Extraction of Copper from Copper Concentrate by Indigenous Association of Iron-Oxidizing Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ore Sample
2.2. Microorganisms and Culture Conditions
2.3. Morphology and SEM Images
2.4. Bioleaching Assays
2.5. Mineralogy and Geochemistry of Concentrates and Residues
3. Results and Discussion
3.1. Taxonomic Composition
3.2. SEM Micrograph
3.3. Influence of Pulp Density (PD) on Bioleaching of Copper Concentrate from Armanis Gold-Polymetallic Mine
3.4. Mineralogical Analysis of Feed Material and Residue after Bioleaching
3.5. Bioleaching of Armanis Copper Concentrate by Pure Cultures and Associations
3.6. Eh and pH Monitoring
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amar, A.; Massello, F.L.; Costa, C.S.; Castro, C.; Donati, E.R. Bioleaching of a chalcocite-dominant copper ore from Salta, Argentina, by mesophilic and thermophilic microorganisms. Minerals 2023, 13, 52. [Google Scholar] [CrossRef]
- Brar, K.K.; Magdouli, S.; Etteieb, S.; Zolfaghari, M.; Fathollahzadeh, H.; Calugaru, L.; Komtchou, S.P.; Tanabene, R.; Brar, S.K. Integrated bioleaching-electrometallurgy for copper recovery—A critical review. J. Clean. Prod. 2021, 291, 125257. [Google Scholar] [CrossRef]
- Yu, S.; Liao, R.; Yang, B.; Fang, C.; Wang, Z.; Liu, Y.; Wu, B.; Wang, J.; Qiu, G. Chalcocite (bio)hydrometallurgy—Current state, mechanism, and future directions: A review. Chin. J. Chem. Eng. 2022, 41, 109–120. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Boxall, N.J.; Gumulya, Y.; Khaleque, H.N.; Morris, C.; Bohu, T.; Cheng, K.Y.; Usher, K.M.; Lakaniemi, A.M. Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy 2018, 180, 7–25. [Google Scholar] [CrossRef]
- Mishra, S.; Panda, S.; Akcil, A.; Dembele, S. Biotechnological avenues in mineral processing: Fundamentals, applications and advances in bioleaching and bio-beneficiation. Miner. Process. Extr. Metall. Rev. 2022, 44, 22–51. [Google Scholar] [CrossRef]
- Nkuna, R.; Ijoma, G.N.; Matambo, T.S.; Chimwani, N. Accessing metals from low-grade ores and the environmental impact considerations: A review of the perspectives of conventional versus bioleaching strategies. Minerals 2022, 12, 506. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Yaghmaei, S.; Vossoughi, M.; Jafari, A.; Roostaazad, R.; Turunen, I. Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains. Hydrometallurgy 2007, 85, 59–65. [Google Scholar] [CrossRef]
- Deveci, H.; Akcil, A.; Alp, I. Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: Comparative importance of pH and iron. Hydrometallurgy 2004, 73, 293–303. [Google Scholar] [CrossRef]
- Liao, M.X.; Deng, T.L. Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach. Miner. Eng. 2004, 17, 17–22. [Google Scholar] [CrossRef]
- Qiu, M.Q.; Xiong, S.Y.; Zhang, W.M.; Wang, G.X. A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner. Eng. 2005, 18, 987–990. [Google Scholar] [CrossRef]
- Bosecker, K. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591–604. [Google Scholar] [CrossRef]
- Baba, A.; Ezekafor, E.; Adekola, F.; Ahmed, R.; Panda, S. Bio-oxidation of a low grade chalcopyrite ore by mixed culture of acidophilic bacteria. J. Ecobiotechnol. 2011, 3, 01–06. [Google Scholar]
- Vera, M.; Schippers, A.; Hedrich, S.; Sand, W. Progress in bioleaching: Fundamentals and mechanisms of microbial metal sulfide oxidation-part A. Appl. Microbiol. Biotechnol. 2022, 106, 6933–6952. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, D.E.; Johnson, D.B. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia. Microbiology 2007, 153, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Conić, V.T.; Rajčić Vujasinović, M.M.; Trujić, V.K.; Cvetkovski, V.B. Copper, zinc, and iron bioleaching from polymetallic sulphide concentrate. Trans. Nonferrous Met. Soc. China 2014, 24, 3688–3695. [Google Scholar] [CrossRef]
