Method Development and Validation for the Simultaneous Quantitation of Pentoxifylline, Its Pharmacologically Active Metabolites, and Donepezil Using LC-MS/MS in Rat Plasma: Its Application to a Pharmacokinetic Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation and Chromatographic Conditions
2.3. Preparation of Calibration Standards and Quality Control Samples
2.4. Rat Plasma Sample Preparation
2.5. Method Validation
2.5.1. Selectivity and Sensitivity
2.5.2. Linearity and Carry-Over
2.5.3. Precision and Accuracy
2.5.4. Recovery and Matrix Effect
2.5.5. Stability
2.5.6. Dilution Integrity
2.6. Pharmacokinetic Study in Rats
3. Results and Discussion
3.1. Method Development
3.2. Method Validation
3.2.1. Selectivity and Sensitivity
3.2.2. Linearity and Carry-Over
3.2.3. Precision and Accuracy
3.2.4. Recovery and Matrix Effect
3.2.5. Stability
3.2.6. Dilution Integrity
3.3. Application to a Pharmacokinetic Study in Rats
3.4. Incurred Sample Reanalysis (ISR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, A.; Kalaria, R.N.; Corbett, A.; Ballard, C. Update on Vascular Dementia. J. Geriatr. Psychiatry Neurol. 2016, 29, 281–301. [Google Scholar] [CrossRef] [PubMed]
- Lobo, A.; Launer, L.J.; Fratiglioni, L.; Andersen, K.; Di Carlo, A.; Breteler, M.; Copeland, J.; Dartigues, J.F.; Jagger, C.; Martinez-Lage, J. Prevalence of Dementia and Major Subtypes in Europe: A Collaborative Study of Population-Based Cohorts. Neurology 2000, 54, S4. [Google Scholar] [PubMed]
- Ott, A.; Breteler, M.M.; Van Harskamp, F.; Claus, J.J.; Van Der Cammen, T.J.; Grobbee, D.E.; Hofman, A. Prevalence of Alzheimer’s Disease and Vascular Dementia: Association with Education. the Rotterdam Study. BMJ 1995, 310, 970–973. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.E.; Barber, P.; Field, T.S.; Ganesh, A.; Hachinski, V.; Hogan, D.B.; Lanctôt, K.L.; Lindsay, M.P.; Sharma, M.; Swartz, R.H. Canadian Consensus Conference on Diagnosis and Treatment of Dementia (CCCDTD) 5: Guidelines for Management of Vascular Cognitive Impairment. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, e12056. [Google Scholar] [CrossRef] [PubMed]
- Seltzer, B. Donepezil: An Update. Expert Opin. Pharmacother. 2007, 8, 1011–1023. [Google Scholar] [CrossRef]
- Wilkinson, D.; Doody, R.; Helme, R.; Taubman, K.; Mintzer, J.; Kertesz, A.; Pratt, R.D. Donepezil in Vascular Dementia: A Randomized, Placebo-Controlled Study. Neurology 2003, 61, 479–486. [Google Scholar] [CrossRef]
- Black, S.; Román, G.C.; Geldmacher, D.S.; Salloway, S.; Hecker, J.; Burns, A.; Perdomo, C.; Kumar, D.; Pratt, R. Efficacy and Tolerability of Donepezil in Vascular Dementia: Positive Results of a 24-Week, Multicenter, International, Randomized, Placebo-Controlled Clinical Trial. Stroke 2003, 34, 2323–2330. [Google Scholar] [CrossRef]
- Ward, A.; Clissold, S.P. Pentoxifylline. Drugs 1987, 34, 50–97. [Google Scholar] [CrossRef]
