Phytotoxicity of Rich Oxygenated Terpenes Essential Oil of Prosopis farcta against the Weed Dactyloctenium aegyptium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection, Authentication, and Preparation of Plant Materials
2.2. Essential Oil Extraction
2.3. Gas Chromatography-Mass Spectroscopy (GC-MS) Analysis
2.4. Phytotoxicity of P. farcta EO against D. aegyptium
2.5. Statistical Analysis
3. Results and Discussion
3.1. P. farcta Essential Oil Chemical Characterization
3.2. Phytotoxic Activity of P. farcta EO against D. aegyptium
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werrie, P.-Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.-L. Phytotoxicity of essential oils: Opportunities and constraints for the development of biopesticides. A review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef] [PubMed]
- Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Alharthi, A.S.; Mohamed, T.A.; Nassar, M.I.; Dewir, Y.H.; Elshamy, A.I. Phytotoxic effects of plant essential oils: A systematic review and structure-activity relationship based on chemometric analyses. Plants 2020, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- El Gendy, A.E.-N.G.; Essa, A.F.; El-Rashedy, A.A.; Elgamal, A.M.; Khalaf, D.D.; Hassan, E.M.; Abd-ElGawad, A.M.; Elgorban, A.M.; Zaghloul, N.S.; Alamery, S.F. Antiviral potentialities of chemical characterized essential oils of Acacia nilotica bark and fruits against hepatitis A and herpes simplex viruses: In vitro, in silico, and molecular dynamics studies. Plants 2022, 11, 2889. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Elshamy, A.I.; El-Amier, Y.A.; El Gendy, A.E.-N.G.; Al-Barati, S.A.; Dar, B.A.; Al-Rowaily, S.L.; Assaeed, A.M. Chemical composition variations, allelopathic, and antioxidant activities of Symphyotrichum squamatum (Spreng.) Nesom essential oils growing in heterogeneous habitats. Arab. J. Chem. 2020, 13, 4237–4245. [Google Scholar] [CrossRef]
- Ammar, N.M.; Hassan, H.A.; Ahmed, R.F.; El-Gendy, A.E.-N.G.; Abd-ElGawad, A.M.; Farrag, A.R.H.; Farag, M.A.; Elshamy, A.I.; Afifi, S.M. Gastro-protective effect of Artemisia sieberi essential oil against ethanol-induced ulcer in rats as revealed via biochemical, histopathological and metabolomics analysis. Biomarkers 2022, 27, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Abdelhameed, M.F.; Asaad, G.F.; Ragab, T.I.; Ahmed, R.F.; El Gendy, A.E.-N.G.; El-Rahman, A.; Sahar, S.; Elgamal, A.M.; Elshamy, A.I. Oral and topical anti-inflammatory and antipyretic potentialities of Araucaria bidiwillii shoot essential oil and its nanoemulsion in relation to chemical composition. Molecules 2021, 26, 5833. [Google Scholar] [CrossRef]
- Elshamy, A.I.; Ammar, N.M.; Hassan, H.A.; Al-Rowaily, S.L.; Ragab, T.I.; El Gendy, A.E.-N.G.; Abd-ElGawad, A.M. Essential oil and its nanoemulsion of Araucaria heterophylla resin: Chemical characterization, anti-inflammatory, and antipyretic activities. Ind. Crops Prod. 2020, 148, 112272. [Google Scholar] [CrossRef]
- El-Amier, Y.A.; Zaghloul, N.S.; Abd-ElGawad, A.M. Bioactive chemical constituents of Matthiola longipetala extract showed antioxidant, antibacterial, and cytotoxic potency. Separations 2023, 10, 53. [Google Scholar] [CrossRef]
- Damtie, D.; Braunberger, C.; Conrad, J.; Mekonnen, Y.; Beifuss, U. Composition and hepatoprotective activity of essential oils from Ethiopian thyme species (Thymus serrulatus and Thymus schimperi). J. Essent. Oil Res. 2019, 31, 120–128. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Assaeed, A.M.; Al-Rowaily, S.L.; Alshahri, M.S.; Bonanomi, G.; Elshamy, A.I. Influence of season and habitat on the essential oils composition, allelopathy, and antioxidant activities of Artemisia monosperma Delile. Separations 2023, 10, 263. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Assaeed, A.M.; El Gendy, A.E.-N.G.; Dar, B.A.; Elshamy, A.I. Volatile oils discrepancy between male and female ochradenus arabicus and their allelopathic activity on Dactyloctenium aegyptium. Plants 2023, 12, 110. [Google Scholar] [CrossRef]
