Comparison of the Efficiency of Deep Eutectic and Organic Solvents in the Extraction of Phytochemicals from Cannabis sativa L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Reagents, and Instruments
2.2. DES Preparation and Properties Determination
2.3. Extraction Using DES
2.4. Extraction Using Organic Solvents
2.5. Characterization of Extract Using LC/MS
2.6. Characterization of Extracts Using GC/MS
3. Results
3.1. Properties of DESs
3.2. Comparison of Extract Color
3.3. Targeted Analysis of Industrial Hemp Extracts
3.3.1. Analysis of Cannabinoids
3.3.2. Analysis of Terpenes
3.4. Untargeted Analysis of Hemp Extracts
3.4.1. Univariate Statistical Analysis of Cannabinoids
3.4.2. Multivariate Statistical Analysis of Cannabinoids
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radwan, M.M.; Chandra, S.; Gul, S.; Elsohly, M.A. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef] [PubMed]
- Micalizzi, G.; Vento, F.; Alibrando, F.; Donnarumma, D.; Dugo, P.; Mondello, L. Cannabis Sativa L.: A Comprehensive Review on the Analytical Methodologies for Cannabinoids and Terpenes Characterization. J. Chromatogr. A 2021, 1637, 461864. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A Comprehensive Ethnopharmacological Review of a Medicinal Plant with a Long History. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Nahar, L.; Uddin, S.J.; Alam, A.; Sarker, S.D. Extraction of Naturally Occurring Cannabinoids: An Update. Phytochem. Anal. 2020, 32, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Isidore, E.; Karim, H.; Ioannou, I. Extraction of Phenolic Compounds and Terpenes from Cannabis sativa L. By-Products: From Conventional to Intensified Processes. Antioxidants 2021, 10, 942. [Google Scholar] [CrossRef] [PubMed]
- Mazzara, E.; Torresi, J.; Fico, G.; Papini, A.; Kulbaka, N.; Dall’acqua, S.; Sut, S.; Garzoli, S.; Mustafa, A.M.; Cappellacci, L.; et al. A Comprehensive Phytochemical Analysis of Terpenes, Polyphenols and Cannabinoids, and Micromorphological Characterization of 9 Commercial Varieties of Cannabis sativa L. Plants 2022, 11, 891. [Google Scholar] [CrossRef] [PubMed]
- Kornpointner, C.; Sainz Martinez, A.; Schnürch, M.; Halbwirth, H.; Bica-Schröder, K. Combined Ionic Liquid and Supercritical Carbon Dioxide Based Dynamic Extraction of Six Cannabinoids from: Cannabis Sativa L. Green Chem. 2021, 23, 10079–10089. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Wang, Y.; Yi, Y.; Li, F.; Tan, Z. Ionic Liquids Simultaneously Used as Accelerants, Stabilizers and Extractants for Improving the Cannabidiol Extraction from Industrial Hemp. Ind. Crops Prod. 2020, 155, 112796. [Google Scholar] [CrossRef]
- Lim, J.R.; Chua, L.S.; Mustaffa, A.A. Ionic Liquids as Green Solvent and Their Applications in Bioactive Compounds Extraction from Plants. Process Biochem. 2022, 122, 292–306. [Google Scholar] [CrossRef]
- Mcpartland, J.; Sheikh, Z. A Review of Cannabis sativa-Based Insecticides, Miticides, and Repellents. J. Entomol. Zool. Stud. 2018, 6, 1288–1299. [Google Scholar]
- Filly, A.; Fabiano-Tixier, A.S.; Louis, C.; Fernandez, X.; Chemat, F. Water as a Green Solvent Combined with Different Techniques for Extraction of Essential oil from Lavender Flowers. Comptes Rendus Chim. 2016, 19, 707–717. [Google Scholar] [CrossRef]
- Dheyab, A.S.; Bakar, M.F.A.; Alomar, M.; Sabran, S.F.; Hanafi, A.F.M.; Mohamad, A. Deep Eutectic Solvents (DESs) as Green Extraction Media of Beneficial Bioactive Phytochemicals. Separations 2021, 8, 176. [Google Scholar] [CrossRef]
- Azizi, N.; Dezfooli, S.; Hashemi, M.M. A Sustainable Approach to the Ugi Reaction in Deep Eutectic Solvent. Comptes Rendus Chim. 2013, 16, 1098–1102. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Su, J.; Chu, X.; Wang, X. A Green Method of Extracting and Recovering Flavonoids from Acanthopanax Senticosus Using Deep Eutectic Solvents. Molecules 2022, 27, 923. [Google Scholar] [CrossRef]
- Gao, M.Z.; Cui, Q.; Wang, L.T.; Meng, Y.; Yu, L.; Li, Y.Y.; Fu, Y.J. A Green and Integrated Strategy for Enhanced Phenolic Compounds Extraction from Mulberry (Morus alba L.) Leaves by Deep Eutectic Solvent. Microchem. J. 2020, 154, 104598. [Google Scholar] [CrossRef]
- Naik, P.K.; Kundu, D.; Bairagya, P.; Banerjee, T. Phase Behavior of Water-Menthol Based Deep Eutectic Solvent-Dodecane System. Chem. Thermodyn. Therm. Anal. 2021, 3–4, 100011. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.Z.; Marrucho, I.M. Menthol-Based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustain. Chem. Eng. 2015, 3, 2469–2477. [Google Scholar] [CrossRef]