- George, J.; Abel, P. Pentoxifylline. In xPharm: The Comprehensive Pharmacology Reference; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 1–18. [Google Scholar]
- Frampton, J.E.; Brogden, R.N. Pentoxifylline (Oxpentifylline). Drugs Aging 1995, 7, 480–503. [Google Scholar] [CrossRef]
- Ernst, E. Pentoxifylline for Intermittent Claudication: A Critical Review. Angiology 1994, 45, 339–345. [Google Scholar] [CrossRef]
- McCarty, M.F.; O’Keefe, J.H.; DiNicolantonio, J.J. Pentoxifylline for Vascular Health: A Brief Review of the Literature. Open Heart 2016, 3, e000365. [Google Scholar] [CrossRef] [PubMed]
- Schröer, R.H. Antithrombotic Potential of Pentoxifylline a Hemorheologically Active Drug. Angiology 1985, 36, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Michael, C.S.; Callahan, C.M. The Efficacy of Pentoxifylline in the Treatment of Vascular Dementia: A Systematic Review. Alzheimer Dis. Assoc. Disord. 2003, 17, 46–54. [Google Scholar]
- Müller, R.; Lehrach, F. Haemorheology and Cerebrovascular Disease: Multifunctional Approach with Pentoxifylline. Curr. Med. Res. Opin. 1981, 7, 253–263. [Google Scholar] [CrossRef]
- Sabayan, B.; Jansen, S.; Oleksik, A.M.; van Osch, M.J.; van Buchem, M.A.; van Vliet, P.; de Craen, A.J.; Westendorp, R.G. Cerebrovascular Hemodynamics in Alzheimer’s Disease and Vascular Dementia: A Meta-Analysis of Transcranial Doppler Studies. Ageing Res. Rev. 2012, 11, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, M.V. Pharmacokinetics and Pharmacodynamics of Pentoxifylline and Metabolites. Ph.D. Thesis, Lund University, Faculty of Medicine, Lund, Sweden, 2009; p. 29. [Google Scholar]
- Aviado, D.M.; Dettelbach, H.R. Pharmacology of Pentoxifylline a Hemorheologic Agent for the Treatment of Intermittent Claudication. Angiology 1984, 35, 407–417. [Google Scholar] [CrossRef]
- Beermann, B.; Ings, R.; Månsby, J.; Chamberlain, J.; McDonald, A. Kinetics of Intravenous and Oral Pentoxifylline in Healthy Subjects. Clin. Pharmacol. Ther. 1985, 37, 25–28. [Google Scholar] [CrossRef]
- Seltzer, B. Donepezil: A Review. Expert Opin. Drug Metab. Toxicol. 2005, 1, 527–536. [Google Scholar] [CrossRef]
- Tiseo, P.J.; Perdomo, C.A.; Friedhoff, L.T. Metabolism and Elimination of 14C-Donepezil in Healthy Volunteers: A Single-Dose Study. Br. J. Clin. Pharmacol. 1998, 46, 19. [Google Scholar] [CrossRef]
- Matsui, K.; Mishima, M.; Nagai, Y.; Yuzuriha, T.; Yoshimura, T. Absorption, Distribution, Metabolism, and Excretion of Donepezil (Aricept) After a Single Oral Administration to Rat. Drug Metab. Dispos. 1999, 27, 1406–1414. [Google Scholar]
- Ambrus, J.L.; Stadler, S.; Kulaylat, M. Hemorrheologic Effects of Metabolites of Pentoxifylline (Trental). J. Med. 1995, 26, 65–75. [Google Scholar]
