Anti-Inflammatory, Anti-Oxidant, GC-MS Profiling and Molecular Docking Analyses of Non-Polar Extracts from Five Salsola Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material and Preparation of the Non-Polar Extracts
2.3. Gas Chromatography–Mass Spectroscopy (GC–MS) Analysis
2.4. Biological Activity
2.4.1. Anti-Inflammatory Study
2.4.2. Anti-Oxidant Activity
2.5. Molecular Docking
2.6. Statistical Analysis
3. Results
3.1. GC-MS Analysis of the n-hexane Extracts
3.2. Anti-Oxidant Activity
3.3. Anti-Inflammatory Activity
3.4. Molecular Docking
4. Discussion
Molecular Docking
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osman, S.M.; El Kashak, W.A.; Wink, M.; El Raey, M.A. New isorhamnetin derivatives from Salsola imbricata Forssk. leaves with distinct anti-inflammatory activity. Pharmacogn. Mag. 2016, 12, S47. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, A.M.; Moschini, R.; De Leo, M.; Pineschi, C.; Balestri, F.; Cappiello, M.; Braca, A.; Del-Corso, A. Chemical profile and nutraceutical features of Salsola soda (agretti): Anti-inflammatory and antidiabetic potential of its flavonoids. Food Biosci. 2020, 37, 100713. [Google Scholar] [CrossRef]
- Abdalla, W.E.; El Ghazali, G.E.; Al-Soqeer, A.R.A. A Checklist to the Family Chenopodiaceae in Qassim Region, Saudi Arabia. J. Agric. Vet. Sci. 2016, 8, 2. [Google Scholar] [CrossRef]
- Janbaz, K.; Aslam, N.; Imran, I.; Jabeen, Q. Evaluation of anti-inflammatory, analgesic and antipyretic activities of Salsola imbricata forssk in rats. JAPS J. Anim. Plant Sci. 2021, 31, 862–867. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Al-Omar, M.S.; Mohammed, S.A.; Alhowail, A.H.; Eldeeb, H.M.; Sajid, M.S.; Abd-Elmoniem, E.M.; Alghulayqeh, O.A.; Kandil, Y.I.; Khan, R.A. Phytochemical Analysis, Pharmacological and Safety Evaluations of Halophytic Plant, Salsola cyclophylla. Molecules 2021, 26, 2384. [Google Scholar] [CrossRef]
- Küçükboyacı, N.; Küpeli Akkol, E.; Suntarİhsan Çalış, İ.; Çalış, İ. In vivo Anti-Inflammatory and Antinociceptive Activities of the Extracts and Chemical Constituents of an Endemic Turkish Plant, Salsola grandis. Rec. Nat. Prod. 2016, 10, 369–379. [Google Scholar]
- Rasheed, D.M.; El Zalabani, S.M.; Koheil, M.A.; El-Hefnawy, H.M.; Farag, M.A. Metabolite profiling driven analysis of Salsola species and their anti-acetylcholinesterase potential. Nat. Prod. Res. 2013, 27, 2320–2327. [Google Scholar] [CrossRef]
- Oueslati, M.H.; Ben Jannet, H.; Mighri, Z.; Chriaa, J.; Abreu, P.M. Phytochemical constituents from Salsola tetrandra. J. Nat. Prod. 2006, 69, 1366–1369. [Google Scholar] [CrossRef]
- Elsharabasy, F.S.; Hosney, A.M. Chemical constituents from the aerial parts of Salsola inermis. Egypt. Pharm. J. 2013, 12, 90. [Google Scholar] [CrossRef]
