Accessing the Medicinal Potential of Mallotus philippensis: Comprehensive Exploration of Antioxidant and Antibacterial Properties through Phytochemical Analysis and Extraction Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Collection and Identification
2.3. Plant Materials
2.4. Extraction (Maceration)
2.5. Investigation on Bioactivities for the Samples
2.5.1. Antibacterial Assay
2.5.2. DPPH Radical Scavenging Assay
2.6. Phytochemical Analysis for Related Samples
2.6.1. Preliminary Analysis with Various Tests
2.6.2. Analysis of Alkaloids and Flavonoids Using Thin-Layer Chromatography (TLC)
2.6.3. Liquid Chromatography–Mass Spectroscopy (LC-MS) Assessments
3. Results and Discussion
3.1. Antibacterial Activities
3.2. Antioxidant Activity by DPPH Free Radical Scavenging Assay
3.3. Preliminary Phytochemicals Analysis
3.4. Thin-Layer Chromatography (TLC) for Alkaloids and Flavonoids Analysis
3.5. High Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS) Profiling
3.6. Enrichment of Target Components with Ionic Liquid-Loaded Microcapsules
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huie, C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 2002, 373, 23–30. [Google Scholar] [CrossRef]
- Shibata, M.; Khan, I.A.; Iinuma, M.; Shirai, T. Natural products for medicine. J. Biomed. Biotechnol. 2012, 2012, 147120. [Google Scholar] [CrossRef]
- Widen, C.J.; Puri, H.S. Natural occurrence and chemical’ variability of phloroglucinols in Kamala. Planta Med. 1980, 40, 284–287. [Google Scholar] [CrossRef]
- Singh, R.; Singhal, K.C. Antifilarial activity of Mallotus philippinensis Lam. on Setaria cervie (Nematoda: Filarioidea) in-vitro. J. Physiol. Pharmacol. 1997, 40, 397–403. [Google Scholar]
- Gangwar, M.; Gautam, M.K.; Ghildiyal, S.; Nath, G.; Goel, R.K. Mallotus philippinensis Muell. Arg fruit glandular hairs extract promotes wound healing on different wound model in rats. BMC Complement. Altern. Med. 2015, 15, 123. [Google Scholar] [CrossRef]
- Bilal, M.; Parveen, A.; Fiaz, A.; Mazhar, M. In vitro phytochemical analysis, antimicrobial and antioxidant activity of Mallotus philippinensis. Inter. J. Nat. Med. Health Sci. 2022, 2, 11–16. [Google Scholar] [CrossRef]
- Rios, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmaco. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Nascimento, G.G.F.; Lacatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol. 2000, 3, 886–891. [Google Scholar] [CrossRef]
- Zaidi, S.F.H.; Yamada, K.; Kadowaki, M.; Usmanghani, K.; Sugiyama, T. Bactericidal activity of medicinal plants, employed for the treatment of gastrointestinal ailments, against Helicobacter pylori. J. Ethnopharmacol. 2009, 121, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Hishikar, K. Purgative and anthelmintic effects of Mallotus phllippinensis in rats against tape worm. Indian J. Physiol. Pharmacol. 1984, 28, 63–66. [Google Scholar]
- Kumar, A.; Patil, M.; Kumar, P.; Bhatti, R.C.; Kaur, R.; Sharma, N.K.; Singh, A.N. Mallotus philippensis (Lam.) Müll. Arg.: A review on its pharmacology and phytochemistry. J. Herbmed Pharmacol. 2020, 10, 31–50. [Google Scholar] [CrossRef]
