Efficient Oxidative Desulfurization of High-Sulfur Diesel via Peroxide Oxidation Using Citric, Pimelic, and α-Ketoglutaric Acids
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Application of Oxidative Desulfurization System for Real Diesel Oil
3.2. Effect of Temperature, Hydrogen Peroxide, and Catalyst Doses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mustafa, F.S.; Aziz, K.H.H. Heterogeneous catalytic activation of persulfate for the removal of rhodamine B and diclofenac pollutants from water using iron-impregnated biochar derived from the waste of black seed pomace. Process Saf. Environ. Prot. 2023, 170, 436–448. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Abbass, R.; Nogueira, T.; Veronika, S.; Abhijith, K.; de Fatima, A.M.; Asfaw, A.; Aziz, K.H.; Cao, S.; et al. Potential health risks due to in-car aerosol exposure across ten global cities. Environ. Int. 2021, 155, 106688. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.E.S.; Roces, S.A.; Dugos, N.P.; Wan, M.W. Ultrasound assisted oxidative desulfurization: A comprehensive optimization analysis using untreated diesel oil. Comput. Chem. Eng. 2022, 166, 107965. [Google Scholar] [CrossRef]
- Hai, T.; Alsharif, S.; Aziz, K.H.H.; Dhahad, H.A.; Singh, P.K. Deep learning optimization of a biomass and biofuel-driven energy system with energy storage option for electricity, cooling, and desalinated water. Fuel 2023, 334, 126024. [Google Scholar] [CrossRef]
- Barilla, G.R.H.; Chen, C.A.W.; Valencia, M.Z.M.; Dugos, N.P.; Choi, A.E.S. Mixing assisted oxidative desulfurization using a synthesized catalyst of the activated carbon supported phosphotungstic acid: A process optimization study. S. Afr. J. Chem. Eng. 2022, 42, 61–71. [Google Scholar] [CrossRef]
- Hossain, M.N.; Park, H.C.; Choi, H.S. A comprehensive review on catalytic oxidative desulfurization of liquid fuel oil. Catalysts 2019, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Julião, D.; Gomes, A.C.; Pillinger, M.; Valencia, R.; Ribeireo, J.C.; Goncalves, I.S.; Balula, S.S. Desulfurization of liquid fuels by extraction and sulfoxidation using H2O2 and [CpMo (CO) 3R] as catalysts. Appl. Catal. B Environ. 2018, 230, 177–183. [Google Scholar] [CrossRef]
- Chandran, D.; Khalid, M.; Walvekar, R.; Mubarak, N.M.; Dharaskar, S.; Wong, W.Y.; Gupta, T.C.S. Deep eutectic solvents for extraction-desulphurization: A review. J. Mol. Liq. 2019, 275, 312–322. [Google Scholar] [CrossRef]
- Jin, X.; Wu, J.; Silva, R.C.; Huang, H.; Zhang, Z.; Zhong, N.; Tutolo, B.M.; Larter, S. Alternate routes to sustainable energy recovery from fossil fuels reservoirs. Part 1. Investigation of high-temperature reactions between sulfur oxy anions and crude oil. Fuel 2021, 302, 121050. [Google Scholar] [CrossRef]
- Choi, A.E.S.; Roces, S.A.; Dugoe, N.P.; Wan, M.W. Adsorption of sulfones from actual oxidized diesel oil in the frame of oxidative desulfurization: A process optimization study using activated clay. J. Clean. Prod. 2022, 363, 132357. [Google Scholar] [CrossRef]
- Haruna, A.; Mercian, Z.M.A.; Musa, S.G.; Abubakr, S. Sulfur removal technologies from fuel oil for safe and sustainable environment. Fuel 2022, 329, 125370. [Google Scholar] [CrossRef]
