assessment Through Sodium Poly-Tungstate Gradient Centrifugation: A Preliminary Study on Decades-Old Human Samples. Separations 2025, 12, 263. https://doi.org/10.3390/separations12100263
Di Stefano B, Stani C, Marrubini G, Bertoglio B, Sorçaburu Ciglieri S, Bonin S, Previderè C, Birarda G, Fattorini P. Bone Density Assessment Through Sodium Poly-Tungstate Gradient Centrifugation: A Preliminary Study on Decades-Old Human Samples. Separations. 2025; 12(10):263. https://doi.org/10.3390/separations12100263
Chicago/Turabian StyleDi Stefano, Barbara, Chiaramaria Stani, Giorgio Marrubini, Barbara Bertoglio, Solange Sorçaburu Ciglieri, Serena Bonin, Carlo Previderè, Giovanni Birarda, and Paolo Fattorini. 2025. "Bone Density Assessment Through Sodium Poly-Tungstate Gradient Centrifugation: A Preliminary Study on Decades-Old Human Samples" Separations 12, no. 10: 263. https://doi.org/10.3390/separations12100263
APA StyleDi Stefano, B., Stani, C., Marrubini, G., Bertoglio, B., Sorçaburu Ciglieri, S., Bonin, S., Previderè, C., Birarda, G., & Fattorini, P. (2025). Bone Density Assessment Through Sodium Poly-Tungstate Gradient Centrifugation: A Preliminary Study on Decades-Old Human Samples. Separations, 12(10), 263. https://doi.org/10.3390/separations12100263