Formation Mechanism of Deposits in Rotary Kiln during Steelmaking Dust Carbothermic Recycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
3. Results and Discussion
3.1. Morphology and Chemical Composition of Deposits
3.2. Crystal Phase Composition of Deposits
3.3. Microstructural Characterization of Deposits
3.4. Iron Distribution Behavior in Deposits
3.5. Mechanism for Deposit Formation
3.5.1. Determination of the Main Control Phase
3.5.2. Effects of FeO on the Liquid Phase in the Al2O3-SiO2-CaO-FeO System
3.5.3. Liquid Formation Process in the FeO-Fe3O4 and Fe-FeO System
3.5.4. Experimental Verification of the Fe3O4-FeO-Fe System
3.5.5. Experimental Verification of Raw Material Deposits
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chai, L.; Shi, M.; Liang, Y. Behavior, distribution and environmental influence of arsenic in a typical lead smelter. J. Cent. South Univ. 2015, 22, 1276–1286. [Google Scholar] [CrossRef]
- Shang, H.; Li, H.; Wei, R.; Long, H.; Li, K.; Liu, W. Present situation and prospect of iron and steel dust and sludge utilization technology. Iron Steel 2019, 54, 9–17. [Google Scholar]
- Peng, B.; Song, H.; Chai, L.; Wang, J.; Wang, Y.; Min, X.; He, D. Reduction mechanism of stainless steelmaking dust and carbon pellets. Trans. Nonferrous Met. Soc. China 2005, 15, 1407–1413. [Google Scholar]
- Liu, L.; Zhao, Q.; Feng, X. Study on separation of zinc and iron from dust ash containing zinc. J. Iron Steel Res. 2020, 32, 714–719. [Google Scholar]
- Zhang, J.; Li, Y.; Yuan, J.; Liu, Z. Present situation and prospect of dust treatment in Chinese iron and steel enterprises. Iron Steel 2018, 53, 6–15. [Google Scholar]
- Lv, W.; Wang, L.; Zhang, H.; Li, Z.; Wang, L.; Li, F. Research on progress of zinc extraction process from iron and steel metallurgical sludge. Iron Steel 2023, 59, 157–167. [Google Scholar]
- Chen, W.; Yang, T.; Li, Q.; Li, Q.; Shi, Y.; Ye, M. Characteristic Analysis and Separation of Zinc and Iron from Zinc Containing Metallurgical Dust. Non-Ferr. Met. (Smelt. Compon.) 2023, 09, 126–136. [Google Scholar]
- Yi, Z.; Xiao, H.; Song, J. Mathematic simulation of heat transfer and operating optimization in alumina rotary kiln. J. Cent. South Univ. 2013, 20, 2775–2780. [Google Scholar] [CrossRef]
- Wang, D.; Hua, S.; Wu, L.; Liu, K.; Wang, H. Coupled Thermodynamics and Phase Diagram Analysis of Gas-Duct Concretion Formation in Pyro-Processing Ironmaking and Steelmaking Dust. Minerals 2021, 11, 1125. [Google Scholar] [CrossRef]
- Eriksson, M.; Carlborg, M.; Brostrom, M. Characterization of Ring Deposits Inside a Quicklime Producing Long Rotary Kiln. Energy Fuels 2019, 33, 11731–11740. [Google Scholar] [CrossRef]
- Zhao, J. Process analysis of Resource Utilization On Zinc-borne dust and sludge in iron and steel plant. World Non-Ferr. Met. 2018, 272–274. [Google Scholar]
- Zhao, J.; Zhang, Z.; Li, B.; Wei, X. Formation and Growth Behavior Analysis of Slagging Rings in Rotary Kiln-Type Hazardous Waste Incineration Systems. Energies 2021, 14, 561. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Tang, J.; Wang, J.; She, X.; Xue, Q.; Zuo, H. Status and progress of resource recovery and utilization of dust and sludge in the steel industry. Jiangxi Metall. 2023, 43, 87–94. [Google Scholar]
- Zhu, D.; Qiu, G.; Jiang, T.; Xu, J. An Innovative Process for Direct Reduction of Cold bound Pellets from Iron Concentrate with a Coal-based Rotary Kiln. J. Cent. South Univ. Technol. (Engl. Ed.) 2000, 2, 68–71. [Google Scholar]
- Guo, X. Current Status and Improving Direction of Rotary Kiln Technology for Treating Zinc-bearing Dust and Mud. Ind. Heat. 2023, 52, 41–44. [Google Scholar]
