Determination of Sodium, Potassium, and Magnesium as Sulfate Salts in Oral Preparations Using Ion Chromatography and Conductivity Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chromatographic Conditions
2.3. Preparation of Standard Solutions
3. Results
3.1. Choice of Chromatographic Conditions
3.2. Method Validation
3.2.1. Optimization of Chromatographic Conditions
3.2.2. System Suitability
3.2.3. Specificity
3.2.4. Linearity
3.2.5. Accuracy
3.2.6. Precision
3.2.7. Robustness
3.3. Stability of the Analytical Solutions
3.4. Evaluation of the Proposed Method Compared to Reported Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, P.E. Determination of inorganic ions in drinking water by ion chromatography. TrAC Trends Anal. Chem. 2001, 20, 320–329. [Google Scholar] [CrossRef]
- Murray, E.; Roche, P.; Briet, M.; Moore, B.; Morrin, A.; Diamond, D.; Paull, B. Fully automated, low-cost ion chromatography system for in-situ analysis of nitrite and nitrate in natural waters. Talanta 2020, 216, 120955. [Google Scholar] [CrossRef] [PubMed]
- Michalski, R. Ion Chromatography Applications in Wastewater Analysis. Separations 2018, 5, 16. [Google Scholar] [CrossRef]
- Michalski, R. Applications of ion chromatography for the determination of inorganic cations. Crit. Rev. Anal. Chem. 2009, 39, 230–250. [Google Scholar] [CrossRef]
- Commission, B.P. British Pharmacopoeia 2020; Stationery Office: London, UK, 2020. [Google Scholar]
- Subramanian, S.; Amonkar, M.M.; Hunt, T.L. Use of colonoscopy for colorectal cancer screening: Evidence from the 2000 National Health Interview Survey. Cancer Epidemiol. Biomark. Prev. 2005, 14, 409–416. [Google Scholar] [CrossRef]
- Saltzman, J.R.; Cash, B.D.; Pasha, S.F.; Early, D.S.; Muthusamy, V.R.; Khashab, M.A.; Chathadi, K.V.; Fanelli, R.D.; Chandrasekhara, V.; Lightdale, J.R. Bowel preparation before colonoscopy. Gastrointest. Endosc. 2015, 81, 781–794. [Google Scholar] [CrossRef]
- Pérez-Riveros, E.D.; Rey, R.M.; De Molano, B.M.; Robayo, J.C.; Solano-Mariño, J.; García-Duperly, R.; Gómez, A.; Pinto-Carta, R.; Ardila, G.; la Hoz-Valle, D. Non-inferiority between two low-volume agents (sodium picosulfate/magnesium citrate vs. sodium sulfate/potassium/magnesium) to prepare the bowel for diagnostic procedures: An observational study. Rev. Colomb. Gastroenterol. 2020, 35, 436–446. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S.D.; Han, K.S.; Kim, B.C.; Youk, E.-G.; Nam, M.J.; Lee, D.H.; Sohn, D.K. Comparative evaluation of the efficacy of polyethylene glycol with ascorbic acid and an oral sulfate solution in a split method for bowel preparation: A randomized, multicenter phase III clinical trial. Dis. Colon Rectum 2017, 60, 426–432. [Google Scholar] [CrossRef]
- Chung, J.W.; Lee, J.M.; Sohn, Y.W.; Han, W.C.; Yoon, K. Ischemic colitis associated with low-volume oral sulfate solution for bowel preparation. Korean J. Gastroenterol. 2020, 75, 216–219. [Google Scholar] [CrossRef]
- Basson, W.D.; Van Staden, J.F. Simultaneous determination of sodium, potassium, magnesium and calcium in surface, ground and domestic water by flow-injection analysis. Fresenius’ Z. Anal. Chem. 1980, 302, 370–374. [Google Scholar] [CrossRef]
- Madejczyk, M.; Baralkiewicz, D. Characterization of Polish rape and honeydew honey according to their mineral contents using ICP-MS and F-AAS/AES. Anal. Chim. Acta 2008, 617, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Harrington, J.M.; Young, D.J.; Essader, A.S.; Sumner, S.J.; Levine, K.E. Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: Development of a mineralomics method. Biol. Trace Elem. Res. 2014, 160, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Iwachido, T.; Shinomiya, M.; Zenki, M. Ion chromatographic determination of sodium, potassium, magnesium and calcium ions in river water. Anal. Sci. 1990, 6, 277–282. [Google Scholar] [CrossRef]
- de Caland, L.B.; Silveira, E.L.C.; Tubino, M. Determination of sodium, potassium, calcium and magnesium cations in biodiesel by ion chromatography. Anal. Chim. Acta 2012, 718, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Hafez, H.M.; El Deeb, S.; Naji, E.A.A.; Aziz, Z.A.; Mahmood, A.S.; Khalil, N.I.; Ibrahim, A.E. Design of an Experimental Study for the Simultaneous Determination of Cefepime, Piperacillin and Tazobactam Using Micellar Organic Solvent-Free HPLC. Separations 2022, 9, 215. [Google Scholar] [CrossRef]
- Ich Harmonised Tripartite Guideline. In Validation of Analytical Procedures Text and Methodology Q2 (R1); Somatek Inc.: San Diego CA, USA, 2015; pp. 11–12.