- Smith, R.V.; Waller, E.S.; Doluisio, J.T.; Bauza, M.T.; Puri, S.K.; Ho, I.; Lassman, H.B. Pharmacokinetics of Orally Administered Pentoxifylline in Humans. J. Pharm. Sci. 1986, 75, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Italiya, K.S.; Sharma, S.; Kothari, I.; Chitkara, D.; Mittal, A. Simultaneous Estimation of Lisofylline and Pentoxifylline in Rat Plasma by High Performance Liquid Chromatography-Photodiode Array Detector and its Application to Pharmacokinetics in Rat. J. Chromatogr. B 2017, 1061, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Nicklasson, M.; Björkman, S.; Roth, B.; Jönsson, M.; Höglund, P. Stereoselective Metabolism of Pentoxifylline in Vitro and in Vivo in Humans. Chirality Pharmacol. Biol. Chem. Conseq. Mol. Asymmetry 2002, 14, 643–652. [Google Scholar] [CrossRef]
- Chmielewska, A.; Konieczna, L.; Plenis, A.; Lamparczyk, H. Quantitative Determination of Pentoxifylline in Human Plasma. Acta Chromatogr. 2006, 16, 70. [Google Scholar]
- Walczak, M.; Szymura-Oleksiak, J.; Pękala, E. Validation of a High-Performance Liquid Chromatography Method for Pharmacokinetic Evaluation of Pentoxifylline and Lisofylline in Rat Serum and Tissues. Acta Pol. Pharmaceutica. Drug Res. 2009, 66, 215–224. [Google Scholar]
- Mancinelli, A.; Pace, S.; Marzo, A.; Martelli, E.A.; Passetti, G. Determination of Pentoxifylline and its Metabolites in Human Plasma by High-Performance Liquid Chromatography with Solid-Phase Extraction. J. Chromatogr. B Biomed. Sci. Appl. 1992, 575, 101–107. [Google Scholar] [CrossRef]
- Vlase, L.; Kiss, B.; Muntean, D.; Leucuţa, S.E. Rapid High-Performance Liquid Chromatography–tandem Mass Spectrometry Method for Determination of Pentoxifylline and its Active Metabolites M1 and M5 in Human Plasma and its Application in Bioavailability Study. Talanta 2010, 82, 945–951. [Google Scholar] [CrossRef]
- Sora, D.I.; Cristea, E.; Albu, F.; David, V.; Medvedovici, A. Bioanalysis of Pentoxifylline and Related Metabolites in Plasma Samples through LC-MS/MS. Biomed. Chromatogr. 2010, 24, 663–674. [Google Scholar] [CrossRef]
- Page-Sharp, M.; Strunk, T.; Salman, S.; Hibbert, J.; Patole, S.K.; Manning, L.; Batty, K.T. Simultaneous Determination of Pentoxifylline, Metabolites M1 (Lisofylline), M4 and M5, and Caffeine in Plasma and Dried Blood Spots for Pharmacokinetic Studies in Preterm Infants and Neonates. J. Pharm. Biomed. Anal. 2017, 146, 302–313. [Google Scholar] [CrossRef]
- Kyle, P.B.; Adcock, K.G.; Kramer, R.E.; Baker, R.C. Use of Liquid Chromatography–tandem Mass Spectrometry for the Analysis of Pentoxifylline and Lisofylline in Plasma. Biomed. Chromatogr. 2005, 19, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Koeber, R.; Kluenemann, H.; Waimer, R.; Koestlbacher, A.; Wittmann, M.; Brandl, R.; Doerfelt, A.; Jahner, T.; Melchner, D.; Haen, E. Implementation of a Cost-Effective HPLC/UV-Approach for Medical Routine Quantification of Donepezil in Human Serum. J. Chromatogr. B 2012, 881, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Radwan, M.A.; Abdine, H.H.; Al-Quadeb, B.T.; Aboul-Enein, H.Y.; Nakashima, K. Stereoselective HPLC Assay of Donepezil Enantiomers with UV Detection and its Application to Pharmacokinetics in Rats. J. Chromatogr. B 2006, 830, 114–119. [Google Scholar] [CrossRef]