- Dopson, M.; Baker-Austin, C.; Koppineedi, P.R.; Bond, P.L. Growth in sulfidic mineral environments: Metal resistance mechanisms in acidophilic micro-organisms. Microbiology 2003, 149, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Dopson, M.; Holmes, D.S. Metal resistance in acidophilic microorganisms and its significance for biotechnologies. Appl. Microbiol. Biotechnol. 2014, 98, 8133–8144. [Google Scholar] [CrossRef] [PubMed]
- Quatrini, R.; Jedlicki, E.; Holmes, D.S. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J. Ind. Microbiol. Biotechnol. 2005, 32, 606–614. [Google Scholar] [CrossRef]
- Dong, Y.; Lin, H.; Xu, X.; Zhou, S. Bioleaching of different copper sulfides by Acidithiobacillus ferrooxidans and its adsorption on minerals. Hydrometallurgy 2013, 140, 42–47. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, L.; Xing, W.; Chen, P.; Zhang, Y.; Wang, W. Acidithiobacillus ferrooxidans and its potential application. Extremophiles 2018, 22, 563–579. [Google Scholar] [CrossRef]
- Coram, N.J.; Rawlings, D.E. Molecular relationship between two groups of the genus leptospirillum and finding that Leptospirillum ferriphilum sp. nov. dominates South African the commercial biooxidation tanks that operate at 40 °C. Appl. Environ. Microbial. 2002, 68, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Olson, G.; Brierly, J.; Brierly, C. Bioleaching review part B. Appl. Microbiol. Biotechnol. 2003, 63, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Karavaiko, G.; Dubinina, G.; Kondrat’eva, T. Lithotrophic microorganisms of the oxidative cycles of sulfur and iron. Microbiology 2006, 75, 512–545. [Google Scholar] [CrossRef]
- Bryant, R.D.; McGroarty, K.M.; Costerton, J.W. Isolation and characterization of a new acidophilic Thiobacillus species (T. albertis). Can. J. Microbiol. 1983, 23, 1159–1170. [Google Scholar] [CrossRef]
- Laishly, E.J.; Rae, K.; Dillman, A.M.; Bryant, R.D. Characterization of a new acidophilic Thiobacillus isolate (Thiobacillus capsulatus). Can. J. Microbiol. 1988, 34, 960–966. [Google Scholar] [CrossRef]
- Hallberg, K.B.; Johnson, D.B. Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol. 2001, 49, 37–84. [Google Scholar] [PubMed]
- Hallberg, K.B.; Lindström, E.B. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 1994, 140, 3451–3456. [Google Scholar] [CrossRef] [PubMed]
- Goebel, B.M.; Stackebrandt, E. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol. 1994, 60, 1614–1621. [Google Scholar] [CrossRef] [PubMed]
- Dopson, M.; Lindstrom, E.B. Analysis of Community Composition during Moderately Thermophilic Bioleaching of Pyrite, Arsenical pyrite, and Chalcopyrite. Microb. Ecol. 2004, 48, 19–28. [Google Scholar] [CrossRef]
- Dopson, M.; Lindstrom, E.B. Potential role of Thiobacillus caldus in Arsenopyrite Leaching. Appl. Environ. Microbiol. 1999, 65, 36–40. [Google Scholar] [CrossRef]
- Xia, L.; Liu, J.; Xiao, L.; Zeng, J.; Li, B.; Geng, M.; Qiu, G. Single and cooperative bioleaching of sphalerite by two kinds of bacteria—Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans. Trans. Nonferrous Met. Soc. China 2008, 18, 190–195. [Google Scholar] [CrossRef]
- Zeng, W.; Qiu, G.; Zhou, H.; Peng, J.; Chen, M.; Tan, S.N.; Chao, W.; Liu, X.; Zhang, Y. Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate. Bioresour. Technol. 2010, 101, 7068–7075. [Google Scholar] [CrossRef]