- Saleh, T.A. Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes. Chem. Eng. J. 2021, 404, 126987. [Google Scholar] [CrossRef]
- Ahmed, B.S.; Hamasalih, L.O.; Hamaaziz, K.H.; Omer, K.M.; Shafiq, I. Oxidative Desulfurization of Real High-Sulfur Diesel Using Dicarboxylic Acid/H2O2 System. Processes 2022, 10, 2327. [Google Scholar] [CrossRef]
- Iruretagoyena, D.; Bikani, K.; Sunny, N.; Lu, H.; Kazarian, S.; Chadwick, D.; Pini, R.; Sahah, N. Enhanced selective adsorption desulfurization on CO2 and steam treated activated carbons: Equilibria and kinetics. Chem. Eng. J. 2020, 379, 122356. [Google Scholar] [CrossRef]
- Porto, B.; OliveIra, J.V.; Yamamoto, C.I.; Souza, A.A.; Souza, S.A.A. Heavy gas oil biodesulfurization by Rhodococcus erythropolis ATCC 4277: Optimized culture medium composition and evaluation of low-cost alternative media. J. Chem. Technol. Biotechnol. 2017, 92, 2376–2382. [Google Scholar] [CrossRef]
- Gao, S.; Chin, X.; Xi, X.; Abro, M.; Afzal, W.; Abro, R.; Yu, G. Coupled oxidation-extraction desulfurization: A novel evaluation for diesel fuel. ACS Sustain. Chem. Eng. 2019, 7, 5660–5668. [Google Scholar] [CrossRef]
- Jiang, W.; Xiao, G.; Gao, X.; An, X.; Leng, Y.; Zhu, L.; Zhu, W.; Li, H. In situ fabrication of hollow silica confined defective molybdenum oxide for enhanced catalytic oxidative desulfurization of diesel fuels. Fuel 2021, 305, 121470. [Google Scholar] [CrossRef]
- Shafiq, I.; Shafique, S.; Akhter, P.; Yang, W.; Hussain, M. Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: A technical review. Catal. Rev. 2020, 64, 1–86. [Google Scholar] [CrossRef]
- Mahboob, I.; Shafiq, I.; Shafique, S.; Akhter, P.; Amjad, U.; Hussain, M.; Park, Y. Effect of active species scavengers in photocatalytic desulfurization of hydrocracker diesel using mesoporous Ag3VO4. Chem. Eng. J. 2022, 441, 136063. [Google Scholar] [CrossRef]
- Bu, J.; Gwie, C.G.; Dewiyanti, S.; Tasrif, M.; Borgna, A. Desulfurization of diesel fuels by selective adsorption on activated carbons: Competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons. Chem. Eng. J. 2011, 166, 207–217. [Google Scholar] [CrossRef]
- Ren, X.; Liu, Z.; Dong, L.; Miao, G.; Liao, N.; Li, Z.; Xiao, J. Dynamic catalytic adsorptive desulfurization of real diesel over ultra-stable and low-cost silica gel-supported TiO2. AIChE J. 2018, 64, 2146–2159. [Google Scholar] [CrossRef]
- Triantafyllidis, K.S.; Deliyanni, E.A. Desulfurization of diesel fuels: Adsorption of 4, 6-DMDBT on different origin and surface chemistry nanoporous activated carbons. Chem. Eng. J. 2014, 236, 406–414. [Google Scholar] [CrossRef]
- Saleh, T.A. Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon. J. Clean. Prod. 2018, 172, 2123–2132. [Google Scholar] [CrossRef]
- Ghubayra, R.; Nuttall, C.; Hodgkiss, S.; Craven, M.; Kozhevnikova, E.F.; Kozhevnikova, I.V. Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids. Appl. Catal. B Environ. 2019, 253, 309–316. [Google Scholar] [CrossRef]
- Flores, R.; Rodas, A.; Gasperin, R. Oxidative desulfurization of diesel fuel oil using supported Fenton catalysts and assisted with ultrasonic energy. Pet. Sci. 2019, 16, 1176–1184. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Zhu, Z.; Su, T.; Liao, W.; Hao, D.; Chen, Y.; Zhao, Y.; Ren, W.; Ge, H.; Lu, H. Novel acidic eutectic mixture as peroxidase mimetics for oxidative desulfurization of model diesel. Appl. Catal. B Environ. 2019, 255, 117747. [Google Scholar] [CrossRef]
