Retention Mechanisms of Basic Compounds in Liquid Chromatography with Sodium Dodecyl Sulfate and 1-Hexyl-3-Methylimidazolium Chloride as Mobile Phase Reagents in Two C18 Columns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Mobile Phases
2.2. Chromatographic Instrumentation and Columns
3. Results and Discussion
3.1. Retention Behaviour of β-Adrenoceptor Antagonists with Mobile Phases Containing Ionic Additives
3.1.1. Effect on Retention of Mobile Phases Containing Only SDS or [C6C1IM][Cl]
3.1.2. Effect on Retention of Mobile Phases Containing Both SDS and [C6C1IM][Cl]
3.2. Solute–Stationary Phase and Solute–Mobile Phase Interactions
3.3. Estimation of Hydrophobic and Ionic Interactions
- (i)
- The hydrocarbon chains of the stationary phase, which provide a site for hydrophobic interactions.
- (ii)
- The C18 chains modified through the adsorption of anionic SDS monomers and IL cations, enabling ionic interactions with the cationic solutes.
3.4. Separation of β-Adrenoceptor Antagonists with Aqueous Mobile Phases in RPLC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
β-Adrenoceptor Antagonists | Structure | pKa a | log Po/w a |
---|---|---|---|
Atenolol | 9.17 | 0.25 | |
Carteolol | 9.24 | 1.49 | |
Acebutolol | 9.24 | 1.83 | |
Metoprolol | 9.31 | 1.90 | |
Oxprenolol | 9.08 | 2.30 | |
Propranolol | 9.25 | 3.41 |
References
- Peng, L.Q.; Cao, J.; Du, L.J.; Zhang, Q.D.; Shi, Y.T.; Xu, J.J. Analysis of phenolic acids by ionic liquid-in-water microemulsion liquid chromatography coupled with ultraviolet and electrochemical detector. J. Chromatogr. A 2017, 1499, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Pankajkumar-Patel, N.; Peris-García, E.; Ruiz-Ángel, M.J.; García-Alvarez-Coque, M.C. Interactions of basic compounds with ionic liquids used as oils in microemulsion liquid chromatography. J. Chromatogr. A 2022, 1674, 463142. [Google Scholar] [CrossRef] [PubMed]
- García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J.; Carda-Broch, S. Micellar liquid Chromatography: Method Development and Applications. In Analytical Separation Science Series; Anderson, J.L., Berthod, A., Pino, V., Stalcup, A., Eds.; Wiley-VCH: New York, NY, USA, 2015; Volume 2, pp. 407–460. [Google Scholar]
- Berthod, A.; García-Alvarez-Coque, M.C. Micellar Liquid Chromatography. In Chromatographic Science Series; Cazes, J., Ed.; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Wang, J.; Qiao, J.Q.; Zheng, W.J.; Lian, H.Z. Effect of ionic liquids as mobile phase additives on retention behaviors of G-quadruplexes in reversed-phase high performance liquid chromatography. J. Chromatogr. A 2024, 1715, 464604. [Google Scholar] [CrossRef] [PubMed]