- Burkart, A. A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). J. Arnold Arbor. 1976, 57, 450–525. [Google Scholar] [CrossRef]
- Quattrocchi, U. CRC World Dictionary of Plant Nmaes: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Pasiecznik, N.; Harris, P.J.; Smith, S.J. Identifying Tropical Prosopis Species: A Field Guide; Hdra: Coventry, UK, 2004. [Google Scholar]
- SivaKumar, T.; Srinivasan, K.; Rajavel, R.; Vasudevan, M.; Ganesh, M.; Kamalakannan, K.; Mallika, P. Isolation of chemical constituents from Prosopis juliflora bark and anti-inflammatory activity of its methanolic extracts. J. Pharm. Res. 2009, 2, 551–556. [Google Scholar]
- Ahmed, E.F.; Sleem, A.A.; Abbas, F.A.; El-Shafae, A.M.; El-Domiaty, M.M. Phytochemical constituents, HPLC-PDA-ESI-MS/MS profile and bioactivities of roots and rhizomes of Prosopis farcta (Banks & Sol.) JF Macbr. Nat. Prod. J. 2020, 10, 411–428. [Google Scholar]
- Sharifi-Rad, J.; Zhong, J.; Ayatollahi, S.A.; Kobarfard, F.; Faizi, M.; Khosravi-Dehaghi, N.; Suleria, H.A. LC-ESI-QTOF-MS/MS characterization of phenolic compounds from Prosopis farcta (Banks & Sol.) JF Macbr. and their potential antioxidant activities. Cell. Mol. Biol. 2021, 67, 189–200. [Google Scholar] [PubMed]
- Schmeda-Hirschmann, G.; Theoduloz, C.; Jiménez-Aspee, F.; Echeverría, J. Bioactive constituents from south American Prosopis and their use and toxicity. Curr. Pharm. Des. 2020, 26, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, M.A.F.; Etemadfard, H.; Zebarjad, Z. Antimicrobial and antioxidant characteristics of volatile components and ethanolic fruit extract of Prosopis farcta (Bank & Soland.). Trends Pharm. Sci. 2018, 4, 177–186. [Google Scholar]
- Noroozi, R.; Sadeghi, E.; Yousefi, H.; Taheri, M.; Sarabi, P.; Dowati, A.; Ayatallahi, S.A.; Noroozi, R.; Ghafouri-Fard, S. Wound healing features of Prosopis farcta: In vitro evaluation of antibacterial, antioxidant, proliferative and angiogenic properties. Gene Rep. 2019, 17, 100482. [Google Scholar] [CrossRef]
- Omidi, A.; Ansari nik, H.; Ghazaghi, M. Prosopis farcta beans increase HDL cholesterol and decrease LDL cholesterol in ostriches (Struthio camelus). Trop. Anim. Health Prod. 2013, 45, 431–434. [Google Scholar] [CrossRef]
- Mollashahi, M.; Tehranipour, M.; Khayyatzade, J.; Moosavi, B.Z. The neuroprotective effects of Prosopis farcta pod aqueous and ethanol extracts on spinal cord α-motoneurons neuronal density after sciatic nerve injury in rats. Life Sci. J. 2013, 10, 293–297. [Google Scholar]
- Agirman, E.; Celik, I.; Dogan, A. Consumption of the Syrian mesquite plant (Prosopis farcta) fruit and seed lyophilized extracts may have both protective and toxic effects in STZ-induced diabetic rats. Arch. Physiol. Biochem. 2022, 128, 887–896. [Google Scholar] [CrossRef]
- Harzallah-Skhiri, F.; Jannet, H.B.; Hammami, S.; Mighri, Z. Variation of volatile compounds in two Prosopis farcta (Banks et Sol.) Eig.(Fabales, Fabaceae = Leguminosae) populations. Flavour Fragr. J. 2006, 21, 484–487. [Google Scholar] [CrossRef]
- Saad, A.M.; Ghareeb, M.A.; Abdel-Aziz, M.S.; Madkour, H.M.F.; Khalaf, O.M.; El-Ziaty, A.K.; Abdel-Mogib, M. Chemical constituents and biological activities of different solvent extracts of Prosopis farcta growing in Egypt. J. Pharmacogn. Phytother. 2017, 9, 67–76. [Google Scholar]
- Soltani, N.; Dille, J.A.; Gulden, R.H.; Sprague, C.L.; Zollinger, R.K.; Morishita, D.W.; Lawrence, N.C.; Sbatella, G.M.; Kniss, A.R.; Jha, P. Potential yield loss in dry bean crops due to weeds in the United States and Canada. Weed Technol. 2018, 32, 342–346. [Google Scholar] [CrossRef]
- Seyyedi, S.M.; Moghaddam, P.R.; Mahallati, M.N. Weed competition periods affect grain yield and nutrient uptake of black seed (Nigella Sativa L.). Hortic. Plant J. 2016, 2, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org (accessed on 1 April 2023).