- Yasui-Furukori, N.; Furuya, R.; Takahata, T.; Tateishi, T. Determination of Donepezil, an Acetylcholinesterase Inhibitor, in Human Plasma by High-Performance Liquid Chromatography with Ultraviolet Absorbance Detection. J. Chromatogr. B 2002, 768, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Katakam, P.; Kalakuntla, R.R.; Adiki, S.K.; Chandu, B.R. Development and Validation of a Liquid Chromatography Mass Spectrometry Method for the Determination of Donepezil in Human Plasma. J. Pharm. Res. 2013, 7, 720–726. [Google Scholar] [CrossRef]
- Khuroo, A.H.; Gurule, S.J.; Monif, T.; Goswami, D.; Saha, A.; Singh, S.K. ESI-MS/MS Stability-indicating Bioanalytical Method Development and Validation for Simultaneous Estimation of Donepezil, 5-desmethyl Donepezil and 6-desmethyl Donepezil in Human Plasma. Biomed. Chromatogr. 2012, 26, 636–649. [Google Scholar] [CrossRef]
- Mano, Y.; Hotta, K.; Kusano, K. Simultaneous Determination of Donepezil and its Three Metabolites in Human Plasma using LC–MS-MS. J. Chromatogr. Sci. 2016, 54, 1328–1335. [Google Scholar] [CrossRef]
- Pilli, N.R.; Inamadugu, J.K.; Kondreddy, N.; Karra, V.K.; Damaramadugu, R.; Rao, J.N.S. A Rapid and Sensitive LC-MS/MS Method for Quantification of Donepezil and its Active Metabolite, 6-o-desmethyl Donepezil in Human Plasma and its Pharmacokinetic Application. Biomed. Chromatogr. 2011, 25, 943–951. [Google Scholar] [CrossRef]
- Shah, H.J.; Kundlik, M.L.; Pandya, A.; Prajapati, S.; Subbaiah, G.; Patel, C.N.; Patel, D.M.; Suhagiya, B.N. A Rapid and Specific Approach for Direct Measurement of Donepezil Concentration in Human Plasma by LC-MS/MS Employing Solid-phase Extraction. Biomed. Chromatogr. 2009, 23, 141–151. [Google Scholar] [CrossRef]
- Bhateria, M.; Ramakrishna, R.; Pakala, D.B.; Bhatta, R.S. Development of an LC–MS/MS Method for Simultaneous Determination of Memantine and Donepezil in Rat Plasma and its Application to Pharmacokinetic Study. J. Chromatogr. B 2015, 1001, 131–139. [Google Scholar] [CrossRef]
- Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry. US Department of Health and Human Services. 2018. Available online: https://www.fda.gov/media/70858/download (accessed on 3 November 2022).
- Ministry of Food and Drug Safety. Guideline on Bioanalytical Method Validation. 2013. Available online: https://www.mfds.go.kr/brd/m_1060/view.do?seq=13054&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1 (accessed on 3 November 2022).
- Lee, Y.J.; Chung, S.J.; Shim, C.K. BA Calc 2007® for Windows®; Version 1.0.0; 2007. [Google Scholar]
- Reid, G.E.; Simpson, R.J.; O’Hair, R.A. Leaving Group and Gas Phase Neighboring Group Effects in the Side Chain Losses from Protonated Serine and its Derivatives. J. Am. Soc. Mass Spectrom. 2000, 11, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