- Ieggli, C.V.S.; Bohrer, D.; do Nascimento, P.C.; de Carvalho, L.M. Determination of sodium, potassium, calcium, magnesium, zinc and iron in emulsified chocolate samples by flame atomic absorption spectrometry. Food Chem. 2011, 124, 1189–1193. [Google Scholar] [CrossRef]
- Hafez, H.M.; El Deeb, S.; Mahmoud Swaif, M.; Ismail Ibrahim, R.; Ali Kamil, R.; Salman Abdelwahed, A.; Ehab Ibrahim, A. Micellar Organic-solvent Free HPLC Design of Experiment for the Determination of Ertapenem and Meropenem; Assessment using GAPI, AGREE and Analytical Eco-scale models. Microchem. J. 2022, 185, 108262. [Google Scholar] [CrossRef]
- Silvestri, C.; Silvestri, L.; Forcina, A.; Di Bona, G.; Falcone, D. Green chemistry contribution towards more equitable global sustainability and greater circular economy: A systematic literature review. J. Clean. Prod. 2021, 294, 126137. [Google Scholar] [CrossRef]
- Keith, L.H.; Gron, L.U.; Young, J.L. Green analytical methodologies. Chem. Rev. 2007, 107, 2695–2708. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.E.; Sharaf, Y.A.; El Deeb, S.; Sayed, R.A. Analytical Performance and Greenness Evaluation of Five Multi-Level Design Models Utilized for Impurity Profiling of Favipiravir, a Promising COVID-19 Antiviral Drug. Molecules 2022, 27, 3658. [Google Scholar] [CrossRef] [PubMed]
- Ballester-Caudet, A.; Campíns-Falcó, P.; Pérez, B.; Sancho, R.; Lorente, M.; Sastre, G.; González, C. A new tool for evaluating and/or selecting analytical methods: Summarizing the information in a hexagon. TrAC Trends Anal. Chem. 2019, 118, 538–547. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Nowak, P.M.; Wietecha-Posłuszny, R.; Pawliszyn, J. White Analytical Chemistry: An approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC Trends Anal. Chem. 2021, 138, 116223. [Google Scholar] [CrossRef]
- Michalski, R.; Pecyna-Utylska, P. Green Aspects of Ion Chromatography versus Other Methods in the Analysis of Common Inorganic Ions. Separations 2021, 8, 235. [Google Scholar] [CrossRef]
- Saraya, R.E.; Deeb, S.E.; Salman, B.I.; Ibrahim, A.E. Highly sensitive high-performance thin-layer chromatography method for the simultaneous determination of molnupiravir, favipiravir, and ritonavir in pure forms and pharmaceutical formulations. J. Sep. Sci. 2022, 45, 2582–2590. [Google Scholar] [CrossRef] [PubMed]
- Michalski, R.; Pecyna-Utylska, P. Ion chromatography as a part of green analytical chemistry. Arch. Environ. Prot. 2020, 46, 3–9. [Google Scholar]
Time (min) | Mobile Phase-A | Mobile Phase-B |
---|---|---|
0.00 | 15 | 85 |
20.00 | 45 | 55 |
20.01 | 15 | 85 |
30.00 | 15 | 85 |
Standard | Sodium Sulfate | Potassium Sulfate | Magnesium Sulfate | |||
---|---|---|---|---|---|---|
R% * | RSD ** | R% * | RSD ** | R% * | RSD ** | |
Accuracy | ||||||
QCL | 98.30 | 0.21 | 98.80 | 0.20 | 97.14 | 0.20 |