- Wilson, C.; Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol. Econ. 2001, 39, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Owen, M.D.; Zelaya, I.A. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 2005, 61, 301–311. [Google Scholar] [CrossRef]
- Arafat, Y.; Shahida, K.; Lin, W.; Fang, C.; Sadia, S.; Ali, N.; Azeem, S. Allelopathic evaluation of selected plants extract against broad and narrow leaves weeds and their associated crops. Acad. J. Agric. Res. 2015, 3, 226–234. [Google Scholar]
- De Mastro, G.; El Mahdi, J.; Ruta, C. Bioherbicidal potential of the essential oils from Mediterranean Lamiaceae for weed control in organic farming. Plants 2021, 10, 818. [Google Scholar] [CrossRef]
- Nikolova, M.T.; Berkov, S.H. Use of essential oils as natural herbicides. Ecol. Balk. 2018, 10, 259–265. [Google Scholar]
- Assaeed, A.; Elshamy, A.; El Gendy, A.E.-N.; Dar, B.; Al-Rowaily, S.; Abd-ElGawad, A. Sesquiterpenes-rich essential oil from above ground parts of Pulicaria somalensis exhibited antioxidant activity and allelopathic effect on weeds. Agronomy 2020, 10, 399. [Google Scholar] [CrossRef] [Green Version]
- Riaz, S.; Basharat, S.; Ahmad, F.; Hameed, M.; Fatima, S.; Ahmad, M.S.A.; Shah, S.M.R.; Asghar, A.; El-Sheikh, M.A.; Kaushik, P. Dactyloctenium aegyptium (L.) Willd. (Poaceae) differentially responds to pre-and post-emergence herbicides through micro-structural alterations. Agriculture 2022, 12, 1831. [Google Scholar] [CrossRef]
- Chaudhary, S.A. Flora of the Kingdom of Saudi Arabia; Ministry of Agriculture and Water: Riyadh, Saudi Arabia, 1999; Volume 1. [Google Scholar]
- Collenette, S. Wildflowers of Saudi Arabia; National Commission for Wildlife Conservation and Development (NCWCD): Riyadh, Saudi Arabia, 1999. [Google Scholar]
- Abd-ElGawad, A.M.; El-Amier, Y.A.; Bonanomi, G.; Gendy, A.E.-N.G.E.; Elgorban, A.M.; Alamery, S.F.; Elshamy, A.I. Chemical composition of Kickxia aegyptiaca essential oil and its potential antioxidant and antimicrobial activities. Plants 2022, 11, 594. [Google Scholar] [CrossRef]
- Macías, F.A.; Castellano, D.; Molinillo, J.M. Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J. Agric. Food Chem. 2000, 48, 2512–2521. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.S.; Padalia, R.C.; Goswami, P.; Verma, S.K.; Chauhan, A.; Darokar, M.P. Chemical composition and antibacterial activity of foliage and resin essential oils of Araucaria cunninghamii Aiton ex D. Don and Araucaria heterophylla (Salisb.) Franco from India. Ind. Crops Prod. 2014, 61, 410–416. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Elshamy, A.I.; El-Nasser El Gendy, A.; Al-Rowaily, S.L.; Assaeed, A.M. Preponderance of oxygenated sesquiterpenes and diterpenes in the volatile oil constituents of Lactuca serriola L. revealed antioxidant and allelopathic activity. Chem. Biodivers. 2019, 16, e1900278. [Google Scholar] [CrossRef] [PubMed]