- Cheenpracha, S.; Pyne, S.G.; Patrick, B.O.; Andersen, R.J.; Maneerat, W.; Laphookhieo, S. Mallopenins A–E antibacterial phenolic derivatives from the fruits of Mallotus philippensis. J. Nat. Prod. 2019, 82, 2174–2180. [Google Scholar] [CrossRef]
- Rana, S.; Prakash, V.; Sagar, A. Antibacterial activity of Malotus philippensis. J. Med. Plants Stud. 2016, 4, 104–106. [Google Scholar]
- Daikonya, A.; Katsuki, S.; Wu, J.B.; Kitanaka, S. Anti-allergic agents from natural sources: Anti-allergic activity of new phloroglucinol derivatives from Mallotus philippensis (Euphorbiaceae). Chem. Pharm. Bull. 2002, 50, 1566–1569. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Hassan, A.; Ullah, H. Antibacterial and antifungal activities of the medicinal plant Veronica biloba. J. Chem. 2019, 2019, 5264943. [Google Scholar] [CrossRef]
- Cuong, D.X.; Xuan, H.N.; Dong, D.H.; Thủy, L.T.M.; Van Thanh, N.; Ha, H.T.; Tuyen, D.T.T.; Chinh, D.X. Tannins: Extraction from plants. In Tannins—Structural Properties, Biological Properties, and Current Knowledge; IntechOpen: London, UK, 2020; Volume 1, 148p. [Google Scholar] [CrossRef]
- Hussain, A.; Khan, M.N.; Iqbal, Z.; Sajid, M.S. An account of the botanical anthelmintics used in traditional veterinary practices in Sahiwal district of Punjab, Pakistan. J. Ethnopharmacol. 2008, 119, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Ahmad, I. Antibacterial, antifungal, and insecticidal potentials of Oxalis corniculata and its isolated compounds. Int. J. Anal. Chem. 2015. [Google Scholar] [CrossRef]
- Sharifi-Rad, J. Herbal antibiotics: Moving back into the mainstream as an alternative for “superbugs. Cell. Mol. Biol. 2016, 62, 1–2. [Google Scholar] [PubMed]
- Alghazeer, R.; El-Saltani, H.; Saleh, N.; Al-Najjar, A.; Hebail, F. Antioxidant and antimicrobial properties of five medicinal Libyan plants extracts. Nat. Sci. 2012, 4, 324–335. [Google Scholar] [CrossRef]
- Edziri, H.; Mastouri, M.; Cheraif, I.; Aouni, M. Chemical composition and antibacterial, antifungal and antioxidant activities of the flower oil of Retama raetam (Forssk.) webb from Tunisia. Nat. Prod. Res. 2010, 24, 789–796. [Google Scholar] [CrossRef]
- Wang, M.; Shi, Q.; Shi, H.; Li, J.; Yang, Y.; Li, Q.; Shao, S.; Gao, S. The promotion effect of phenolic acid compound on the photo-removal of estrogen from water under simulated sunlight irradiation. Chem. Eng. J. 2020, 387, 123999. [Google Scholar] [CrossRef]
- Egbuna, C.; Ifemeje, J.; Maduako, M.; Tijjani, H.; Udedi, S.; Nwaka, A.; Ifemeje, M. Phytochemical Test Methods: Qualitative, Quantitative, and Proximate Analysis; Apple Academic Press: Palm Bay, FL, USA, 2019. [Google Scholar]
- Venkategowda, A.; Gowda, L. Isolation, and characterization of antimicrobial alkaloids from Plumeria alba flowers against food borne pathogens. Am. J. Life Sci. 2014, 2, 1–6. [Google Scholar]
- Yang, L.; Stöckigt, J. Trends for diverse production strategies of plant medicinal alkaloids. Nat. Prod. Rep. 2010, 27, 1469–1479. [Google Scholar] [CrossRef]
- Adamski, Z.; Blythe, L.L.; Milella, L.; Bufo, S.A. Biological activities of alkaloids: From toxicology to pharmacology. Toxins 2020, 12, 210. [Google Scholar] [CrossRef]