Compounds | Ion Transition (m/z) | DP (V) | EP (V) | CE (V) | CXP (V) | RT (min) |
---|---|---|---|---|---|---|
PTX | 279.3 → 181.1 | 76.0 | 8.0 | 23.0 | 10.0 | 2.68 |
PTX-M1 | 281.1 → 263.1 → 181.1 | 90.0 | 8.0 | 23.0 | 10.0 | 2.72 |
PTX-M5 | 267.1 → 249.0 → 220.9 | 85.0 | 8.0 | 20.0 | 10.0 | 2.50 |
DNP | 380.3 → 90.9 | 116.0 | 10.0 | 61.0 | 14.0 | 2.24 |
PTX-d6 | 285.3 → 187.1 | 90.0 | 8.0 | 26.0 | 10.0 | 2.67 |
DNP-d7 | 387.3 → 98.3 | 111.0 | 10.0 | 39.0 | 8.0 | 2.23 |
Compounds | Number | Slope | Intercept | r | r2 |
---|---|---|---|---|---|
PTX | 1 | 0.00451 | 0.005460 | 0.9989 | 0.9978 |
2 | 0.00472 | 0.003680 | 0.9985 | 0.9970 | |
3 | 0.00470 | 0.004280 | 0.9985 | 0.9970 | |
4 | 0.00504 | 0.001550 | 0.9957 | 0.9914 | |
5 | 0.00489 | 0.004730 | 0.9989 | 0.9978 | |
6 | 0.00504 | 0.004350 | 0.9989 | 0.9978 | |
PTX-M1 | 1 | 0.00195 | −0.001410 | 0.9984 | 0.9968 |
2 | 0.00191 | −0.002130 | 0.9998 | 0.9996 | |
3 | 0.00190 | 0.001080 | 0.9996 | 0.9992 | |
4 | 0.00208 | −0.003080 | 0.9991 | 0.9982 | |
5 | 0.00192 | −0.001670 | 0.9994 | 0.9988 | |
6 | 0.00180 | −0.000485 | 0.9993 | 0.9986 | |
PTX-M5 | 1 | 0.000791 | −0.000926 | 0.9983 | 0.9966 |
2 | 0.000742 | −0.003280 | 0.9978 | 0.9956 | |
3 | 0.000695 | 0.002090 | 0.9963 | 0.9926 | |
4 | 0.000833 | −0.003300 | 0.9983 | 0.9966 | |
5 | 0.000698 | −0.001810 | 0.9986 | 0.9972 | |
6 | 0.000683 | −0.001510 | 0.9980 | 0.9960 | |
DNP | 1 | 0.0127 | −0.004650 | 0.9991 | 0.9982 |
2 | 0.0125 | −0.003830 | 0.9980 | 0.9960 | |
3 | 0.0128 | −0.006190 | 0.9996 | 0.9992 | |
4 | 0.0135 | −0.008970 | 0.9995 | 0.9990 | |
5 | 0.0129 | −0.007780 | 0.9999 | 0.9998 | |
6 | 0.0127 | −0.011600 | 0.9997 | 0.9994 |
Compounds | Nominal Concentration (ng mL−1) | Intra-Day (n = 5) | Inter-Day (n = 15) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD (ng mL−1) | Precision (CV (%)) a | Accuracy (%) b | Mean ± SD (ng mL−1) | Precision (CV (%)) a | Accuracy (%) b | ||||||
PTX | 5 | 5.16 | ± | 0.29 | 5.58 | 103.18 | 5.01 | ± | 0.25 | 4.89 | 100.26 |
15 | 15.70 | ± | 0.11 | 0.69 | 104.66 | 16.28 | ± | 0.52 | 3.19 | 108.51 | |
3000 | 3028.26 | ± | 59.59 | 1.97 | 100.94 | 2971.13 | ± | 73.36 | 2.47 | 99.04 | |
6400 | 5985.27 | ± | 153.48 | 2.56 | 93.52 | 6038.95 | ± | 155.82 | 2.58 | 94.36 | |
PTX-M1 | 10 | 10.56 | ± | 0.41 | 3.88 | 105.64 | 10.13 | ± | 0.75 | 7.37 | 101.33 |
30 | 30.80 | ± | 0.55 | 1.78 | 102.68 | 31.49 | ± | 1.19 | 3.78 | 104.98 | |
2500 | 2556.16 | ± | 36.85 | 1.44 | 102.25 | 2541.35 | ± | 64.63 | 2.54 | 101.65 | |
4000 | 4129.27 | ± | 40.62 | 0.98 | 103.23 | 4229.06 | ± | 119.79 | 2.83 | 105.73 | |
PTX-M5 | 20 | 19.85 | ± | 0.82 | 4.11 | 99.26 | 19.33 | ± | 2.41 | 12.48 | 96.66 |
60 | 57.40 | ± | 1.51 | 2.64 | 95.67 | 62.51 | ± | 4.77 | 7.62 | 104.19 | |
7000 | 6792.50 | ± | 214.91 | 3.16 | 97.04 | 7168.79 | ± | 370.71 | 5.17 | 102.41 | |