- Essa, A.F.; El-Hawary, S.S.; Abd-El Gawad, A.M.; Kubacy, T.M.; AM El-Khrisy, E.E.D.; Elshamy, A.I.; Younis, I.Y. Prevalence of diterpenes in essential oil of Euphorbia mauritanica L.: Detailed chemical profile, antioxidant, cytotoxic and phytotoxic activities. Chem. Biodivers. 2021, 18, e2100238. [Google Scholar] [CrossRef]
- Đurović, S.; Micić, D.; Pezo, L.; Radić, D.; Bazarnova, J.G.; Smyatskaya, Y.A.; Blagojević, S. The effect of various extraction techniques on the quality of sage (Salvia officinalis L.) essential oil, expressed by chemical composition, thermal properties and biological activity. Food Chem. X 2022, 13, 100213. [Google Scholar] [CrossRef]
- Ložienė, K.; Venskutonis, P. Influence of environmental and genetic factors on the stability of essential oil composition of Thymus pulegioides. Biochem. Syst. Ecol. 2005, 33, 517–525. [Google Scholar] [CrossRef]
- Elshamy, A.I.; Abd-ElGawad, A.M.; El-Amier, Y.A.; El Gendy, A.E.N.G.; Al-Rowaily, S.L. Interspecific variation, antioxidant and allelopathic activity of the essential oil from three Launaea species growing naturally in heterogeneous habitats in Egypt. Flavour Fragr. J. 2019, 34, 316–328. [Google Scholar] [CrossRef]
- Bhaskar, P.; Sareen, D. Bioinformatics approach to understand nature’s unified mechanism of stereo-divergent synthesis of isoprenoid skeletons. World J. Microbiol. Biotechnol. 2020, 36, 142. [Google Scholar] [CrossRef] [PubMed]
- Houti, H.; Ghanmi, M.; Satrani, B.; Mansouri, F.E.; Cacciola, F.; Sadiki, M.; Boukir, A. Moroccan endemic Artemisia herba-alba essential oil: GC-MS analysis and antibacterial and antifungal investigation. Separations 2023, 10, 59. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Y.-L.; Zeng, J.; Zhang, L.; Ding, Z.-H.; Zeng, Y. Identification and characterization of a δ-cadinol synthase potentially involved in the formation of boreovibrins in Boreostereum vibrans of Basidiomycota. Nat. Prod. Bioprospecting 2016, 6, 167–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Melo, S.C.; de Sa, L.E.C.; de Oliveira, H.L.M.; Trettel, J.R.; da Silva, P.S.; Gonçalves, J.E.; Gazim, Z.C.; Magalhães, H.M. Chemical constitution and allelopathic effects of Curcuma zedoaria essential oil on lettuce achenes and tomato seeds. Aust. J. Crop Sci. 2017, 11, 906–916. [Google Scholar] [CrossRef]
- El-Shora, H.M.; Abd El-Gawad, A.M. Response of Cicer arietinum to allelopathic effect of Portulaca oleracea root extract. Phyton-Ann. Rei Bot. 2015, 55, 215–232. [Google Scholar]
- M’barek, K.; Zribi, I.; Ullah, M.J.; Haouala, R. The mode of action of allelochemicals aqueous leaf extracts of some Cupressaceae species on lettuce. Sci. Hortic. 2019, 252, 29–37. [Google Scholar] [CrossRef]
- Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 2005, 31, 1187–1203. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Miri, A.; Sharifi-Rad, M.; Sharifi-Rad, R.; Sharifi-Rad, M. Allelopathic effects of essential oils from Sinapis arvensis L. aerial part on germination and seedling growth of medicinal plants and weeds. Int. J. Biosci. 2014, 5, 135–140. [Google Scholar]