- Abdurrashid, H.; Merican, Z.M.A.; Musa, S.G. Recent advances in catalytic oxidative desulfurization of fuel oil—A review. J. Ind. Eng. Chem. 2022, 112, 20–36. [Google Scholar]
- Tanimu, A.; Tanimu, G.; Ganiyu, S.A.; Gambo, Y.; Alasiri, H.; Alhooshani, K. Metal-Free Catalytic Oxidative Desulfurization of Fuels—A Review. Energy Fuels 2022, 36, 3394–3419. [Google Scholar] [CrossRef]
- Julião, D.; Mirante, F.; Ribeiro, S.O.; Gomes, A.C.; Valenca, R.; Casrto, B.; Balula, S.S. Deep oxidative desulfurization of diesel fuels using homogeneous and SBA-15-supported peroxophosphotungstate catalysts. Fuel 2019, 241, 616–624. [Google Scholar] [CrossRef]
- Andevary, H.H.; Akbari, A.; Omidkhah, M. High efficient and selective oxidative desulfurization of diesel fuel using dual-function [Omim] FeCl4 as catalyst/extractant. Fuel Process. Technol. 2019, 185, 8–17. [Google Scholar] [CrossRef]
- Andevary, H.H.; Akbari, A.; Rajabi, Z.; Omidkhah, M. Towards a room temperature oxidative desulfurization of refractory compounds over 1-octyl-3-methylimidazolium tetrachloroferrates/silica gel: The beneficial effects of immobilization. Process Saf. Environ. Prot. 2020, 136, 343–352. [Google Scholar] [CrossRef]
- Sinhmar, P.S.; Tiple, A.; Gogate, P.R. Combined extractive and oxidative desulfurization approach based on ultrasound and ultraviolet irradiation with additives for obtaining clean fuel. Environ. Technol. Innov. 2021, 22, 101487. [Google Scholar] [CrossRef]
- Moeinifard, B.; Chermahini, A.N. Mono lacunary phosphomolybdate supported on mesoporous graphitic carbon nitride: An eco-friendly and efficient catalyst for oxidative desulfurization of the model and real fuels. J. Environ. Chem. Eng. 2021, 9, 105430. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, J.; Lian, L.; Chen, Z.; Hong, L.; Wang, D.; Chen, W. Ultrafast Oxidative Desulfurization of Diesel Fuels by Mass Transfer Enhancement of Polyoxometalate Modified Alumina Catalysts. Energy Fuels 2021, 35, 2110–2120. [Google Scholar] [CrossRef]
- Wang, B.; Dai, B.; Kang, L.; Zhu, M. Synthesis of three-dimensional ordered mesoporous W-doped KIT-6 for oxidative desulfurization catalyst of fuels. Fuel 2020, 265, 117029. [Google Scholar] [CrossRef]
- Pedram-rad, T.; Eshaghi, Z.; Ahmadpour, A.; Kazemi, M.S.; Mohammadi, A.A. Carbon-dot Confined in Graphene-Analogous Boron Nitride for Enhanced Oxidative Desulfurization. Arab. J. Chem. 2022, 15, 104084. [Google Scholar] [CrossRef]
- Lin, S.; Ng, S.-F.; Ong, W.-J. Life cycle assessment of environmental impacts associated with oxidative desulfurization of diesel fuels catalyzed by metal-free reduced graphene oxide. Environ. Pollut. 2021, 288, 117677. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Jia, Q.; He, J.; Lu, L.; Chen, L.; Zhu, J.; Peng, C.; He, M.; Xiong, J.; Zhu, W. Mechanical exfoliation of boron carbide: A metal-free catalyst for aerobic oxidative desulfurization in fuel. J. Hazard. Mater. 2020, 391, 122183. [Google Scholar] [CrossRef]
- Jiang, W.; Zhu, K.; Li, H.; Zhu, L.; Hua, M.; Wang, C.; Yang, Z.; Chen, J.; Zhu, W. Synergistic effect of dual Brønsted acidic deep eutectic solvents for oxidative desulfurization of diesel fuel. Chem. Eng. J. 2020, 394, 124831. [Google Scholar] [CrossRef]