- Axente, R.E.; Stan, M.; Chitescu, C.L.; Nitescu, V.G.; Vlasceanu, A.M.; Baconi, D.L. Application of ionic liquids as mobile phase additives for simultaneous analysis of nicotine and its metabolite cotinine in human plasma by HPLC-DAD. Molecules 2023, 28, 1563. [Google Scholar] [CrossRef]
- Treder, N.; Olędzka, I.; Roszkowska, A.; Kowalski, P.; Bączek, T.; Plenis, A. Practical and theoretical considerations of the effects of ionic liquids on the separation properties of phenyl-based stationary phases in reversed-phase liquid chromatography. Michrochem. J. 2022, 178, 107396. [Google Scholar] [CrossRef]
- Sun, P.; Armstrong, D.W. Ionic liquids in analytical chemistry. Anal. Chim. Acta 2010, 661, 1–16. [Google Scholar] [CrossRef]
- Domańska, U. General review of ionic liquids and their properties. In Ionic Liquids in Chemical Analysis; Koel, M., Ed.; CRC Press: New York, NY, USA, 2009; pp. 1–71. [Google Scholar]
- Buettnera, C.S.; Cognignia, A.; Schröder, C.; Bica-Schröder, K. Surface-active ionic liquids. J. Mol. Liq. 2022, 347, 118160. [Google Scholar] [CrossRef]
- Brown, P.; Butts, C.; Eastoe, J.; Fermin, D.; Grillo, I.; Lee, H.-C.; Parke, D. Anionic surfactant ionic liquids with 1-butyl-3-methyl-imidazolium cations: Characterization and application. Langmuir 2012, 28, 2502–2509. [Google Scholar] [CrossRef]
- Berthod, A.; Ruiz-Angel, M.J.; Huguet, S. Non molecular solvents in separation methods: The dual nature of room temperature ionic liquids. Anal. Chem. 2005, 77, 4071–4080. [Google Scholar] [CrossRef]
- Tereba-Mamani, C.J.; Blázquez-Mateu, M.; Ruiz-Angel, M.J.; García-Alvarez-Coque, M.C. The role of the cation and anion in aqueous liquid chromatography with sodium dodecyl sulphate and imidazolium-based ionic liquids as mobile phase reagents. Anal. Chim. Acta 2024, 1318, 342942. [Google Scholar] [CrossRef]
- Tereba-Mamani, C.J.; Janczuk, M.A.; Ruiz-Angel, M.J.; García-Alvarez-Coque, M.C. Aqueous liquid chromatography with mobile phases of sodium dodecyl sulphate and ionic liquid. J. Chromatogr. A 2023, 1689, 463740. [Google Scholar] [CrossRef] [PubMed]
- Ubeda-Torres, M.T.; Ortiz-Bolsico, C.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Gaining insight in the behaviour of imidazolium-based ionic liquids as additives in reversed-phase liquid chromatography for the analysis of basic compounds. J. Chromatogr. A 2015, 1380, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Angel, M.J.; Carda-Broch, S.; Torres-Lapasió, J.R.; García-Alvarez-Coque, M.C. Retention mechanisms for basic drugs in the submicellar and micellar reversed-phase liquid chromatography modes. Anal. Chem. 2008, 80, 9705–9713. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.P.; May, W.E. Optimization of secondary chemical equilibria in liquid chromatography: Theory and verification. Anal. Chem. 1987, 59, 102–109. [Google Scholar] [CrossRef]