12,000 | 12,298.99 | ± | 87.26 | 0.71 | 102.49 | 12,780.86 | ± | 513.32 | 4.02 | 106.51 | |
DNP | 2 | 2.14 | ± | 0.12 | 5.65 | 107.12 | 1.93 | ± | 0.22 | 11.24 | 96.70 |
6 | 6.25 | ± | 0.25 | 4.08 | 104.15 | 5.92 | ± | 0.33 | 5.50 | 98.69 | |
75 | 77.09 | ± | 1.52 | 1.98 | 102.79 | 77.30 | ± | 1.30 | 1.68 | 103.06 | |
400 | 414.79 | ± | 16.79 | 4.05 | 103.70 | 427.23 | ± | 15.31 | 3.58 | 106.81 |
Compounds | Nominal Concentration (ng mL−1) | Recovery (%) | Matrix Effect (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD (%) | CV (%) | Mean ± SD (%) | CV (%) | ||||||
PTX | 15 | 81.34 | ± | 10.20 | 12.54 | 59.94 | ± | 7.63 | 12.72 |
3000 | 90.19 | ± | 2.24 | 2.48 | 56.76 | ± | 0.85 | 1.49 | |
6400 | 84.80 | ± | 1.65 | 1.95 | 64.45 | ± | 1.18 | 1.83 | |
Mean | 85.44 | ± | 4.46 | 5.22 | 60.38 | ± | 3.86 | 6.40 | |
PTX-M1 | 30 | 85.08 | ± | 3.41 | 4.01 | 53.47 | ± | 0.93 | 1.74 |
2500 | 89.44 | ± | 2.07 | 2.32 | 54.21 | ± | 0.77 | 1.42 | |
4000 | 85.12 | ± | 1.94 | 2.28 | 62.05 | ± | 1.05 | 1.70 | |
Mean | 86.55 | ± | 2.51 | 2.90 | 56.58 | ± | 4.75 | 8.40 | |
PTX-M5 | 60 | 86.16 | ± | 4.89 | 5.68 | 27.74 | ± | 0.91 | 3.27 |
7000 | 89.78 | ± | 1.75 | 1.95 | 29.66 | ± | 0.73 | 2.47 | |
12,000 | 86.57 | ± | 1.75 | 2.02 | 33.72 | ± | 0.47 | 1.39 | |
Mean | 87.50 | ± | 1.98 | 2.27 | 30.37 | ± | 3.05 | 10.05 | |
DNP | 6 | 80.00 | ± | 7.11 | 8.89 | 23.17 | ± | 0.48 | 4.28 |
75 | 92.19 | ± | 1.05 | 1.14 | 25.45 | ± | 0.34 | 2.20 | |
400 | 86.49 | ± | 2.61 | 3.02 | 28.84 | ± | 0.65 | 3.29 | |
Mean | 86.23 | ± | 6.10 | 7.07 | 25.82 | ± | 2.85 | 11.05 | |
IS1 | 500 | 86.29 | ± | 1.45 | 1.68 | 52.35 | ± | 0.44 | 0.83 |
IS2 | 500 | 86.69 | ± | 5.82 | 6.71 | 24.20 | ± | 2.04 | 14.36 |
Compounds | Nominal Concentration (ng mL−1) | Solution Stability (Mean %) | Plasma Stability (Mean %) | ||||||
---|---|---|---|---|---|---|---|---|---|
Stock, Room Temperature (3 h) | Working, Room Temperature (7 h) | Room Temperature (7 h) | 4 °C (7 h) | −70 °C (7 h) | Freeze-Thaw Stability (4 Cycles) | Autosampler, 10 °C (7 h) | Long-Term, −70 °C (54 Days) | ||
PTX | 15 | 94.24 | 97.75 | 108.80 | 111.40 | 114.63 | 106.63 | 104.49 | 107.25 |
3000 | - | - | 97.19 | 99.01 | 97.83 | 103.94 | 102.37 | 99.85 | |
6400 | 96.85 | 99.26 | 92.31 | 96.41 | 92.73 | 97.34 | 98.22 | 97.64 | |
PTX-M1 | 30 | 98.98 | 100.88 | 100.50 | 106.06 | 104.40 | 105.68 | 101.54 | 103.22 |
2500 | - | - | 101.53 | 105.33 | 103.10 | 105.56 | 105.36 | 102.68 | |
4000 | 98.03 | 101.11 | 108.02 | 110.16 | 105.73 | 107.20 | 107.37 | 109.17 | |
PTX-M5 | 60 | 97.89 | 101.06 | 104.60 | 106.18 | 101.23 | 104.83 | 100.94 | 101.39 |
7000 | - | - | 108.22 | 90.84 | 86.40 | 107.05 | 106.49 | 94.56 | |
12,000 | 99.31 | 101.49 | 96.65 | 95.94 | 94.17 | 108.58 | 108.75 | 102.41 | |
DNP | 6 | 96.84 | 98.22 | 101.35 | 100.97 | 100.05 | 97.49 | 96.46 | 98.34 |
75 | - | - | 103.02 | 104.73 | 102.56 | 105.44 | 104.84 | 105.08 | |