- Stefania, G.; Iriti, M.; Vitalini, S. Chemical composition, antiradical and phytotoxic activity of the essential oil from Peucedanum ostruthium WDJ Koch leaves. J. Phytomolecules Pharmacol. 2022, 1, 88–95. [Google Scholar]
- Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Omer, E.A.; Dar, B.A.; Al-Taisan, W.a.A.; Elshamy, A.I. Essential oil enriched with oxygenated constituents from invasive plant Argemone ochroleuca exhibited potent phytotoxic effects. Plants 2020, 9, 998. [Google Scholar] [CrossRef]
- de Almeida, L.F.R.; Frei, F.; Mancini, E.; De Martino, L.; De Feo, V. Phytotoxic activities of Mediterranean essential oils. Molecules 2010, 15, 4309–4323. [Google Scholar] [CrossRef] [Green Version]
- Salamci, E.; Kordali, S.; Kotan, R.; Cakir, A.; Kaya, Y. Chemical compositions, antimicrobial and herbicidal effects of essential oils isolated from Turkish Tanacetum aucheranum and Tanacetum chiliophyllum var. chiliophyllum. Biochem. Syst. Ecol. 2007, 35, 569–581. [Google Scholar] [CrossRef]
- El-Shora, H.M.; Abd El-Gawad, A.M. Physiological and biochemical responses of Cucurbita pepo L. mediated by Portulaca oleracea L. allelopathy. Fresenius Environ. Bull. 2015, 24, 386–393. [Google Scholar]
- Singh, H.P.; Batish, D.R.; Kaur, S.; Arora, K.; Kohli, R.K. α-Pinene inhibits growth and induces oxidative stress in roots. Ann. Bot. 2006, 98, 1261–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staszek, P.; Krasuska, U.; Ciacka, K.; Gniazdowska, A. ROS metabolism perturbation as an element of mode of action of allelochemicals. Antioxidants 2021, 10, 1648. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Ortega, R.; Lara-Núñez, A.; Anaya, A.L. Allelochemical stress can trigger oxidative damage in receptor plants: Mode of action of phytotoxicity. Plant Signal. Behav. 2007, 2, 269–270. [Google Scholar] [CrossRef]
No. | Rt a | Conc. % b | Compound Name | Type | Kovats Index | |
---|---|---|---|---|---|---|
Lit. c | Exp. d | |||||
1 | 7.05 | 0.14 ± 0.01 | 1,8-Cineole | OM | 1033 | 1034 |
2 | 11.11 | 0.23 ± 0.01 | trans-Pinocarveol | OM | 1139 | 1138 |
3 | 11.44 | 0.67 ± 0.02 | cis-Verbenol | OM | 1142 | 1142 |
4 | 11.99 | 3.35 ± 0.08 | Camphor | OM | 1143 | 1145 |
5 | 12.42 | 0.23 ± 0.01 | endo-Borneol | OM | 1165 | 1164 |
6 | 12.74 | 0.51 ± 0.02 | α-Terpineol | OM | 1189 | 1191 |
7 | 15.74 | 17.69 ± 0.23 | trans-Chrysanthenyl acetate | OM | 1235 | 1237 |
8 | 17.40 | 0.88 ± 0.03 | Bornyl acetate | OM | 1285 | 1284 |
9 | 19.25 | 1.66 ± 0.05 | α-Cubebene | SH | 1351 | 1350 |
10 | 20.47 | 0.65 ± 0.02 | α-Copaene | SH | 1376 | 1378 |
11 | 21.70 | 0.13 ± 0.01 | α-Gurjunene | SH | 1409 | 1411 |
12 | 22.28 | 0.49 ± 0.01 | α-Ionone | SH | 1426 | 1424 |
13 | 23.94 | 0.57 ± 0.02 | trans-Caryophyllene | SH | 1428 | 1429 |
14 | 24.09 | 0.55 ± 0.01 | Alloaromadendrene | SH | 1461 | 1460 |
15 | 24.30 | 1.37 ± 0.06 | α-Muurolene | SH | 1480 | 1479 |
16 | 24.38 | 1.60 ± 0.04 | α-Amorphene | SH | 1485 | 1484 |
17 | 24.89 | 3.50 ± 0.07 | Davana ether | OS | 1487 | 1489 |
18 | 25.53 | 0.39 ± 0.01 | 4-epi-cubedol | OS | 1493 | 1491 |