- ElNaggar, M.H.; Eldehna, W.M.; Abourehab, M.A.; Abdel Bar, F.M. The old world salsola as a source of valuable secondary metabolites endowed with diverse pharmacological activities: A review. J. Enzym. Inhib. Med. Chem. 2022, 37, 2036–2062. [Google Scholar] [CrossRef]
- Recio, C.M.; Andujar, I.; Rios, L.J. Anti-inflammatory agents from plants: Progress and potential. Curr. Med. Chem. 2012, 19, 2088–2103. [Google Scholar] [CrossRef]
- Taylor, J.; Van Staden, J.; Jäger, A. COX-1 and COX-2 inhibitory activity in extracts prepared from Eucomis species, with further reference to extracts from E. autumnalis autumnalis. S. Afr. J. Bot. 2002, 68, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh, M.S.; Niazi, A.; Moghadam, A.; Afsharifar, A. Experimental, molecular docking and molecular dynamic studies of natural products targeting overexpressed receptors in breast cancer. PLoS ONE 2022, 17, e0267961. [Google Scholar] [CrossRef]
- Sanghani, H.; Ganatra, S.; Pande, R. Molecular—Docking studies of potent anticancer agent. J. Comput. Sci. Syst. Biol. 2012, 5, 12–15. [Google Scholar] [CrossRef]
- Karim, N.; Khan, I.; Khan, W.; Khan, I.; Khan, A.; Halim, S.A.; Khan, H.; Hussain, J.; Al-Harrasi, A. Anti-nociceptive and anti-inflammatory activities of asparacosin a involve selective cyclooxygenase 2 and inflammatory cytokines inhibition: An in-vitro, in-vivo, and in-silico approach. Front. Immunol. 2019, 10, 581. [Google Scholar] [CrossRef] [Green Version]
- Amin, E.; Elwekeel, A.; Alshariedh, N.F.; Abdel-Bakky, M.S.; Hassan, M.H. GC-MS Analysis and Bioactivities of the Essential Oil of Suaeda aegyptiaca. Separations 2022, 9, 439. [Google Scholar] [CrossRef]
- Bakar, M.F.A.; Mohamed, M.; Rahmat, A.; Fry, J. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chem. 2009, 113, 479–483. [Google Scholar] [CrossRef]
- Orlando, B.J.; Malkowski, M.G. Substrate-selective inhibition of cyclooxygeanse-2 by fenamic acid derivatives is dependent on peroxide tone. J. Biol. Chem. 2016, 291, 15069–15081. [Google Scholar] [CrossRef] [Green Version]
- Cingolani, G.; Panella, A.; Perrone, M.G.; Vitale, P.; Di Mauro, G.; Fortuna, C.G.; Armen, R.S.; Ferorelli, S.; Smith, W.L.; Scilimati, A. Structural basis for selective inhibition of Cyclooxygenase-1 (COX-1) by diarylisoxazoles mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6). Eur. J. Med. Chem. 2017, 138, 661–668. [Google Scholar] [CrossRef]
- Sales-Campos, H.; Reis de Souza, P.; Crema Peghini, B.; Santana da Silva, J.; Ribeiro Cardoso, C. An overview of the modulatory effects of oleic acid in health and disease. Mini-Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar] [CrossRef]
- ZURE, C.V.; PINJARI, R.V. Development and Validation of 2D GC-FID Method for Quantitative Analysis of cis-and trans-Hexyl Cinnamic Aldehyde and its Major Impurity 2-Hexyl-2-decenal. Asian J. Chem. 2018, 30, 1088–1092. [Google Scholar] [CrossRef]
- Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Pinto, M.E.; Araujo, S.G.; Morais, M.I.; Sá, N.P.; Lima, C.M.; Rosa, C.A.; Siqueira, E.P.; Johann, S.; Lima, L.A. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An. Acad. Bras. Cienc. 2017, 89, 1671–1681. [Google Scholar] [CrossRef] [Green Version]
- Vahdati, S.N.; Lashkari, A.; Navasatli, S.A.; Ardestani, S.K.; Safavi, M. Butylated hydroxyl-toluene, 2, 4-Di-tert-butylphenol, and phytol of Chlorella sp. protect the PC12 cell line against H2O2-induced neurotoxicity. Biomed. Pharmacother. 2022, 145, 112415. [Google Scholar] [CrossRef]
- Javed, F.; Jabeen, Q. Salsola imbricata Forssk. ameliorates acetic acid-induced inflammatory bowel disease by modulating dysregulated antioxidant enzyme system and cytokine signaling pathways in mice. Asian Pac. J. Trop. Biomed. 2021, 11, 527. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef]
- Sermakkani, M.; Thangapandian, V. GC-MS analysis of Cassia italica leaf methanol extract. Asian J. Pharm. Clin. Res. 2012, 5, 90–94. [Google Scholar]
- Ha, Y.L.; Storkson, J.; Pariza, M.W. Inhibition of benzo (a) pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res. 1990, 50, 1097–1101. [Google Scholar] [PubMed]
- Wilsy, J.I.; Beschi, D.A.; Appavoo, M.R.; Wilsy, J.I. GC-MS analysis, collected from Kavalkinaru area, Tirunelveli District, Tamil Nadu, India. Eur. J. Mol. Clin. 2021, 7, 4287–4292. [Google Scholar]
- Linos, A.; Kaklamanis, E.; Kontomerkos, A.; Koumantaki, Y.; Gazi, S.; Vaiopoulos, G.; Tsokos, G.; Kaklamanis, P. The effect of olive oil and fish consumption on rheumatoid arthritis-a case control study. Scand. J. Rheumatol. 1991, 20, 419–426. [Google Scholar] [CrossRef]
- Kremer, J.M.; Lawrence, D.A.; Jubiz, W.; Digiacomo, R.; Rynes, R.; Bartholomew, L.E.; Sherman, M. Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis clinical and immunologic effects. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1990, 33, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Lipworth, L.; Martı́nez, M.a.E.; Angell, J.; Hsieh, C.-C.; Trichopoulos, D. Olive oil and human cancer: An assessment of the evidence. PrevMed 1997, 26, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Llorens, O.; Perez, J.J.; Palomer, A.; Mauleon, D. Differential binding mode of diverse cyclooxygenase inhibitors. J. Mol. Graph. Model. 2002, 20, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Marnett, L.J.; Rowlinson, S.W.; Goodwin, D.C.; Kalgutkar, A.S.; Lanzo, C.A. Arachidonic Acid Oxygenation by COX-1 and COX-2: Mechanisms of Catalysis and Inhibition* 210. J. Biol. Chem. 1999, 274, 22903–22906. [Google Scholar] [CrossRef]
- Limongelli, V.; Bonomi, M.; Marinelli, L.; Gervasio, F.L.; Cavalli, A.; Novellino, E.; Parrinello, M. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition. Proc. Natl. Acad. Sci. USA 2010, 107, 5411–5416. [Google Scholar] [CrossRef]