- Tiago, F.J.; Paiva, A.; Matias, A.A.; Duarte, A.R.C. Extraction of Bioactive Compounds From Cannabis sativa L. Flowers and/or Leaves Using Deep Eutectic Solvents. Front. Nutr. 2022, 9, 892314. [Google Scholar] [CrossRef] [PubMed]
- Wongwailikhit, K.; Ruangdech, J. Comparison of the Two Common Solvents for THC and CBD Extractions. In Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering, Prague, Czech Republic, 2–4 August 2021; Avestia Publishing: Orleans, LA, Canada, 2021. [Google Scholar]
- Brighenti, V.; Pellati, F.; Steinbach, M.; Maran, D.; Benvenuti, S. Development of a New Extraction Technique and HPLC Method for the Analysis of Non-Psychoactive Cannabinoids in Fibre-Type Cannabis sativa L. (Hemp). J. Pharm. Biomed. Anal. 2017, 143, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Sagili, S.U.K.R.; Addo, P.W.; Macpherson, S.; Shearer, M.; Taylor, N.; Paris, M.; Lefsrud, M.; Orsat, V. Effects of Particle Size, Solvent Type, and Extraction Temperature on the Extraction of Crude Cannabis Oil, Cannabinoids, and Terpenes. ACS Food Sci. Technol. 2023, 3, 1203–1215. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, A.; Zhang, Y.; Duan, S. Efficient Extraction of Flavonoids from Lotus Leaves by Ultrasonic-Assisted Deep Eutectic Solvent Extraction and Its Evaluation on Antioxidant Activities. Separations 2023, 10, 65. [Google Scholar] [CrossRef]
- Namdar, D.; Mazuz, M.; Ion, A.; Koltai, H. Variation in the Compositions of Cannabinoid and Terpenoids in Cannabis sativa Derived from Inflorescence Position along the Stem and Extraction Methods. Ind. Crops Prod. 2018, 113, 376–382. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Santini, G.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; Canale, A.; Maggi, F. The Essential Oil from Industrial Hemp (Cannabis sativa L.) by-Products as an Effective Tool for Insect Pest Management in Organic Crops. Ind. Crops Prod. 2018, 122, 308–315. [Google Scholar] [CrossRef]
- Sillero, L.; Prado, R.; Welton, T.; Labidi, J. Energy and Environmental Analysis of Flavonoids Extraction from Bark Using. Clean. Prod. 2021, 308, 127286. [Google Scholar] [CrossRef]
- Liu, F.; Wang, D.; Liu, W.; Wang, X.; Bai, A.; Huang, L. Ionic Liquid-Based Ultrahigh Pressure Extraction of Five Tanshinones from Salvia miltiorrhiza Bunge. Sep. Purif. Technol. 2013, 110, 86–92. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Maciel Filho, R. Are Ionic Liquids Eco-Friendly? Renew. Sustain. Energy Rev. 2022, 157, 112039. [Google Scholar] [CrossRef]
- Thamke, V.; Singh, P.; Pal, S.; Chaudhary, M.; Kumari, K.; Bahadur, I.; Varma, R.S. Current Toxicological Insights of Ionic Liquids on Various Environmental Living Forms. J. Environ. Chem. Eng. 2022, 10, 107303. [Google Scholar] [CrossRef]
HBA | HBD | Molar Ratio | Color | pH | Density (g/mL) | Viscosity (cP) | Polarity |
---|---|---|---|---|---|---|---|
M | LA | 2:1 | Transparent colorless | 5.61 | 0.85 | 10.24 | Nonpolar |
CA | EG | 1:4 | Transparent colorless | 1.23 | 1.22 | 102.39 | Polar |
CCL | EG | 1:2 | Yellowish | 5.05 | 1.07 | 20.09 | Medium polarity |
CCL | U | 1:2 | Transparent colorless | 8.95 | 1.13 | 250.07 | Medium polarity |
CCL | G | 1:2 | Yellowish | 5.03 | 1.11 | 196.45 | Medium Polarity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanyairita, G.G.; Mortley, D.G.; Boersma, M.; Collier, W.E. Comparison of the Efficiency of Deep Eutectic and Organic Solvents in the Extraction of Phytochemicals from Cannabis sativa L. Separations 2024, 11, 106. https://doi.org/10.3390/separations11040106
Kanyairita GG, Mortley DG, Boersma M, Collier WE. Comparison of the Efficiency of Deep Eutectic and Organic Solvents in the Extraction of Phytochemicals from Cannabis sativa L. Separations. 2024; 11(4):106. https://doi.org/10.3390/separations11040106
Chicago/Turabian StyleKanyairita, Getrude G., Desmond G. Mortley, Melissa Boersma, and Willard E. Collier. 2024. "Comparison of the Efficiency of Deep Eutectic and Organic Solvents in the Extraction of Phytochemicals from Cannabis sativa L." Separations 11, no. 4: 106. https://doi.org/10.3390/separations11040106
APA StyleKanyairita, G. G., Mortley, D. G., Boersma, M., & Collier, W. E. (2024). Comparison of the Efficiency of Deep Eutectic and Organic Solvents in the Extraction of Phytochemicals from Cannabis sativa L. Separations, 11(4), 106. https://doi.org/10.3390/separations11040106