- Panda, S.; Pradhan, N.; Mohapatra, U.B.; Panda, S.K.; Rath, S.S.; Nayak, B.D.; Sukla, L.B.; Mishra, B.K. Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage. Front. Environ. Sci. Eng. China 2013, 7, 281–293. [Google Scholar] [CrossRef]
- Li, S.; Zhong, H.; Hu, Y.; Zhao, J.; He, Z.; Gu, G. Bioleaching of a low-grade nickel–copper sulfide by mixture of four thermophiles. Bioresour. Technol. 2014, 153, 300–306. [Google Scholar] [CrossRef]
- Panda, S.; Sanjay, K.; Sukla, L.B.; Pradhan, N.; Subbaiah, T.; Mishra, B.K.; Prasad, M.S.R.; Ray, S.K. Insights into heap bioleaching of lowgrade chalcopyrite ores: A pilot scale study. Hydrometallurgy 2012, 125–126, 157–165. [Google Scholar] [CrossRef]
- Panda, S.; Biswal, A.; Mishra, S.; Panda, P.K.; Pradhan, N.; Mohapatra, U.; Akcil, A. Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: A new concept of biohydrometallurgy. Hydrometallurgy 2015, 153, 98–105. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Tao, J.; Feng, X.; Zou, K.; Xiao, Y.; Liang, Y.; Yin, H.; Liu, X. Bioleaching of the mixed oxide-sulfide copper ore by artificial indigenous and exogenous microbial community. Hydrometallurgy 2017, 169, 41–46. [Google Scholar] [CrossRef]
- Bryan, C.G.; Joulian, C.; Spolaore, P.; El Achbouni, H.; Challan-Belval, S.; Morin, D.; d’Hugues, P. The efficiency of indigenous and designed consortia in bioleaching stirred tank reactors. Miner. Eng. 2011, 24, 1149–1156. [Google Scholar] [CrossRef]
- Giaveno, A.; Lavalle, L.; Chiacchiarini, P.; Donati, E. Bioleaching of zinc from low-grade complex sulphide ores in an airlift by isolated Leptospirillum ferrooxidans. Hydrometallurgy 2007, 89, 117–126. [Google Scholar] [CrossRef]
- Wakeman, K.; Auvinen, H.; Johnson, D.B. Microbiological and geochemical dynamics in simulated heap leaching of a polymetallic sulfide ore. Biotechnol. Bioeng. 2008, 101, 739–750. [Google Scholar] [CrossRef]
- Watling, H. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review. Hydrometallurgy 2006, 84, 81–108. [Google Scholar] [CrossRef]
- Sajjad, W.; Zheng, G.; Zhang, G.; Ma, X.; Xu, W.; Khan, S. Bioleaching of copper- and zinc-bearing ore using consortia of indigenous iron-oxidizing bacteria. Extremophiles 2018, 22, 851–863. [Google Scholar] [CrossRef]
- Okibe, N.; Johnson, D.B. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH controlled bioreactors: Significance of microbial interactions. Biotechnol. Bioeng. 2004, 87, 574–583. [Google Scholar] [CrossRef]
- Yin, S.; Wang, L.; Kabwe, E.; Chen, X.; Yan, R.; An, K.; Zhang, L.; Wu, A. Copper Bioleaching in China: Review and Prospect. Minerals 2018, 8, 32. [Google Scholar] [CrossRef]
- Roberto, F.F.; Schippers, A. Progress in bioleaching: Part B, applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 2022, 106, 5913–5928. [Google Scholar] [CrossRef]
- Mackintosh, M.E. Nitrogen fixation by Thiobacillus ferrooxidans. J. Gen. Microbiol. 1987, 105, 215–218. [Google Scholar] [CrossRef]
- Erkmen, O. Parctice 4—Most probable number technique. In Microbiological Analysis of Foods and Food Processing Environments; Academic Press: Cambridge, MA, USA, 2022; pp. 31–37. [Google Scholar] [CrossRef]
- Lucchesi, C.A.; Hirn, C.F. EDTA Titration of total Iron in Iron(II) and Iron(III) mixtures. Application to Iron driers. Anal. Chem. 1960, 32, 1191–1193. [Google Scholar] [CrossRef]
- Fandrich, R.; Gu, Y.; Burrows, D.; Moeller, K. Modern SEM-based mineral liberation analysis. Int. J. Miner. Process. 2007, 84, 310–320. [Google Scholar] [CrossRef]
- Pirrie, D.; Rollinson, G.K. Unlocking the applications of automated mineral analysis. Geol. Today 2011, 27, 226–235. [Google Scholar] [CrossRef]
- Olubambi, P.A.; Ndlovu, S.; Potgieter, J.H.; Borode, J.O. Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulphide ores. Trans. Nonferrous Met. Soc. China 2008, 18, 1234–1246. [Google Scholar] [CrossRef]