19 | 25.63 | 0.89 ± 0.02 | γ-Cadinene | SH | 1510 | 1508 |
20 | 25.98 | 0.67 ± 0.01 | 6-epi-shyobunol | OS | 1517 | 1515 |
21 | 26.21 | 2.05 ± 0.06 | δ-Cadinene | SH | 1519 | 1518 |
22 | 26.38 | 3.67 ± 0.09 | Dihydro-α-agarofuran | OS | 1520 | 1520 |
23 | 26.64 | 0.53 ± 0.01 | cis-Calamenene | SH | 1521 | 1523 |
24 | 26.79 | 2.26 ± 0.05 | Epiglobulol | OS | 1532 | 1530 |
25 | 27.14 | 1.55 ± 0.07 | α-Calacorene | SH | 1548 | 1546 |
26 | 27.44 | 0.18 ± 0.01 | Diepicedrene-1-oxide | OS | 1551 | 1550 |
27 | 27.71 | 0.26 ± 0.01 | Palustrol | OS | 1557 | 1556 |
28 | 27.87 | 0.35 ± 0.01 | Nerolidol | OS | 1564 | 1565 |
29 | 28.26 | 0.67 ± 0.02 | Spathulenol | OS | 1575 | 1574 |
30 | 28.93 | 2.94 ± 0.06 | Caryophyllene oxide | OS | 1581 | 1580 |
31 | 29.65 | 0.58 ± 0.02 | Davanone | OS | 1586 | 1589 |
32 | 29.84 | 1.08 ± 0.05 | Rosifoliol | OS | 1600 | 1602 |
33 | 30.72 | 1.04 ± 0.03 | Fonenol | OS | 1627 | 1625 |
34 | 30.93 | 0.34 ± 0.01 | α-acorenol | OS | 1628 | 1627 |
35 | 31.09 | 0.47 ± 0.01 | ɣ-Eudesmol | OS | 1630 | 1631 |
36 | 31.38 | 3.24 ± 0.07 | Cubedol | OS | 1642 | 1640 |
37 | 31.81 | 8.28 ± 0.11 | Torreyol | OS | 1645 | 1644 |
38 | 32.22 | 19.07 ± 0.21 | Cubenol | OS | 1645 | 1645 |
39 | 32.47 | 0.47 ± 0.02 | Patchouli alcohol | OS | 1659 | 1661 |
40 | 33.04 | 0.61 ± 0.03 | 8-Cedren-13-ol | OS | 1668 | 1667 |
41 | 33.23 | 1.78 ± 0.05 | Juniper camphor | OS | 1691 | 1693 |
42 | 35.48 | 0.46 ± 0.02 | α-hexyl-Cinnamaldehyde | Others | 1728 | 1730 |
43 | 36.88 | 0.46 ± 0.01 | α-Sinensal | OS | 1752 | 1750 |
44 | 38.41 | 3.13 ± 0.09 | Farnesyl acetone | OS | 1843 | 1841 |
45 | 40.76 | 2.87 ± 0.07 | Hexahydrofarnesyl acetone | OS | 1845 | 1847 |
46 | 46.77 | 1.03 ± 0.03 | Phytol | OD | 1949 | 1950 |
47 | 46.98 | 2.48 ± 0.06 | Linolenic acid, methyl ester | Others | 2108 | 2110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-ElGawad, A.M.; Assaeed, A.M.; El Gendy, A.E.-N.; Pistelli, L.; Dar, B.A.; Elshamy, A.I. Phytotoxicity of Rich Oxygenated Terpenes Essential Oil of Prosopis farcta against the Weed Dactyloctenium aegyptium. Separations 2023, 10, 361. https://doi.org/10.3390/separations10060361
Abd-ElGawad AM, Assaeed AM, El Gendy AE-N, Pistelli L, Dar BA, Elshamy AI. Phytotoxicity of Rich Oxygenated Terpenes Essential Oil of Prosopis farcta against the Weed Dactyloctenium aegyptium. Separations. 2023; 10(6):361. https://doi.org/10.3390/separations10060361
Chicago/Turabian StyleAbd-ElGawad, Ahmed M., Abdulaziz M. Assaeed, Abd El-Nasser El Gendy, Luisa Pistelli, Basharat A. Dar, and Abdelsamed I. Elshamy. 2023. "Phytotoxicity of Rich Oxygenated Terpenes Essential Oil of Prosopis farcta against the Weed Dactyloctenium aegyptium" Separations 10, no. 6: 361. https://doi.org/10.3390/separations10060361
APA StyleAbd-ElGawad, A. M., Assaeed, A. M., El Gendy, A. E. -N., Pistelli, L., Dar, B. A., & Elshamy, A. I. (2023). Phytotoxicity of Rich Oxygenated Terpenes Essential Oil of Prosopis farcta against the Weed Dactyloctenium aegyptium. Separations, 10(6), 361. https://doi.org/10.3390/separations10060361