No | Compound Name | RT | % Area | Molecular Formula | ||||
---|---|---|---|---|---|---|---|---|
S. arabica | S. cyclophylla | S. imbricata | S. inscanescens | S. villosa | ||||
1 | Eucalyptol | 6.14 | ND | ND | ND | ND | 2.28 | C10H18O |
2 | Undecane | 7.68 | 2.52 | ND | ND | ND | ND | C11H24 |
3 | Dodecane | 9.77 | 5.56 | ND | ND | ND | ND | C12H26 |
4 | 6-Methyloctadecane | 10.05 | 1.38 | ND | ND | ND | ND | C19H40 |
5 | 2,6,10-Trimethyltetradecane | 11.34 | 2.13 | ND | ND | ND | ND | C17H36 |
6 | 5-octadecene, (E) | 14.00 | ND | 1.76 | ND | ND | ND | C18H36 |
7 | Tetradecane | 14.14 | ND | 0.95 | ND | ND | ND | C14H30 |
8 | 2,5-di-tert-Butyl-1,4-benzoquinone | 15.81 | ND | 0.87 | ND | ND | ND | C14H20O2 |
9 | Nonadecane | 16.21 | ND | 0.94 | ND | ND | ND | C19H40 |
10 | 2,4-Di-tert-butylphenol | 17.27 | ND | 10.41 | ND | ND | ND | C14H22O |
11 | 1-hexadecanol | 18.09 | ND | 13.66 | ND | ND | 1.23 | C16H34O |
12 | Hexadecane | 18.20 | ND | 1.89 | ND | ND | ND | C16H34 |
13 | 6,12-epoxy-11α-eudesma-4,6-dien-3-one | 19.07 | ND | 0.63 | ND | ND | ND | C15H20O2 |
14 | Cinnamaldehyde, α-pentyl- | 19.56 | ND | ND | 1.93 | ND | ND | C14H18O |
15 | 1-Hexadecanol, 2-methyl- | 20.07 | ND | 0.80 | ND | ND | ND | C17H36O |
16 | Tetradecanoic acid, methyl ester | 20.65 | ND | 0.88 | ND | ND | ND | C15H30O2 |
17 | 12,15-Octadecadiynoic acid, methyl ester | 20.66 | ND | ND | 1.93 | ND | 1.42 | C19H30O2 |
18 | Benzene, (1-butyloctyl)- | 20.75 | ND | ND | ND | ND | 0.59 | C18H30 |
19 | Benzene, (1-propylheptadecyl)- | 20.99 | ND | ND | ND | ND | 0.63 | C26H46 |
20 | Cinnamaldehyde, α-hexyl- | 21.37 | ND | ND | 57.15 | ND | ND | C15H20O |
21 | Benzene, (1-ethyldecyl)- | 21.38 | ND | ND | ND | ND | 0.59 | C18H30 |
22 | Phenol, 4-dodecyl- | 21.42 | ND | 1.02 | ND | ND | ND | C18H30O |
23 | 4-nonylphenol | 21.54 | ND | 0.77 | ND | ND | ND | C15H24O |
24 | 1-nonadecene | 21.76 | ND | ND | ND | ND | 4.33 | C19H38 |
25 | 1-octadecene | 21.79 | ND | 14.46 | ND | ND | ND | C18H36 |
26 | Trans-Z-α-bisabolene epoxide | 21.97 | ND | 4.16 | ND | ND | ND | C15H24O |
27 | Benzene, (1-methylundecyl)- | 22.10 | ND | ND | ND | ND | 0.76 | C18H30 |
28 | 9-octadecenoic acid, (2-phenyl-1,3-dioxolan-4-yl) methyl ester, trans- | 22.22 | ND | 1.01 | ND | ND | ND | C28H44O4 |
29 | Methyl ionone | 22.37 | ND | 0.26 | ND | ND | ND | C14H22O |
30 | 10,13-octadecadiynoic Acid, methyl ester | 22.42 | ND | ND | ND | 0.69 | 1.42 | C19H30O2 |
31 | Benzoic acid, tetradecyl ester | 22.54 | ND | 3.13 | ND | ND | ND | C21H34O2 |
32 | Methyl octadec-6,9-dien-12-ynoate | 22.55 | ND | ND | ND | ND | 1.10 | C19H30O2 |
33 | Hexahydrofarnesyl acetone | 22.77 | ND | ND | ND | 1.29 | 3.65 | C18H36O |
