Enhanced Electro-Dewatering of Sludge Through Inorganic Coagulant Pre-Conditioning
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Waste Activated Sludge
2.1.2. Inorganic Coagulants
2.1.3. Apparatus
2.2. Experimental Procedures
2.2.1. Electro-Dewatering Process
2.2.2. Sludge Pre-Conditioning with Inorganic Coagulants
2.2.3. EPS and Dissolved Organic Materials (DOM) Extraction and Characterization
EPS Extraction
DOM Collection
EPS and DOM Analysis
2.2.4. Other Indicators
3. Results and Discussion
3.1. Effect of the Coagulants on Sludge Electro-Dewatering Behavior
3.2. Effect of the Inorganic Coagulants on the Electrical Properties of Sludge
3.2.1. Electric Current and Electrochemical Impedance Spectroscopy (EIS)
3.2.2. Electrokinetic Phenomena
Zeta Potential of Sludge Floc
Electro-Osmotic Effect
3.3. Effect of the Inorganic Coagulants on the Physicochemical Properties of Sludge
3.3.1. The Properties of Sludge Floc
3.3.2. EPS
3.4. Effect of the Inorganic Coagulants on EPS Regionalization Distribution in Sludge Electro-Dewatering Process
3.4.1. DOM Content
3.4.2. DOM Composition
3.5. Mechanism of Inorganic Coagulant to Improve Sludge Electro-Dewatering Process
3.6. Environmental Implication
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, B.; Zhang, W.; Wang, Q.; Huang, Y.; Meng, C.; Wang, D. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation. Water Res. 2016, 105, 615–624. [Google Scholar] [CrossRef]
- Vaxelaire, J.; Cézac, P. Moisture distribution in activated sludges: A review. Water Res. 2004, 38, 2215–2230. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, T.; Zhang, W.; Wang, D. Enhanced technology based for sewage sludge deep dewatering: A critical review. Water Res. 2021, 189, 116650. [Google Scholar] [CrossRef]
- Barton, W.A.; Miller, S.A.; Veal, C.J. The electro-dewatering of sewage sludges. Drying Technol. 1999, 17, 498–522. [Google Scholar] [CrossRef]
- Mahmoud, A.; Olivier, J.; Vaxelaire, J.; Hoadley, A.F. Electrical field: A historical review of its application and contributions in wastewater sludge dewatering. Water Res. 2010, 44, 2381–2407. [Google Scholar] [CrossRef]
- Saveyn, H.; Pauwels, G.; Timmerman, R.; Van der Meeren, P. Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase. Water Res. 2005, 39, 3012–3020. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Peng, X.; Lee, D. Electroosmotic flow in sludge flocs. Int. J. Heat Mass Transf. 2009, 52, 2992–2999. [Google Scholar] [CrossRef]
- Ma, D.; Su, M.; Qian, J.; Wang, Q.; Meng, F.; Ge, X.; Ye, Y.; Song, C. Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes. Sep. Purif. Technol. 2020, 242, 116822. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, B.; Ren, R.; Shi, Y.; Xiong, J.; Zhang, W.; Wang, D. Correlation and mechanism of extracellular polymeric substances (EPS) on the effect of sewage sludge electro-dewatering. Sci. Total Environ. 2021, 801, 149753. [Google Scholar] [CrossRef] [PubMed]
- Citeau, M.; Larue, O.; Vorobiev, E. Influence of salt, pH and polyelectrolyte on the pressure electro-dewatering of sewage sludge. Water Res. 2011, 45, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Xin, Y.; Hao, J.; Zhu, X.; Yan, Z. Influence of conductivity on the electro-dewatering of sewage sludge under constant voltage. Sep. Sci. Technol. 2017, 52, 2429–2434. [Google Scholar] [CrossRef]
- Matsui, Y.; Matsushita, T.; Sakuma, S.; Gojo, T.; Mamiya, T.; Hiroshi, S.; Inoue, T. Virus Inactivation in Aluminum and Polyaluminum Coagulation. Environ. Sci. Technol. 2003, 37, 5175–5180. [Google Scholar] [CrossRef]
- Wu, X.; Wang, D.; Ge, X.; Tang, H. Coagulation of silica microspheres with hydrolyzed Al(III)—Significance of Al13 and Al13 aggregates. Colloids Surfaces A 2008, 330, 72–79. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, W.; Wang, D.; Chen, Y.; Chen, R. Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants. Bioresour. Technol. 2013, 144, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.; Khagendra, B.; Hoadley, A. Application of filtration aids for improving sludge dewatering properties—A review. Chem. Eng. J. 2011, 171, 373–384. [Google Scholar] [CrossRef]