- Ng, Y.P.; Or, T.C.T.; Ip, N.Y. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int. 2015, 89, 260–270. [Google Scholar] [CrossRef]
- Yatoo, M.I.; Gopalakrishnan, A.; Saxena, A.; Parray, O.R.; Tufani, N.A.; Chakraborty, S.; Tiwari, R.; Dhama, K.; Iqbal, H.M.N. Anti-inflammatory drugs, and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders—A review. Recent. Pat. Infla. 2018, 12, 39–58. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, L.; Di, S.N.; Xu, Q.; Ren, Q.C.; Chen, S.Z.; Huang, N.; Jia, D.; Shen, X.F. Steroidal alkaloid solanine A from Solanum nigrum Linn. exhibits antiinflammatory activity in lipopolysaccharide/interferon γ-activated murine macrophages and animal models of inflammation. Biomed. Pharmacother. 2018, 105, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Hussain, G.; Rasul, A.; Anwar, H.; Aziz, N.; Razzaq, A.; Wei, W.; Ali, M.; Li, J.; Li, X. Role of plant derived alkaloids and their mechanism in neurodegenerative. Int. J. Biol. Sci. 2018, 14, 341–357. [Google Scholar] [CrossRef] [PubMed]
- Tarahovsky, Y.S.; Kim, Y.A.; Yagolnik, E.A.; Muzafarov, E.N. Flavonoid-membrane interactions: Involvement of flavonoid-metal complexes in raft signaling. BBA-Biochim. Biophys. Acta 2014, 1838, 1235–1246. [Google Scholar] [CrossRef]
- Hussain, G.; Zhang, L.; Rasul, A.; Anwar, H.; Sohail, M.U.; Razzaq, A.; Aziz, N.; Shabbir, A.; Ali, M.; Sun, T. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: An update of recent data. Molecules 2018, 23, 814. [Google Scholar] [CrossRef]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef]
- Jäger, A.; Saaby, L. Flavonoids and the CNS. Molecules 2011, 16, 1471–1485. [Google Scholar] [CrossRef]
- Fitzgerald, M.; Heinrich, M.; Booker, A. Medicinal plant analysis: A historical and regional discussion of emergent complex techniques. Front. Pharmacol. 2020, 10, 1480. [Google Scholar] [CrossRef]
- Wrońska, N.; Szlaur, M.; Zawadzka, K.; Lisowska, K. The synergistic effect of triterpenoids and flavonoids—New approaches for treating bacterial infections. Molecules 2022, 27, 847. [Google Scholar] [CrossRef]
- Tonga, J.L.; Kamdem, M.H.K.; Pagna, J.I.M.; Fonkui, T.Y.; Tata, C.M.; Fotsing, M.C.D.; Nkengfack, E.A.; Mmutlane, E.M.; Ndinteh, D.T. Antibacterial activity of flavonoids and triterpenoids isolated from the stem bark and sap of Staudtia kamerunensis Warb. Arab. J. Chem. 2022, 15, 104150. [Google Scholar] [CrossRef]
- Fang, S.; Belwal, T.; Li, L.; Limwachiranon, J.; Liu, X.; Luo, Z. Phytosterols and their derivatives: Potential health promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1243–1267. [Google Scholar] [CrossRef]
- Ansari, P.; Akther, S.; Hannan, J.M.A.; Seidel, V.; Nujat, N.J.; Abdel-Wahab, Y.H. Pharmacologically active phytomolecules isolated from traditional antidiabetic plants and their therapeutic role for the management of diabetes mellitus. Molecules 2022, 27, 4278. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xin, Y.; Mo, Y.; Marozik, P.; He, T.; Guo, H. The bioavailability and biological activities of phytosterols as modulators of cholesterol metabolism. Molecules 2022, 27, 523. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.; Hamid, K.; Kam, A.; Wong, K.H. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem. 2013, 20, 908–931. [Google Scholar]