- Olives, A.I.; González-Ruiz, V.; Martin, M.A. Sustainable and eco-friendly alternatives for liquid chromatographic analysis. ACS Sust. Chem. Eng. 2017, 5, 5618–5634. [Google Scholar] [CrossRef]
- Treder, N.; Oledzka, I.; Roszkowska, A.; Baczek, T.; Plenis, A. Control of retention mechanisms on an octadecyl-bonded silica column using ionic liquid-based mobile phase in analysis of cytostatic drugs by liquid chromatography. J. Chromatogr. A 2021, 1651, 462257. [Google Scholar] [CrossRef]
- Mehvar, R.; Brocks, D.R. Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans. J. Pharm. Sci. 2001, 4, 185–200. [Google Scholar]
- Torres-Lapasió, J.R. MICHROM Software; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Torres-Lapasió, J.R.; García-Alvarez-Coque, M.C.; Baeza-Baeza, J.J. Global treatment of chromatographic data with MICHROM. Anal. Chim. Acta 1997, 348, 187–196. [Google Scholar] [CrossRef]
- Ruiz-Angel, M.J.; García-Alvarez-Coque, M.C. Micellar liquid chromatography: How to start. LC-GC Eur. 2008, 21, 420–429. [Google Scholar]
- Peris-García, E.; García-Alvarez-Coque, M.C.; Carda-Broch, S.; Ruiz-Angel, M.J. Effect of buffer nature and concentration on the chromatographic performance of basic compounds in the absence and presence of 1-hexyl-3-methylimidazolium chloride. J. Chromatogr. A 2019, 1602, 397–408. [Google Scholar] [CrossRef]
- Arunyanart, M.; Cline-Love, L.J. Model for micellar effects on liquid chromatography capacity factors and for determination of micelle-solute equilibrium constants. Anal. Chem. 1984, 56, 1557–1561. [Google Scholar] [CrossRef]
- Armstrong, D.W.; Nome, F. Partitioning behavior of solutes eluted with micellar mobile phases in liquid chromatography. Anal. Chem. 1981, 53, 1662–1666. [Google Scholar] [CrossRef]
- Ruiz-Angel, M.J.; Peris-García, E.; García-Alvarez-Coque, M.C. Reversed-phase liquid chromatography with mixed micellar mobile phases of Brij-35 and sodium dodecyl sulphate: A method for the analysis of basic compounds. Green Chem. 2015, 17, 3561–3570. [Google Scholar] [CrossRef]
- Fernández-Navarro, J.J.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. The role of the dual nature of ionic liquids in the reversed-phase liquid chromatographic separation of basic drugs. J. Chromatogr. A 2011, 1218, 398–407. [Google Scholar] [CrossRef]
- Sokolowski, A.; Wahlund, K.G. Peak tailing and retention behaviour of tricyclic antidepressant amines and related hydrophobic ammonium compounds in reversed-phase ion-pair liquid chromatography on alkyl-bonded phases. J. Chromatogr. A 1980, 189, 299–316. [Google Scholar] [CrossRef]
- Nahum, A.; Horváth, C. Surface silanols in silica-bonded hydrocarbonaceous stationary phases: I. Dual retention mechanism in reversed-phase chromatography. J. Chromatogr. 1981, 203, 53–63. [Google Scholar] [CrossRef]