- Mahmoud, A.; Hoadley, A.F.; Conrardy, J.-B.; Olivier, J.; Vaxelaire, J. Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering. Water Res. 2016, 103, 109–123. [Google Scholar] [CrossRef]
- Citeau, M.; Larue, O.; Vorobiev, E. Influence of filter cell configuration and process parameters on the electro-osmotic dewatering of sewage sludge. Sep. Sci. Technol. 2012, 47, 11–21. [Google Scholar] [CrossRef]
- Citeau, M.; Olivier, J.; Mahmoud, A.; Vaxelaire, J.; Larue, O.; Vorobiev, E. Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: Electrical variables analysis. Water Res. 2012, 46, 4405–4416. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Zhang, W.; Du, Y.; Wang, R.; Usher, S.P.; Scales, P.J.; Wang, D. Compartmentalization of extracellular polymeric substances (EPS) solubilization and cake microstructure in relation to wastewater sludge dewatering behavior assisted by horizontal electric field: Effect of operating conditions. Water Res. 2018, 130, 363–375. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Chao, D.; Yan, J.; Lin, J.; Shen, Z.X. Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater. 2014, 26, 7162–7169. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, G.; Qu, J.; Liu, H. Tungsten-assisted phase tuning of molybdenum carbide for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.; Soga, K. Fundamentals of Soil Behavior; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Henderson, R.K.; Baker, A.; Murphy, K.R.; Hambly, A.; Stuetz, R.M.; Khan, S.J. Fluorescence as a potential monitoring tool for recycled water systems: A review. Water Res. 2009, 43, 863–881. [Google Scholar] [CrossRef] [PubMed]
Indictor | Moisture Content (%) | pH | Cl− (g/L) | VSS/TSS | CST (s) | d0.5 (μm) | Zeta Potential (mV) | DOC (mg/L) |
---|---|---|---|---|---|---|---|---|
Value | 98.06 | 6.9 | 0.13 | 0.72 | 320 | 62 | −15.2 | 48.2 |
Inorganic Coagulant | Dosage (g/gTSS) | DOM(Cathode) | DOM(Anode) | ||||
---|---|---|---|---|---|---|---|
Trytophan Protein | Aromatic Protein | Humic Acid | Trytophan Protein | Aromatic Protein | Humic Acid | ||
280/300 | 225/350 | 330/410 | 280/300 | 225/350 | 330/410 | ||
HPAC | 0 | 172.9 | 208.8 | 173.4 | 551 | 306 | 198 |
0.02 | 150.3 | 104.5 | 154.2 | 481.9 | 366.2 | 184.6 | |
0.04 | 121.1 | 89.97 | 143.5 | 393.3 | 356.3 | 173.7 | |
0.06 | 134.3 | 138.28 | 118.8 | 364.6 | 237.1 | 192.1 | |
0.08 | 155.53 | 100.2 | 112.5 | 376.2 | 255.2 | 105.6 | |
0.11 | 147.6 | 140.57 | 112.4 | 232.7 | 136.8 | 142.7 | |
0.15 | 152.8 | 131.14 | 117.6 | 281.9 | 100.3 | 127.3 | |
PAC | 0.02 | 166.3 | 125.6 | 116.5 | 557 | 438.1 | 168.9 |
0.04 | 150.6 | 123.9 | 175.2 | 479.7 | 410.6 | 120.6 | |
0.06 | 156.32 | 141.16 | 126.9 | 352 | 406.3 | 131.8 | |
0.08 | 190.91 | 116.9 | 157.2 | 381 | 325 | 133.7 | |
0.11 | 160.4 | 169.2 | 116.4 | 298 | 379.7 | 139.2 | |
0.15 | 167.26 | 145.84 | 113.9 | 290.5 | 275.9 | 125.1 | |
FeCl3 | 0.02 | 135.77 | 146.58 | 116.3 | 357 | 322.4 | 129.6 |
0.04 | 178.49 | 176.86 | 114.7 | 382 | 284.1 | 122.2 | |
0.06 | 173.63 | 192.546 | 112.9 | 322 | 298.8 | 156.3 | |
0.08 | 221.18 | 196.232 | 125.6 | 285 | 298.5 | 131.3 | |
0.11 | 268.89 | 216.22 | 119.4 | 253.4 | 281.2 | 193.6 | |
0.15 | 144.48 | 118.37 | 96.03 | 222 | 222.5 | 131.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Huang, S.; Zhang, Y.; Wu, H.; Ma, Y.; Cao, B. Enhanced Electro-Dewatering of Sludge Through Inorganic Coagulant Pre-Conditioning. Separations 2025, 12, 262. https://doi.org/10.3390/separations12100262
Yang X, Huang S, Zhang Y, Wu H, Ma Y, Cao B. Enhanced Electro-Dewatering of Sludge Through Inorganic Coagulant Pre-Conditioning. Separations. 2025; 12(10):262. https://doi.org/10.3390/separations12100262
Chicago/Turabian StyleYang, Xiaoyin, Song Huang, Yusong Zhang, Hanjun Wu, Yabin Ma, and Bingdi Cao. 2025. "Enhanced Electro-Dewatering of Sludge Through Inorganic Coagulant Pre-Conditioning" Separations 12, no. 10: 262. https://doi.org/10.3390/separations12100262
APA StyleYang, X., Huang, S., Zhang, Y., Wu, H., Ma, Y., & Cao, B. (2025). Enhanced Electro-Dewatering of Sludge Through Inorganic Coagulant Pre-Conditioning. Separations, 12(10), 262. https://doi.org/10.3390/separations12100262