- Paduch, R.; Kandefer-Szerszeń, M. Antitumor and antiviral activity of pentacyclic triterpenes. Mini-Rev. Org. Chem. 2014, 11, 262–268. [Google Scholar] [CrossRef]
- Xiao, S.; Tian, Z.; Wang, Y.; Si, L.; Zhang, L.; Zhou, D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med. Res. Rev. 2018, 38, 951–976. [Google Scholar] [CrossRef]
- Ghosh, S. Triterpenoids: Structural diversity, biosynthetic pathways and bioactivity. Stud. Nat. Prod. Chem. 2020, 67, 411–461. [Google Scholar]
- Tolufashe, G.F.; Lawal, M.M.; Govender, K.K.; Shode, F.O.; Singh, T. Exploring the bioactivity of pentacyclic triterpenoids as potential antimycobacterial nutraceutics: Insights through comparative biomolecular modeling. J. Mol. Graph. Model. 2021, 105, 1007. [Google Scholar] [CrossRef] [PubMed]
- Harley, B.K.; Neglo, D.; Tawiah, P.; Pipim, M.A.; Mireku-Gyimah, N.A.; Tettey, C.O.; Amengor, C.D.; Fleisher, T.C.; Waikhom, S.D. Bioactive triterpenoids from Solanum torvum fruits with antifungal, resistance modulatory and antibiofilm formation activities against fluconazole-resistant Candida albicans strains. PLoS ONE 2021, 16, e0260956. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.C.; Xue, C.H.; Zhang, T.T.; Wang, Y.M. Saponins from sea cucumber and their biological activities. J. Agric. Food Chem. 2018, 66, 7222–7237. [Google Scholar] [CrossRef] [PubMed]
- Svigelj, R.; Dossi, N.; Grazioli, C.; Toniolo, R. Deep Eutectic Solvents (DESS) and their application in biosensor development. Sensors 2021, 21, 4263. [Google Scholar] [CrossRef] [PubMed]
- Negi, J.S.; Negi, P.S.; Pant, G.J.; Rawat, M.S.M.; Negi, G.J. Naturally occurring saponins: Chemistry and biology. J. Poisonous Med. Plant Res. 2013, 1, 1–6. [Google Scholar]
- Sabri, N.; Moulai-Mostefa, N. Formulation and characterization of oil-in-water emulsions stabilized by saponins extracted from Hedera helix Algeriensis using response surface method. Biointerface Res. Appl. Chem. 2020, 10, 6282–6292. [Google Scholar]
- Rai, S.; Acharya-Siwakoti, E.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Plant-derived saponins: A review of their surfactant properties and applications. Sci 2021, 3, 44. [Google Scholar] [CrossRef]
- Bottcher, S.; Drusch, S.; Oleszek, W.; Hamed, A. Saponins—Self-assembly and behavior at aqueous interfaces. Adv. Colloid Interface Sci. 2017, 243, 105–113. [Google Scholar] [CrossRef]
- Grzywaczyk, A.; Smułek, W.; Smułek, G.; Ślachciński, M.; Kaczorek, E. Application of natural surfactants for improving the leaching of zinc and copper from different soils. Environ. Technol. Innov. 2021, 24, 101926. [Google Scholar] [CrossRef]
- Bottcher, S.; Drusch, S. Interfacial properties of saponin extracts and their impact on foam characteristics. Food Biophys. 2016, 11, 91–100. [Google Scholar] [CrossRef]
- Wisetkomolmat, J.; Suppakittpaisarn, P.; Sommano, S.R. Detergent plants of Northern Thailand: Potential sources of natural saponins. Resources 2019, 8, 10. [Google Scholar] [CrossRef]
- Zaynab, M.; Sharif, Y.; Abbas, S.; Afzal, M.; Qasim, M.; Khalofah, A.; Ansari, M.J.; Khan, K.A.; Tao, L.; Li, S. Saponin toxicity as key player in plant defense against pathogens. Toxicon 2021, 193, 21–27. [Google Scholar] [CrossRef]