400 | 97.91 | 100.64 | 106.02 | 102.64 | 105.82 | 106.84 | 105.82 | 104.45 |
Compounds | Nominal Concentration (ng mL−1) | Dilution Factor of 5 | ||||
---|---|---|---|---|---|---|
Mean ± SD (ng mL−1) | CV (%) | Accuracy (%) | ||||
PTX | 15 | 13.75 | ± | 0.33 | 2.39 | 91.65 |
3000 | 3019.20 | ± | 16.83 | 0.56 | 100.64 | |
5000 | 5075.99 | ± | 30.70 | 0.60 | 101.52 | |
PTX-M1 | 30 | 31.55 | ± | 0.71 | 2.26 | 105.16 |
2500 | 2569.14 | ± | 47.62 | 1.85 | 102.77 | |
4000 | 4149.45 | ± | 36.47 | 0.88 | 103.74 | |
PTX-M5 | 60 | 61.12 | ± | 4.26 | 6.97 | 101.86 |
1000 | 1047.13 | ± | 16.13 | 1.54 | 104.71 | |
5000 | 5385.26 | ± | 121.74 | 2.26 | 107.71 | |
DNP | 6 | 6.43 | ± | 0.25 | 3.91 | 107.09 |
75 | 69.42 | ± | 1.42 | 2.05 | 92.57 | |
400 | 395.52 | ± | 6.05 | 1.53 | 98.88 |
Parameters (a) | PTX | PTX-M1 | PTX-M5 | DNP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cmax (ng mL−1) | 14,798.5 | ± | 20.1 | 5016.2 | ± | 10.5 | 11,573.8 | ± | 27.3 | 44.1 | ± | 9.9 |
AUClast (µ·h mL−1) | 102,862.6 | ± | 42.1 | 35,994.9 | ± | 19.4 | 86,076.2 | ± | 67.8 | 639.5 | ± | 16.2 |
AUCinf (µg·h mL−1) | 102,885.8 | ± | 42.3 | 35,994.9 | ± | 17.4 | 87,247.7 | ± | 70.5 | - | ||
Median Tmax (h) | 0.75 | 0.75 | 0.75 | 8.0 | ||||||||
t1/2 (h) | 1.8 | ± | 0.3 | 2.1 | ± | 0.4 | 3.7 | ± | 0.9 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Shim, W.-S.; Yoon, J.; Choi, D.; Song, E.; Choi, Y.J.; Paik, S.-H.; Lee, K.-T. Method Development and Validation for the Simultaneous Quantitation of Pentoxifylline, Its Pharmacologically Active Metabolites, and Donepezil Using LC-MS/MS in Rat Plasma: Its Application to a Pharmacokinetic Study. Separations 2023, 10, 276. https://doi.org/10.3390/separations10050276
Choi S, Shim W-S, Yoon J, Choi D, Song E, Choi YJ, Paik S-H, Lee K-T. Method Development and Validation for the Simultaneous Quantitation of Pentoxifylline, Its Pharmacologically Active Metabolites, and Donepezil Using LC-MS/MS in Rat Plasma: Its Application to a Pharmacokinetic Study. Separations. 2023; 10(5):276. https://doi.org/10.3390/separations10050276
Chicago/Turabian StyleChoi, Sanghee, Wang-Seob Shim, Jiyoung Yoon, Doowon Choi, Eunseo Song, Yeo Jin Choi, Soo-Heui Paik, and Kyung-Tae Lee. 2023. "Method Development and Validation for the Simultaneous Quantitation of Pentoxifylline, Its Pharmacologically Active Metabolites, and Donepezil Using LC-MS/MS in Rat Plasma: Its Application to a Pharmacokinetic Study" Separations 10, no. 5: 276. https://doi.org/10.3390/separations10050276
APA StyleChoi, S., Shim, W. -S., Yoon, J., Choi, D., Song, E., Choi, Y. J., Paik, S. -H., & Lee, K. -T. (2023). Method Development and Validation for the Simultaneous Quantitation of Pentoxifylline, Its Pharmacologically Active Metabolites, and Donepezil Using LC-MS/MS in Rat Plasma: Its Application to a Pharmacokinetic Study. Separations, 10(5), 276. https://doi.org/10.3390/separations10050276