- Bij, K.E.; Horváth, C.; Melander, W.R.; Nahum, A. Surface silanols in silica-bonded hydrocarbonaceous stationary phases: II. Irregular retention behavior and effect of silanol masking. J. Chromatogr. 1981, 203, 65–84. [Google Scholar] [CrossRef]
- Carda-Broch, S.; Berthod, A. pH dependence of the hydrophobicity of beta-blocker amine compounds measured by counter-current chromatography. J. Chromatogr. A 2003, 995, 55–66. [Google Scholar] [CrossRef]
Compound | 0.005 M [C6C1IM][Cl] | 0.01 M [C6C1IM][Cl] | ||
---|---|---|---|---|
KAS | KAM | KAS | KAM | |
Acebutolol | 18.3 ± 2.3 | 15.1 ± 2.1 | 16 ± 4 | 17 ± 5 |
Atenolol | 9.4 ± 0.7 | 11.6 ± 1.1 | 6.8 ± 0.9 | 10.6 ± 1.7 |
Carteolol | 11.8 ± 1.0 | 9.6 ± 1.0 | 8.4 ± 1.2 | 8.8 ± 1.6 |
Metoprolol | 39 ± 5 | 12.7 ± 1.7 | 32 ± 6 | 14 ± 3 |
Oxprenolol | 69 ± 6 | 11.8 ± 1.3 | 49 ± 6 | 10.7 ± 1.5 |
Propranolol | 186 ± 16 | 23.6 ± 2.1 | 119 ± 6 | 17.9 ± 1.0 |
0.02 M [C6C1IM][Cl] | 0.03 M [C6C1IM][Cl] | |||
KAS | KAM | KAS | KAM | |
Acebutolol | 50 ± 70 | 80 ± 110 | – | – |
Atenolol | 8 ± 4 | 20 ± 9 | 13 ± 5 | 40 ± 15 |
Carteolol | 12 ± 6 | 21 ± 12 | 30 ± 40 | 80 ± 100 |
Metoprolol | 38 ± 14 | 23 ± 9 | 51 ± 15 | 39 ± 12 |
Oxprenolol | 35 ± 4 | 10.0 ± 1.5 | 33 ± 5 | 12.5 ± 2.3 |
Propranolol | 49 ± 4 | 6.5 ± 0.8 | 34 ± 3 | 5.5 ± 0.7 |
Compound | 0.005 M [C6C1IM][Cl] | 0.01 M [C6C1IM][Cl] | ||
---|---|---|---|---|
KAS | KAM | KAS | KAM | |
Acebutolol | 27 ± 3 | 17.8 ± 2.4 | 23 ± 6 | 19 ± 5 |
Atenolol | 12.1 ± 1.0 | 13.8 ± 1.3 | 8.4 ± 1.4 | 11.4 ± 2.2 |
Carteolol | 15.6 ± 1.4 | 12.1 ± 1.2 | 11.4 ± 1.8 | 10.9 ± 2.0 |
Metoprolol | 50 ± 5 | 17.1 ± 2.0 | 40 ± 8 | 17 ± 4 |
Oxprenolol | 79 ± 6 | 17.3 ± 1.4 | 53 ± 7 | 14.1 ± 2.0 |
Propranolol | 220 ± 40 | 34.0 ± 2.1 | 130 ± 170 | 23.1 ± 1.8 |
0.02 M [C6C1IM][Cl] | 0.03 M [C6C1IM][Cl] | |||
KAS | KAM | KAS | KAM | |
Acebutolol | 50 ± 60 | 60 ± 70 | – | – |
Atenolol | 10 ± 5 | 19 ± 9 | 16 ± 6 | 39 ± 16 |
Carteolol | 15 ± 8 | 22 ± 13 | 40 ± 40 | 80 ± 90 |
Metoprolol | 46 ± 18 | 27 ± 11 | 70 ± 30 | 49 ± 18 |
Oxprenolol | 37 ± 5 | 12 ± 2 | 35 ± 6 | 15 ± 3 |
Propranolol | 50 ± 30 | 7.8 ± 1.0 | 40 ± 70 | 6.6 ± 0.9 |
Compound | Without IL | 0.005 M [C6C1IM][Cl] | 0.01 M [C6C1IM][Cl] | |||
---|---|---|---|---|---|---|
m | R2 | m | R2 | m | R2 | |
Acebutolol | −1.07 ± 0.08 | 0.9899 | −0.613 ± 0.022 | 0.9973 | −0.67 ± 0.04 | 0.9942 |
Atenolol | −1.10 ± 0.09 | 0.9857 | −0.545 ± 0.018 | 0.9978 | −0.538 ± 0.013 | 0.9988 |
Carteolol | −1.04 ± 0.07 | 0.9919 | −0.498 ± 0.023 | 0.9957 | −0.497 ± 0.020 | 0.9968 |
Metoprolol | −1.07 ± 0.07 | 0.9905 | −0.571 ± 0.023 | 0.9966 | −0.61 ± 0.03 | 0.9956 |
Oxprenolol | – | – | −0.549 ± 0.023 | 0.9966 | −0.536 ± 0.007 | 0.9996 |
Propranolol | – | – | −0.697 ± 0.024 | 0.9977 | −0.641 ± 0.018 | 0.9984 |
0.02 M [C6C1IM][Cl] | 0.03 M [C6C1IM][Cl] | |||||
m | R2 | m | R2 | |||
Acebutolol | −1.00 ± 0.12 | 0.9727 | −1.21 ± 0.08 | 0.9920 | ||