- Morozov, V.A.; Weiss, R.A. Two types of HTLV-1 particles are released from MT-2 cells. Virology 1999, 255, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Tyagi, A.; Bhansali, P.; Pareek, S.; Singh, V.; Ilyas, A.; Mishra, R.; Poddar, N.K. Saponins: Extraction bio-medicinal properties and way forward to anti-viral representatives. Food Chem. Toxicol. 2021, 150, 1120. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Kajimoto, T.; Kinjo, J.; Nakayama, K.; Nohara, T. Chemical transglycosylation of functional bioactive glyco-linkages. Tetrahedron Lett. 1998, 39, 3513–3516. [Google Scholar] [CrossRef]
- Shida, W.; Tahara, Y.; Morikawa, S.; Monde, K.; Koga, R.; Ohsugi, T.; Otsuka, M.; Ikemoto, A.; Tateishi, H.; Ikeda, T.; et al. The unique activity of saponin: Induction of cytotoxicity in HTLV-1 infected cells. Bioorgan. Med. Chem. 2023, 91, 117408. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol. Ther. 2020, 207, 107452. [Google Scholar] [CrossRef]
- Liao, H.; Ma, J.; Yao, H.; Liu, X. Recent progress of C-glycosylation methods in the total synthesis of natural products and pharmaceuticals. Org. Biomol. Chem. 2018, 16, 1791–1806. [Google Scholar] [CrossRef]
- Taylor, R.J.; McAllister, G.D.; Franck, R.W. The Ramberg–Bäcklund reaction for the synthesis of C-glycosides C-linked-disaccharides and related compounds. Carbohyd. Res. 2006, 341, 1298–1311. [Google Scholar] [CrossRef]
- Xu, L.; Fan, N.; Hu, X. Recent development in the synthesis of C-glycosides involving glycosyl radicals. Org. Biomol. Chem. 2020, 18, 5095–5109. [Google Scholar] [CrossRef]
- Henschke, J.P.; Lin, C.; Wu, P.; Tsao, W.; Liao, J.; Chiang, P. β-Selective C-arylation of diisobutylaluminum hydride modified 1,6-anhydroglucose: Synthesis of canagliflozin without recourse to conventional protecting groups. J. Org. Chem. 2015, 80, 5189–5195. [Google Scholar] [CrossRef]
- Guo, C.; Hu, M.; DeOrazio, R.J.; Usyatinsky, A.; Fitzpatrick, K.; Zhang, Z.; Maeng, J.-H.; Kitchen, D.B.; Tom, S.; Luche, M.; et al. The design and synthesis of novel SGLT2 inhibitors: C-glycosides with benzyltriazolopyridinone and phenylhydantoin as the aglycone moieties. Bioorgan. Med. Chem. 2014, 22, 3414–3422. [Google Scholar] [CrossRef]
- Hahn, F.; Guth, F.M. The ambruticins and jerangolids—Chemistry, biology and chemoenzymatic synthesis of potent antifungal drug candidates. Nat. Prod. Rep. 2020, 37, 1300–1315. [Google Scholar] [CrossRef]
- Bowen, J.I.; Wang, L.; Crump, M.P.; Willis, C.L. Ambruticins: Tetrahydropyran ring formation and total synthesis. Org. Biomol. Chem. 2021, 19, 6210–6215. [Google Scholar] [CrossRef]
- Kobayashi, T.; Regens, C.S.; Denmark, S.E. Total synthesis of papulacandin d, In Strategies and Tactics. Org. Synth. 2012, 08, 79–126. [Google Scholar]
- Shimura, J.; Ando, Y.; Ohmori, K.; Suzuki, K. Total synthesis and structure assignment of saptomycin. Org. Lett. 2022, 24, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Chen, S.; Chen, X.; Yao, S.; Wang, X.; Song, H.; Zhu, M. High effective extraction of selected anthraquinones from Polygonum multiflorum using ionic liquids with ultrasonic assistance. J. Mol. Liq. 2020, 314, 1439–1443. [Google Scholar] [CrossRef]