QCM | 98.20 | 0.10 | 98.51 | 0.15 | 98.62 | 0.10 |
QCH | 99.30 | 0.15 | 99.11 | 0.15 | 99.30 | 0.15 |
Repeatability | ||||||
QCM | 100.80 | 0.42 | 99.82 | 0.41 | 100.37 | 0.41 |
Intermediate Precision | ||||||
QCM within 3 days | 100.60 | 0.23 | 99.71 | 0.16 | 100.36 | 0.23 |
QCM different analyst | 100.71 | 0.34 | 99.87 | 0.31 | 100.6 | 0.32 |
Magnesium Sulfate * | Potassium Sulfate * | Sodium Sulfate * | Parameter |
---|---|---|---|
100.27 ± 0.59 | 99.83 ± 0.31 | 99.85 ± 0.50 | Flow rate ± 0.12 mL/min |
100.29 ± 0.39 | 100.1 ± 0.25 | 99.87 ± 0.68 | Column temp. ± 5 °C |
Solution Stability (Hours) | Sodium | Potassium | Magnesium | |||
---|---|---|---|---|---|---|
%Assay | %Difference | %Assay | %Difference | %Assay | %Difference | |
Initial | 100.0 | - | 100.0 | - | 100.0 | - |
21 h | 100.1 | 0.1 | 100.2 | 0.2 | 100.2 | 0.2 |
35 h | 100.1 | 0.1 | 100.1 | 0.1 | 99.9 | 0.1 |
55 h | 100.6 | 0.6 | 100.6 | 0.6 | 100.5 | 0.5 |
Proposed Green IC Method | Reported Method [13] | Reported Method [18] | |
---|---|---|---|
Technique | Green IC coupled with conductivity | ICP-OES and ICP-MS | Flame AAS |
Matrix | Pharmaceutical dosage forms | Human blood and serum | Food (Chocolate) |
Working ranges | |||
K (µg/mL) | 20.0–60.0 | 20.0–40.0 | 1.0–10.0 |
Na (µg/mL) | 80.0–240.0 | 20.0–40.0 | 1.0–3.0 |
Mg (µg/mL) | 4.5–13.5 | 10.0–40.0 | 0.5–4.0 |
Sample preparation | None | Microwave digestion for 16 min | Sample emulsificaion using Tween 80 and Triton X100 |
Total analysis time | 17 min | Average 20 min | Average 30 min |
GAPI Greenness assessment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yelampalli, S.R.; Gandla, K.; Reddy, K.T.K.; Ibrahim, A.E.; El Deeb, S. Determination of Sodium, Potassium, and Magnesium as Sulfate Salts in Oral Preparations Using Ion Chromatography and Conductivity Detection. Separations 2023, 10, 99. https://doi.org/10.3390/separations10020099
Yelampalli SR, Gandla K, Reddy KTK, Ibrahim AE, El Deeb S. Determination of Sodium, Potassium, and Magnesium as Sulfate Salts in Oral Preparations Using Ion Chromatography and Conductivity Detection. Separations. 2023; 10(2):99. https://doi.org/10.3390/separations10020099
Chicago/Turabian StyleYelampalli, Suresh Reddy, Kumaraswamy Gandla, Konatham Teja Kumar Reddy, Adel Ehab Ibrahim, and Sami El Deeb. 2023. "Determination of Sodium, Potassium, and Magnesium as Sulfate Salts in Oral Preparations Using Ion Chromatography and Conductivity Detection" Separations 10, no. 2: 99. https://doi.org/10.3390/separations10020099
APA StyleYelampalli, S. R., Gandla, K., Reddy, K. T. K., Ibrahim, A. E., & El Deeb, S. (2023). Determination of Sodium, Potassium, and Magnesium as Sulfate Salts in Oral Preparations Using Ion Chromatography and Conductivity Detection. Separations, 10(2), 99. https://doi.org/10.3390/separations10020099