- Wang, T. Analysis on Key Technology of Treating Steel Containing Zinc Dust in Rotary Kiln. China Resour. Compr. Util. 2019, 37, 181–184. [Google Scholar]
- Lin, H.; Weng, W.; Zhong, S.; Qiu, G. Enhanced recovery of zinc and lead by slag composition optimization in rotary kiln. Trans. Nonferrous Met. Soc. China 2022, 32, 3110–3122. [Google Scholar] [CrossRef]
- Wang, X.; Li, T.; Sun, X.; Zhang, J.; Liu, Z.; Wang, Y.; Ma, L. Study on the intrinsic relationship between pellet ore properties and mineral phases of rotary kiln nodules. Energy Metall. Ind. 2022, 41, 45–49. [Google Scholar]
- Zhang, X.; Wang, M.; Feng, Z.; Chen, Z.; Li, S. Causes and prevention of ring formation in rotary kiln. Refract. Lime 2021, 46, 19–21. [Google Scholar]
- Ding, C.; Liu, H.; Liu, S.; Zhao, H.; Ning, S. Analysis on Causes Leading to Circinate Conglutination of Kiln Burden in Metallurgical Rotary Kiln for Lime and Solution to Problem. Angang Technol. 2022, 05, 50–53. [Google Scholar]
- Song, Y.; Zhao, C. Analysis and Preventive Measures of Ring-Forming in Metallurgical Lime Rotary Kiln. ShanXi Metall. 2021, 44, 239–240+245. [Google Scholar]
- Liu, B.; Li, G.; Xie, W. Analysis and measures of ring formation in metallurgical lime rotary kiln. Refract. Lime 2020, 02, 009. [Google Scholar]
- Ding, C.; Zhao, H.; Wang, Y. Causes and treatment methods of metallurgical lime rotary kiln ring formation. Refract. Lime 2022, 47, 39–41. [Google Scholar]
- Shen, B.; Zhao, X. Analysis and prevention on ringing of lime rotary kiln with pulverized coal as fuel. Refract. Lime 2018, 05, 003. [Google Scholar]
- Zhong, Q.; Yang, Y.; Jiang, T.; Li, Q.; Xu, B. Effect of coal ash on ring behavior of iron-ore pellet powder in kiln. Powder Technol. 2018, 323, 195–202. [Google Scholar] [CrossRef]
- Qi, L.; Wang, B.; Ma, W.; Yang, Y.; Li, Q. Study on influences of firing coal quality on ringing of rotary kiln. Sinter. Pelletizing 2016, 41, 28–32. [Google Scholar]
- Hou, E.; Wang, B.; Yang, Y.; Li, Q.; Zhong, Q.; Zhang, Y.; Quan, L. Influence of characteristics of coal on ring formation of rotary kiln. Iron Steel Res. 2016, 44, 9–13. [Google Scholar]
- Luo, G.; Nie, X.; Wu, S.; Wang, Y.; Liu, J.; Zhou, S. Influence of F, K, Na on the ring formation properties of oxidized pellet rotary kiln. Sinter. Pelletizing 2013, 3, 29–32. [Google Scholar]
- Zhong, R.; Yi, L.; Huang, Z.; Shen, X.; Jiang, T. Sticking mechanism of low grade iron ore-coal composite in rotary kiln reduction. Powder Technol. 2018, 339, 625–632. [Google Scholar] [CrossRef]
- Si, J.; Jia, Y.; Liu, J.; Liang, D.; Hou, J. Structure of rings and ring forming mechanism of rotary pelletizing kiln. Ironmak Steelmak 2014, 49, 17–21. [Google Scholar]
- Yang, X. Fundamental and Applied Studies on Preparing Oxidized Pellets from Mixed Iron Ore Concentrates. Ph.D. Thesis, Central South University, Changsha, China, 2011. [Google Scholar]
- Fan, X.; Gan, M.; Yuan, L.; Li, G.; Jiang, T.; Zhuang, J. Study of Mechanism on Ring Formation in Grate-Kiln of Acid Pellet. Iron Steel 2008, 43, 6. [Google Scholar]
- Nie, J.; Zhang, Z.; Qiao, W.; Sun, J.; Chen, J.; Zhou, Q.; Liang, Y. Characteristics of the pellet rotary kiln ring. J. Wuhan Univ. Sci. Technol. 2010, 33, 527–531. [Google Scholar]
- Wang, Y.; Zhang, J.; Liu, Z. Rings growth behavior within a pre-reduction rotary kiln: The layered structure and formation mechanism. Powder Technol. 2019, 356, 73–82. [Google Scholar] [CrossRef]
- Zhao, J.; Wei, X.-L. Behavior of alkali metals in fly ash during waste heat recovery for municipal solid waste incineration. Energ. Fuel 2018, 32, 4417–4423. [Google Scholar] [CrossRef]