- Qi, Y.; Fox, C.B. A Two-step orthogonal chromatographic process for purifying the molecular adjuvant QS-21 with high purity and yield. J. Chromatogr. A 2021, 1635, 461705. [Google Scholar] [CrossRef] [PubMed]
- Oyedemi, B.O.; Shinde, V.; Shinde, K.; Kakalou, D.; Stapleton, P.D.; Gibbons, S.J. Novel R-plasmid conjugal transfer inhibitory and antibacterial activities of phenolic compounds from Mallotus philippensis (Lam.) Mull. Arg. Glob. Antimicrob. Resist. 2016, 5, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Leong, W.F.; Elias, R.J.; Tikekar, R.V. UV-C irradiated gallic acid exhibits enhanced antimicrobial activity via generation of reactive oxidative species and quinone. Food Chem. 2019, 287, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yao, J.; Wang, S.; Pan, X.; Xiao, R.; Huang, Q.; Wang, Z.; Qu, R. Phototransformation of estrogens mediated by Mn (III), not by reactive oxygen species, in the presence of humic acids. Chemosphere 2018, 201, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Martín, J.; Beltrán-Heredia, J.; Gibello-Pérez, P. Adsorbent biopolymers from tannin extracts for water treatment. Chem. Eng. J. 2011, 168, 1241–1247. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on tannins: Extraction processes, applications, and possibilities. S. Afri. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- De Sousa, B.C.M.; Gomes, D.D.A.; Da Silva Viana, A.F.; Da Silva, B.A.; Barata, L.E.S.; Sartoratto, A.; Lustosa, D.C.; Vieira, T.A. Phytochemical analysis, and antioxidant activity of ethanolic extracts from different parts of Dipteryx punctata (S. F. Blake) Amshoff. Appl. Sci. 2023, 13, 9600. [Google Scholar] [CrossRef]
- Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Lagana, À. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography coupled with tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2015, 19, 3143–3158. [Google Scholar] [CrossRef]
- Ertas, A.; Boga, M.; Yılmaz, M.A.; Yesil, Y.; Hasimi, N.; Kaya, M.S.; Temel, H.; Kolak, U. Chemical compositions by using LC–MS/MS and GC–MS and biological activities of Sedum sediforme (Jacq.). Pau. J. Agric. Food Chem. 2014, 62, 4601–4609. [Google Scholar] [CrossRef]
- Ertaş, A.; Yılmaz, M.A.; Fırat, M. Chemical profile by LC–MS/MS, GC/MS and antioxidant activities of the essential oils and crude extracts of two Euphorbia species. Nat. Prod. Res. 2014, 29, 529–534. [Google Scholar] [CrossRef]
- Miyuki, F.; Yoshimi, I.; Toŝhiyuki, T.; Tetsuro, I.; Kenichi, N.; Iliya, I.; Masayoshi, O.; Munekazu, I.; Yoshiaki, S.; Yoshikazu, T. Novel, complex flavonoids from Mallotus philippensis (kamala tree). Helv. Chim. Acta 2005, 88, 1048–1058. [Google Scholar]
- Agar, O.T.; Dikmen, M.; Ozturk, N.; Yilmaz, M.A.; Temel, H.; Turkmenoglu, F.P. Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected Achillea L. species growing in Turkey. Molecules 2015, 20, 17976–18000. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; e Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G.; Coutinho, J.A.P. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: Past, present, and future trends. Chem. Rev. 2017, 117, 6984–7052. [Google Scholar] [CrossRef]