Atenolol | −0.74 ± 0.08 | 0.9762 | −0.83 ± 0.03 | 0.9975 | ||
Carteolol | −0.77 ± 0.11 | 0.9623 | −0.97 ± 0.07 | 0.9884 | ||
Metoprolol | −0.75 ± 0.05 | 0.9897 | −0.820 ± 0.019 | 0.9989 | ||
Oxprenolol | −0.523 ± 0.011 | 0.9992 | −0.583 ± 0.021 | 0.9975 | ||
Propranolol | −0.36 ± 0.07 | 0.9321 | −0.367 ± 0.024 | 0.9914 |
Compound | Without IL | 0.005 M [C6C1IM][Cl] | 0.01 M [C6C1IM][Cl] | |||
---|---|---|---|---|---|---|
m | R2 | m | R2 | m | R2 | |
Acebutolol | −1.14 ± 0.11 | 0.9824 | −0.588 ± 0.012 | 0.9992 | −0.562 ± 0.022 | 0.9971 |
Atenolol | −1.22 ± 0.13 | 0.9786 | −0.558 ± 0.012 | 0.9990 | −0.551 ± 0.020 | 0.9974 |
Carteolol | −1.16 ± 0.12 | 0.9793 | −0.654 ± 0.011 | 0.9994 | −0.70 ± 0.03 | 0.9956 |
Metoprolol | −1.23 ± 0.13 | 0.9771 | −0.641 ± 0.012 | 0.9993 | −0.659 ± 0.021 | 0.9979 |
Oxprenolol | −1.25 ± 0.13 | 0.9801 | −0.636 ± 0.015 | 0.9989 | −0.602 ± 0.006 | 0.9998 |
Propranolol | −1.29 ± 0.13 | 0.9807 | −0.770 ± 0.014 | 0.9994 | −0.695 ± 0.023 | 0.9979 |
0.02 M [C6C1IM][Cl] | 0.03 M [C6C1IM][Cl] | |||||
m | R2 | m | R2 | |||
Acebutolol | −0.74 ± 0.09 | 0.9736 | −0.83 ± 0.03 | 0.9969 | ||
Atenolol | −0.78 ± 0.11 | 0.9644 | −0.96 ± 0.08 | 0.9879 | ||
Carteolol | −0.97 ± 0.11 | 0.9768 | −1.13 ± 0.06 | 0.9946 | ||
Metoprolol | −0.78 ± 0.05 | 0.9916 | −0.857 ± 0.024 | 0.9984 | ||
Oxprenolol | −0.563 ± 0.012 | 0.9990 | −0.619 ± 0.022 | 0.9974 | ||
Propranolol | −0.419 ± 0.072 | 0.9440 | −0.415 ± 0.022 | 0.9944 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tereba-Mamani, C.J.; Garcia-Alvarez-Coque, M.C.; Ruiz-Ángel, M.J. Retention Mechanisms of Basic Compounds in Liquid Chromatography with Sodium Dodecyl Sulfate and 1-Hexyl-3-Methylimidazolium Chloride as Mobile Phase Reagents in Two C18 Columns. Separations 2024, 11, 300. https://doi.org/10.3390/separations11100300
Tereba-Mamani CJ, Garcia-Alvarez-Coque MC, Ruiz-Ángel MJ. Retention Mechanisms of Basic Compounds in Liquid Chromatography with Sodium Dodecyl Sulfate and 1-Hexyl-3-Methylimidazolium Chloride as Mobile Phase Reagents in Two C18 Columns. Separations. 2024; 11(10):300. https://doi.org/10.3390/separations11100300
Chicago/Turabian StyleTereba-Mamani, Carlos Josué, Maria Celia Garcia-Alvarez-Coque, and María José Ruiz-Ángel. 2024. "Retention Mechanisms of Basic Compounds in Liquid Chromatography with Sodium Dodecyl Sulfate and 1-Hexyl-3-Methylimidazolium Chloride as Mobile Phase Reagents in Two C18 Columns" Separations 11, no. 10: 300. https://doi.org/10.3390/separations11100300
APA StyleTereba-Mamani, C. J., Garcia-Alvarez-Coque, M. C., & Ruiz-Ángel, M. J. (2024). Retention Mechanisms of Basic Compounds in Liquid Chromatography with Sodium Dodecyl Sulfate and 1-Hexyl-3-Methylimidazolium Chloride as Mobile Phase Reagents in Two C18 Columns. Separations, 11(10), 300. https://doi.org/10.3390/separations11100300