- Zhu, H.-M.; Wang, Y.-F.; Jing, N.-J.; Jiang, X.-G.; Lv, G.-J.; Yan, J.-H. Study on the evolution and transformation of chlorine during co-processing of hazardous waste incineration residue in a cement kiln. Waste Manag. 2019, 37, 495–501. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Y.-F.; Fan, J.-J. Initial stage of deposit formation process in a coal fired grate-rotary kiln for iron ore pellet production. Fuel Process. Technol. 2018, 175, 54–63. [Google Scholar] [CrossRef]
- Huffman Gerald, P.; Huggins Frank, E.; Dunmyre George, R. Investigation of the high-temperature behaviour of coal ash in reducing and oxidizing atmospheres. Fuel 1981, 60, 585–597. [Google Scholar] [CrossRef]
- Li, S.-H.; Zhang, X.; Zhang, L.-D.; Yu, K.-S. Numerical simulation of particles axial mixing in rotary kiln. China Powder Sci. Technol. 2011, 17, 23–26. [Google Scholar] [CrossRef]
- Zeng, T.; Helble Joseph, J.; Bool, L.E.; Sarofim Adel, F. Iron transformations during combustion of Pittsburgh no. 8 coal. Fuel 2009, 88, 566–572. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Y.-F.; Chen, F. Combustion reaction of pulverized coal on the deposit Formation in the kiln for iron ore pellet production. Energy Fuels 2016, 30, 6123–6131. [Google Scholar] [CrossRef]
- He, H.-Y.; Hu, B.-P.; Ding, J. Relationship between slag behavior and consolidation strength of zinc-bearing dust pellets during direct reduction process. J. Wuhan Univ. Sci. Technol. 2023, 46, 241–246. [Google Scholar]
No. | TFe | O | Ca | Mg | Si | Al | Na | Mn |
---|---|---|---|---|---|---|---|---|
S1 | 40.16 | 30.22 | 13.94 | 2.48 | 4.98 | 4.06 | 0.39 | 0.77 |
S2 | 50.68 | 28.79 | 7.87 | 2.28 | 4.40 | 3.05 | 0.45 | 0.48 |
Mineral | S1 | S2 | ||
---|---|---|---|---|
No. | Wt.% | Fe | Wt.% | Fe |
Low count rate | 0.02 | 0 | 0.02 | 0 |
Perovskite | 0.03 | 0 | 0.15 | 0 |
Spinel | 0.05 | 0 | 0.06 | 0 |
Iron-bearing silicate | 27.49 | 31.49 | 21.20 | 23.64 |
Cuspidine | 0.12 | 0 | 0.32 | 0 |
Dolomite | 0.13 | 0 | 0 | 0 |
Periclase | 0.17 | 0 | 0 | 0 |
Apatite | 0.21 | 0 | 0.01 | 0 |
Pyrrhotite | 0.44 | 0 | 0.15 | 0 |
Diopside | 1.16 | 0 | 0.09 | 0 |
Bicchulite | 3.24 | 0 | 2.22 | 0 |
Unknown mineral | 7.13 | 0 | 7.31 | 0 |
Iron | 17.6 | 20.16 | 64.48 | 71.91 |
Magnetite | 42.21 | 48.35 | 3.99 | 4.45 |
Pore space (area ratio) | 2.13 | 1.57 |
ZnO | Fe2O3 | CaO | SiO2 | Al2O3 |
---|---|---|---|---|
16.50 | 47.39 | 7.22 | 1.54 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, X.; Huang, L.; Yu, M.; Wang, Y.; Ke, Y.; Peng, C.; Yan, X.; Huang, Q.; Li, Y. Formation Mechanism of Deposits in Rotary Kiln during Steelmaking Dust Carbothermic Recycling. Separations 2024, 11, 137. https://doi.org/10.3390/separations11050137
Min X, Huang L, Yu M, Wang Y, Ke Y, Peng C, Yan X, Huang Q, Li Y. Formation Mechanism of Deposits in Rotary Kiln during Steelmaking Dust Carbothermic Recycling. Separations. 2024; 11(5):137. https://doi.org/10.3390/separations11050137
Chicago/Turabian StyleMin, Xiaobo, Luyu Huang, Maixin Yu, Yunyan Wang, Yong Ke, Cong Peng, Xu Yan, Qingyu Huang, and Yun Li. 2024. "Formation Mechanism of Deposits in Rotary Kiln during Steelmaking Dust Carbothermic Recycling" Separations 11, no. 5: 137. https://doi.org/10.3390/separations11050137
APA StyleMin, X., Huang, L., Yu, M., Wang, Y., Ke, Y., Peng, C., Yan, X., Huang, Q., & Li, Y. (2024). Formation Mechanism of Deposits in Rotary Kiln during Steelmaking Dust Carbothermic Recycling. Separations, 11(5), 137. https://doi.org/10.3390/separations11050137