- He, Q.; Guo, Z.; Cao, Y.; Yang, M.; Yao, S. Selective separation of main flavonoids by combinational use of ionic liquid-loaded microcapsules from crude extract of Tartary buckwheat. Food Chem. 2021, 362, 130255. [Google Scholar] [CrossRef]
- Alam, M.J.; Ahmad, S. Quantum chemical and spectroscopic investigations of 3-methyladenine. Spectrochim. Acta. A 2014, 128, 653–664. [Google Scholar] [CrossRef]
- Dadáková, K.; Heinrichová, T.; Lochman, J.; Kašparovský, T. Production of defense phenolics in tomato leaves of different age. Mol./Mol. Online/Mol. Annu. 2020, 25, 4952. [Google Scholar] [CrossRef]
Samples | Dosage (µL) | Concentration (%) | S. aureus (mm) | E. coli (mm) | P. aeruginosa (mm) |
---|---|---|---|---|---|
Dichloromethane | 10 | 10 | 2.6 ± 0.2 | 3.2 ± 0.2 | 2.7 ± 0.2 |
DMSO (-control) | 10 | 10 | 1 ± 0 | 1 ± 0 | 1 ± 0 |
Ofloxacin (+control) | 10 | 10 | 4.6 ± 0.5 | 4.0 ± 0.5 | 4.0 ± 0.5 |
Gentamicin (+control) | 10 | 10 | 4.2 ± 0.5 | 3.5 ± 0.2 | 4.4 ± 0.5 |
Ampicillin (+control) | 10 | 10 | 4.3 ± 0.5 | 3.7 ± 0.2 | 3.7 ± 0.2 |
Samples | Dosage (µL) | Concentration (%) | S. aureus (mm) | E. coli (mm) | P. aeruginosa (mm) |
---|---|---|---|---|---|
Dichloromethane | 10 | 10 | 2.8 ± 0.2 | 2.3 ± 0.2 | 3.2 ± 0.2 |
DMSO (-control) | 10 | 10 | 1 ± 0 | 1 ± 0 | 1 ± 0 |
Ofloxacin (+control) | 10 | 10 | 2.7 ± 0.2 | 4.3 ± 0.5 | 2.7 ± 0.2 |
Gentamicin (+control) | 10 | 10 | 4.3 ± 0.5 | 3.5 ± 0.2 | 3.0 ± 0.2 |
Ampicillin (+control) | 10 | 10 | 4.3 ± 0.5 | 4.2 ± 0.5 | 3.3 ± 0.2 |
Concentration (µg/mL) | Control | Sample | %RSA | IC50 |
---|---|---|---|---|
20 | 0.78 | 0.201 | 73.07 | 10.6 |
30 | 0.78 | 0.503 | 37.51 | 0.6 |
40 | 0.78 | 0.024 | 74.92 | 9.39 |
50 | 0.78 | 0.028 | 96.41 | 19.39 |
Phytochemical Components | Dichloromethane Extracts (%) | Ethanolic Extracts (%) |
---|---|---|
Alkaloids | 0.85 | 0.87 |
Flavonoids | 0.82 | 0.83 |
Steroids | 0.70 | 0.77 |
Saponin | 0.58 | 0.61 |
Glycosides | 0.53 | 0.51 |
Phenols | 0.82 | 0.87 |
No. | Identified Compounds | Formulas | Structures | Calc. MW | m/z | RT [min] |
---|---|---|---|---|---|---|
01 | 10-Methylundec-3-en-4-olide | C12 H20 O2 | 196.14638 | 197.15366 | 16.943 | |
02 | 1-Hexadecanoylpyrrolidine | C20 H39 N O | 309.30315 | 310.31042 | 12.614 | |
03 | 1-Naphthylisocyanate | C11 H7 N O | 169.05268 | 170.05995 | 12.098 | |
04 | 2,5,8,11,14,17-Hexaoxaoctadecane | C12 H26 O6 | 266.17308 | 289.1626 | 7.03 | |
05 | 2-Furoic acid | C5 H4 O3 | 112.01626 | 130.05008 | 19.949 | |
06 | 2-Isobutoxynaphthalene | C14 H16 O | 200.12023 | 218.15405 | 11.6 | |
07 | 2-Octadecylfuran | C22 H40 O | 320.3077 | 338.34152 | 13.432 | |
08 | 2-Phenylethyl acetate | C10 H12 O2 | 164.08389 | 165.09117 | 11.534 | |
09 | 3-Deoxyaphidicolin | C20 H34 O3 | 322.25022 | 323.2575 | 11.95 | |
10 | 3-Methyladenine | C6 H7 N5 | 149.07025 | 150.07753 | 12.245 | |
11 | 4-Hydroxymethylquinoline | C10 H9 N O | 159.06844 | 160.07572 | 18.116 | |
12 | 4-Methoxyacetanilide | C9 H11 N O2 | 165.07911 | 164.07183 | 7.359 | |
13 | 4-Methoxylonchocarpin | C21 H20 O4 | 336.13616 | 337.14343 | 12.859 | |
14 | 4-Vinylresorcinol | C8 H8 O2 | 136.05249 | 137.05978 | 18.841 | |