- Betiha, M.A.; Rabie, A.M.; Ahmed, H.S.; Abdelrahman, A.A.; El-shahat, M.F. Oxidative desulfurization using graphene and its composites for fuel containing thiophene and its derivatives: An update review. Egypt. J. Pet. 2018, 27, 715–730. [Google Scholar] [CrossRef]
- Houda, S.; Lancelot, C.; Blandchard, P.; Poinel, L.; Lamonier, C. Oxidative desulfurization of heavy oils with high sulfur content: A review. Catalysts 2018, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Venkateshwar Rao, T.; Sain, B.; Kafola, S.; Nautiyal, B.R.; Sharma, Y.K.; Nanoti, S.M.; Garg, M.O. Oxidative desulfurization of HDS diesel using the aldehyde/molecular oxygen oxidation system. Energy Fuels 2007, 21, 3420–3424. [Google Scholar] [CrossRef]
- Bhasarkar, J.B.; Chakma, S.; Moholkar, V.S. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound. Ultrason. Sonochem. 2015, 24, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Kayan, G.Ö.; Kayan, A. Polyhedral Oligomeric Silsesquioxane and Polyorganosilicon Hybrid Materials and Their Usage in the Removal of Methylene Blue Dye. J. Inorg. Organomet. Polym. Mater. 2022, 32, 2781–2792. [Google Scholar] [CrossRef]
Characteristics | Citric Acid | Pimelic Acid | α-Ketoglutaric Acid |
---|---|---|---|
Chemical formula | C6H8O7 | C7H12O4 | C5H6O5 |
Molar mass | 192.12 g/mol | 160.17 g/mol | 146.11 g/mol |
Chemical structure |
Test | Test Methods | Before Treatment | After Treatment |
---|---|---|---|
Specific [email protected] °C | ASTM D 1298 | 0.807 | 0.802 |
API gravity | ASTM | 43.8 | 44.9 |
Flashpoint °C | ASTM D 93 | 70 | 71 |
Pour point °C | ASTM D 97 | −21 | −24 |
Vis.@50 °C/Cst | ASTM D 445 | 1.91 | 2 |
%Sulfur content | ED-XRF | 0.2568 | --- |
Distillation | ASTM | ----- | ---- |
Initial B.P °C | ------- | 188 | 190 |
Vol. at %10 | ------- | 208 | 214 |
Vol. at %50 | ------- | 238 | 240 |
Vol. at %70 | ------- | 260 | 262 |
Vol. at %90 | ------- | 298 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, B.S.; Hamasalih, L.O.; Aziz, K.H.H.; Salih, Y.M.; Mustafa, F.S.; Omer, K.M. Efficient Oxidative Desulfurization of High-Sulfur Diesel via Peroxide Oxidation Using Citric, Pimelic, and α-Ketoglutaric Acids. Separations 2023, 10, 206. https://doi.org/10.3390/separations10030206
Ahmed BS, Hamasalih LO, Aziz KHH, Salih YM, Mustafa FS, Omer KM. Efficient Oxidative Desulfurization of High-Sulfur Diesel via Peroxide Oxidation Using Citric, Pimelic, and α-Ketoglutaric Acids. Separations. 2023; 10(3):206. https://doi.org/10.3390/separations10030206
Chicago/Turabian StyleAhmed, Barham Sharif, Luqman Omar Hamasalih, Kosar Hikmat Hama Aziz, Yousif M. Salih, Fryad S. Mustafa, and Khalid Mohammad Omer. 2023. "Efficient Oxidative Desulfurization of High-Sulfur Diesel via Peroxide Oxidation Using Citric, Pimelic, and α-Ketoglutaric Acids" Separations 10, no. 3: 206. https://doi.org/10.3390/separations10030206
APA StyleAhmed, B. S., Hamasalih, L. O., Aziz, K. H. H., Salih, Y. M., Mustafa, F. S., & Omer, K. M. (2023). Efficient Oxidative Desulfurization of High-Sulfur Diesel via Peroxide Oxidation Using Citric, Pimelic, and α-Ketoglutaric Acids. Separations, 10(3), 206. https://doi.org/10.3390/separations10030206