- Rouchalova, D.; Rouchalova, K.; Janakova, I.; Cablik, V.; Janstova, S. Bioleaching of Iron, Copper, Lead, and Zinc from the Sludge Mining Sediment at Different Particle Sizes, pH, and Pulp Density Using Acidithiobacillus ferrooxidans. Minerals 2020, 10, 1013. [Google Scholar] [CrossRef]
- Makita, M.; Esperón, M.; Pereyra, B.; López, A.; Orrantia, E. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans. BMC Biotechnol. 2004, 4, 22. [Google Scholar] [CrossRef]
- Abhilash; Mehta, K.D.; Pandey, B.D. Bacterial leaching kinetics for copper dissolution from a lowgrade Indian chalcopyrite ore. Rem Rev. Esc. Minas 2013, 66, 245–250. [Google Scholar] [CrossRef]
- Ciftci, H.; Akcil, A. Effect of biooxidation conditions on cyanideconsumption and gold recovery from a refractory flotation gold concentrate. Hydrometallurgy 2010, 104, 142–149. [Google Scholar] [CrossRef]
- Yang, Y.; Diao, M.; Liu, K.; Qian, L.; Nguyen, A.V.; Qiu, G. Column bioleaching of low-grade copper ore by Acidithiobacillus ferrooxidans in pure and mixed cultures with a heterotrophic acidophile Acidiphilium sp. Hydrometallurgy 2013, 131, 93–98. [Google Scholar] [CrossRef]
- Utimura, S.K.; Rosario, C.G.A.; Botelho, A.B.; Tenório, J.A.S.; Espinosa, D.C.R. Bioleaching Process for Metal Recovery from Waste Materials. In Energy Technol., 2nd ed.; Zhang, L., Drelich, J.W., Neelameggham, N.R., Guillen, D.P., Haque, N., Zhu, J., Sun, Z., Wang, T., Howarter, J.A., Tesfaye, F., et al., Eds.; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2017; pp. 283–290. [Google Scholar]
- Deng, Y.; Liu, X.D.; Liu, H.W.; Jiang, H.D.; Xu, L.F.; Xiao, Y.H.; Liang, Y.L. Bioleaching of cadmium from contaminated paddy felds by consortium of autotrophic and indigenous cadmium-tolerant bacteria. Solid State Phenom. 2017, 262, 617–621. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, H.; Zeng, W.; Liang, Y.; Liu, Y.; Baba, N.; Qiu, G.; Shen, L.; Fu, X.; Liu, X. The effect of the introduction of exogenous strain Acidithiobacillus thiooxidans A01 on functional gene expression, structure and function of indigenous consortium during pyrite bioleaching. Bioresour. Technol. 2011, 102, 8092–8098. [Google Scholar] [CrossRef]
- Hiroyoshi, N.; Hirota, M.; Hirajima, T.; Tsunekawa, M. A case of ferrous sulfate addition enhancing chalcopyrite leaching. Hydrometallurgy 1997, 47, 37–45. [Google Scholar] [CrossRef]
- Third, K.A.; Cord-Ruwisch, R.; Watling, H.R. Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite. Biotechnol. Bioeng. 2002, 78, 433–441. [Google Scholar] [CrossRef]
- Dixon, D.G.; Mayne, D.D.; Baxter, K.G. Galvanox™—A novel process for recovery of copper from primary copper concentrates. Can. Metall. Q. 2008, 47, 327–336. [Google Scholar] [CrossRef]
- Nazari, G.; Dixon, D.G.; Dreisinger, D.B. Enhancing the kinetics of chalcopyrite leaching in the Galvanox™ process. Hydrometallurgy 2011, 105, 251–258. [Google Scholar] [CrossRef]
- Sandström, Å.; Shchukarev, A.; Paul, J. XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential. Miner. Eng. 2005, 18, 505–515. [Google Scholar] [CrossRef]
- Petersen, J.; Dixon, D.G. Competitive bioleaching of pyrite and chalcopyrite. Hydrometallurgy 2006, 83, 40–49. [Google Scholar] [CrossRef]
- Córdoba, E.; Munoz, J.; Blázquez, M.; González, F.; Ballester, A. Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria. Hydrometallurgy 2008, 93, 106–115. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, W.; Qiu, G.; Chen, X.; Zhou, H. A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite concentrate at high pulp density. Appl. Environ. Microbiol. 2014, 80, 741–750. [Google Scholar] [CrossRef]