15 | 5-Methylcytosine | C5 H7 N3 O | 125.05912 | 126.06639 | 12.061 | |
16 | 6-Ethylguanine | C7 H9 N5 O | 179.081 | 180.08803 | 12.086 | |
17 | 7-Methoxy-3′,4′-methylenedioxyflavone | C17 H12 O5 | 296.06746 | 295.06018 | 8.542 | |
18 | 9-Hydroxylarone | C13 H18 O4 | 238.12045 | 261.10965 | 9.465 | |
19 | Acridine | C13 H9 N | 179.07352 | 180.0808 | 19.034 | |
20 | Alloxazine | C10 H6 N4 O2 | 214.04869 | 213.04141 | 9.684 | |
21 | Anthraquinone | C14 H8 O2 | 208.05251 | 209.05978 | 10.73 | |
22 | Cortistatin L | C30 H36 N2 O2 | 456.2785 | 474.3121 | 13.968 | |
23 | Diminazene | C14 H15 N7 | 281.13939 | 282.14667 | 14.742 | |
24 | Hexanoylcarnitine | C13 H25 N O4 | 259.17848 | 282.16779 | 14.749 | |
25 | Nicotine | C10 H14 N2 | 162.11566 | 163.12294 | 18.065 | |
26 | Siccayne | C11 H10 O2 | 174.06798 | 175.07535 | 19.294 |
No. | Identified Compounds | Formula | Structures | Calc. MW | m/z | RT [min] |
---|---|---|---|---|---|---|
01 | 1,3,6-Octatriene | C8 H12 | 108.09427 | 126.12807 | 18.833 | |
02 | 5,5-Dinitro-1,3-dioxane | C4 H6 N2 O6 | 178.02188 | 179.02916 | 11.559 | |
03 | 8,9-dihydrolactimidomycin | C26 H37 N O6 | 459.26195 | 460.26923 | 1.829 | |
04 | Benzotriazole | C6 H5 N3 | 119.0487 | 120.05598 | 14.667 | |
05 | Flemiwallichin D | C25 H26 O5 | 406.17808 | 405.17081 | 6.785 | |
06 | Isoquinoline | C9 H7 N | 129.05811 | 130.06538 | 18.746 | |
07 | Lespeol | C25 H26 O4 | 390.18338 | 389.17621 | 7.504 | |
08 | N-Acetylvaline | C7 H13 N O3 | 159.08946 | 182.07869 | 0.913 | |
09 | Oxonamide | C4 H4 N4 O3 | 156.02799 | 157.03526 | 1.001 | |
10 | Pyrroloquinoline quinone | C14 H6 N2 O8 | 330.01182 | 329.00455 | 13.211 | |
11 | Rottlerin | C30 H28 O8 | 516.17867 | 517.18604 | 7.343 | |
12 | Terrelumamide A | C20 H20 N6 O7 | 456.13712 | 229.07584 | 4.022 | |
13 | Toluidine | C7 H9 N | 107.07398 | 108.08125 | 1.661 | |
14 | Zopfiellamide A | C25 H35 N O6 | 445.24645 | 446.25372 | 1.824 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Chen, H.; Xu, H.; Wang, S.; Yao, S. Accessing the Medicinal Potential of Mallotus philippensis: Comprehensive Exploration of Antioxidant and Antibacterial Properties through Phytochemical Analysis and Extraction Techniques. Separations 2024, 11, 165. https://doi.org/10.3390/separations11060165
Ali A, Chen H, Xu H, Wang S, Yao S. Accessing the Medicinal Potential of Mallotus philippensis: Comprehensive Exploration of Antioxidant and Antibacterial Properties through Phytochemical Analysis and Extraction Techniques. Separations. 2024; 11(6):165. https://doi.org/10.3390/separations11060165
Chicago/Turabian StyleAli, Ahmad, Hangping Chen, He Xu, Shuo Wang, and Shun Yao. 2024. "Accessing the Medicinal Potential of Mallotus philippensis: Comprehensive Exploration of Antioxidant and Antibacterial Properties through Phytochemical Analysis and Extraction Techniques" Separations 11, no. 6: 165. https://doi.org/10.3390/separations11060165
APA StyleAli, A., Chen, H., Xu, H., Wang, S., & Yao, S. (2024). Accessing the Medicinal Potential of Mallotus philippensis: Comprehensive Exploration of Antioxidant and Antibacterial Properties through Phytochemical Analysis and Extraction Techniques. Separations, 11(6), 165. https://doi.org/10.3390/separations11060165