- Fu, K.; Ning, Y.; Chen, S.; Wang, Z. Bioleaching of different copper sulphide minerals and their physicochemical properties dependence. Miner. Process. Extr. Metall. 2016, 125, 1–4. [Google Scholar] [CrossRef]
Fe [%] | SD | Cu [%] | SD | Pb [%] | SD | Zn [%] | SD | As [μg/g] | SD | Mo [μg/g] | SD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentrate | 19.59 | 0.21 | 12.84 | 0.20 | 10.45 | 0.21 | 8.07 | 0.15 | 1630.77 | 536.36 | 104.60 | 12.43 |
Residue 1.0% PD | 21.28 | 0.23 | 10.54 | 0.16 | 12.01 | 0.23 | 2.69 | 0.05 | 3720.46 | 458.17 | 118.38 | 11.88 |
Residue 2.5% PD | 20.2 | 0.24 | 12.09 | 0.19 | 14.03 | 0.28 | 0.67 | 0.02 | 3886.42 | 497.20 | 148.83 | 13.31 |
Residue 5.0% PD | 21.49 | 0.25 | 10.75 | 0.17 | 14.10 | 0.27 | 0.34 | 0.01 | 4022.12 | 490.61 | 149.71 | 13.15 |
Mineral | Concentrate | Residues | ||
---|---|---|---|---|
1.0% PD | 2.5% PD | 5.0% PD | ||
wt.% | ||||
Chalcopyrite (CuFeS2) | 37.1 (0.04) | 31.1 (0.06) | 32.4 (0.04) | 30.0 (0.04) |
Galena (PbS) | 11.9 (0.07) | 15.2 (0.06) | 15.7 (0.06) | 16.5 (0.08) |
Pyrite (FeS2) | 21.6 (0.07) | 19.1 (0.05) | 16.7 (0.06) | 18.1 (0.04) |
Sphalerite ((Zn,Fe)S) | 14.4 (0.05) | 5.2 (0.15) | 0.7 (0.26) | 0.3 (0.45) |
Jarosite (KFe3(SO4)2(OH)6) | 13.5 (0.04) | 15.6 (0.03) | 19.8 (0.04) | |
Orthoclase (KAlSi3O8) | 3.3 (0.09) | 4.5 (0.15) | 3.9 (0.52) | 3.2 (0.25) |
Quartz (SiO2) | 11.2 (0.04) | 11.4 (0.05) | 14.7 (0.04) | 11.7 (0.03) |
∑ accessory minerals | 0.1 (1.15) | |||
unknown | 0.4 (0.10) | 0.3 (0.02) | 0.4 (0.09) |
Recovery (%) | |||
---|---|---|---|
Mineral | PD 1.0% | PD 2.5% | PD 5.0% |
Chalcopyrite (CuFeS2) | 16.2 | 12.7 | 19.1 |
Galena (PbS) | −27.7 | −31.9 | −38.6 |
Pyrite (FeS2) | 11.6 | 22.7 | 16.2 |
Sphalerite ((Zn,Fe)S) | 63.9 | 95.1 | 97.9 |
Free Surface Area of Chalcopyrite | 0% | 0% < x ≤ 20% | 20% < x ≤ 40% | 40% < x ≤ 60% | 60% < x ≤ 80% | 80% < x ≤ 100% |
---|---|---|---|---|---|---|
locked | not liberated | minor liberated | medium liberated | mainly liberated | liberated | |
Cu Concentrate | 0.21 | 5.84 | 14.81 | 15.75 | 18.95 | 44.43 |
Bioleaching residue, PD 1.0% | 0.19 | 6.47 | 5.35 | 23.97 | 29.91 | 34.11 |
Bioleaching residue, PD 2.5% | 0.63 | 12.02 | 28.12 | 22.68 | 15.80 | 20.75 |
Bioleaching residue, PD 5.0% | 0.38 | 8.60 | 21.16 | 26.59 | 15.97 | 27.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vardanyan, A.; Zhang, R.; Khachatryan, A.; Melkonyan, Z.; Hovhannisyan, A.; Willscher, S.; Kamradt, A.; Jost, M.; Zhang, Y.; Wang, C.; et al. Extraction of Copper from Copper Concentrate by Indigenous Association of Iron-Oxidizing Bacteria. Separations 2024, 11, 124. https://doi.org/10.3390/separations11040124
Vardanyan A, Zhang R, Khachatryan A, Melkonyan Z, Hovhannisyan A, Willscher S, Kamradt A, Jost M, Zhang Y, Wang C, et al. Extraction of Copper from Copper Concentrate by Indigenous Association of Iron-Oxidizing Bacteria. Separations. 2024; 11(4):124. https://doi.org/10.3390/separations11040124
Chicago/Turabian StyleVardanyan, Arevik, Ruiyong Zhang, Anna Khachatryan, Zaruhi Melkonyan, Arshavir Hovhannisyan, Sabine Willscher, Andreas Kamradt, Manuel Jost, Yimeng Zhang, Can Wang, and et al. 2024. "Extraction of Copper from Copper Concentrate by Indigenous Association of Iron-Oxidizing Bacteria" Separations 11, no. 4: 124. https://doi.org/10.3390/separations11040124
APA StyleVardanyan, A., Zhang, R., Khachatryan, A., Melkonyan, Z., Hovhannisyan, A., Willscher, S., Kamradt, A., Jost, M., Zhang, Y., Wang, C., & Vardanyan, N. (2024). Extraction of Copper from Copper Concentrate by Indigenous Association of Iron-Oxidizing Bacteria. Separations, 11(4), 124. https://doi.org/10.3390/separations11040124