34 | Benzoic acid, pentadecyl ester | 22.81 | ND | 11.31 | ND | ND | ND | C22H36O2 |
35 | (4Z,6Z,9Z)-1,4,6,9-Nonadecatetraene | 23.17 | ND | 4.34 | ND | ND | 0.60 | C19H32 |
36 | Benzoic acid, octadecyl ester | 23.70 | ND | 0.91 | ND | ND | ND | C25H42O2 |
37 | Eicosane, 2-phenyl | 23.86 | ND | ND | ND | 0.59 | 0.73 | C26H46 |
38 | Hexadecanoic acid, methyl ester (Methyl palmitate) | 24.12 | ND | 5.27 | 4.36 | 6.77 | 26.15 | C17H34O2 |
39 | 7,9-di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione | 24.42 | ND | 1.04 | ND | ND | ND | C17H24O3 |
40 | 6-ethyl-5-hydroxy-2,3,7-tri methoxynaphthoquinone | 24.53 | ND | ND | ND | 0.89 | 0.70 | C15H16O6 |
41 | 1-eicosanol | 25.12 | ND | ND | 1.76 | 1.25 | 3.06 | C20H42O |
42 | 1-docosene | 25.14 | ND | 9.48 | ND | ND | ND | C22H44 |
43 | 9,12-octadecadienoic acid (Z,Z)-, methyl ester (Methyl linoleate) | 26.82 | ND | ND | 2.42 | 5.28 | 17.81 | C19H34O2 |
44 | 9-octadecenoic acid (Z)- methyl ester (Methyl oleate) | 26.89 | ND | 2.72 | ND | 5.41 | 16.34 | C19H36O2 |
45 | 11-Octadecenoic acid, methyl ester | 26.92 | 3.00 | ND | ND | ND | ND | C19H36O2 |
46 | Methyl 9,12,15-octadecatrienoate | 26.93 | ND | ND | 4.54 | ND | ND | C19H32O2 |
47 | Phytol | 27.20 | ND | ND | 5.77 | ND | 2.96 | C20H40O |
48 | Octadecanoic acid, methyl ester (Methyl stearate) | 27.28 | ND | ND | ND | 0.79 | ND | C19H38O2 |
49 | 13-docosenoic acid; (Erucic acid) | 28.19 | ND | ND | ND | 0.81 | 1.22 | C22H42O2 |
50 | Heptacos-1-ene | 28.20 | ND | 3.67 | ND | ND | ND | C27H54 |
51 | Oleic Acid | 28.44 | 75.57 | ND | ND | ND | 0.57 | C18H34O2 |
52 | 2-Methyl-E,E-3,13-octadecadien-1-ol | 30.23 | 5.36 | ND | ND | ND | ND | C19H36O |
53 | 1-docosanol | 31.02 | ND | ND | 1.56 | ND | ND | C22H46O |
54 | Nonacosanol | 31.77 | ND | ND | ND | 1.37 | ND | C29H60O |
55 | 1-dotriacontanol | 31.87 | ND | ND | ND | 6.30 | ND | C32H66O |
56 | 1-heptacosanol | 32.12 | ND | ND | ND | 12.58 | ND | C27H56O |
57 | Octacosanol | 32.21 | ND | ND | ND | 19.30 | ND | C28H58O |
58 | Octacosyl heptafluorobutyrate | 32.45 | ND | ND | ND | 25.36 | ND | C32H57F7O2 |
59 | 17-pentatriacontene | 32.72 | ND | ND | ND | 1.40 | ND | C35H70 |
60 | Octatriacontyl pentafluoropropionate | 32.79 | ND | ND | ND | 1.35 | ND | C41H77F5O2 |
61 | Diisooctyl phthalate | 33.24 | 4.48 | ND | 6.18 | 7.62 | 11.87 | C24H38O4 |
62 | Cis-13-eicosenoic acid | 33.71 | ND | 0.60 | ND | ND | ND | C20H38O2 |
63 | Oleic acid, eicosyl ester | 36.21 | ND | 0.48 | ND | ND | ND | C38H74O2 |
64 | 9-Octadecenoic acid, 1,2,3-propanetriyl ester, (E,E,E)- | 36.82 | ND | ND | 3.81 | ND | ND | C57H104O6 |
65 | (Z,Z)-1,3-dioctadecenoyl glycerol | 36.87 | ND | 0.50 | ND | ND | ND | C39H72O5 |
66 | (2-phenyl-1,3-dioxolan-4-yl) methyl (9E)-9-octadecenoate | 37.13 | ND | ND | 1.24 | ND | ND | C28H44O4 |
67 | Glycidyl oleate | 37.53 | ND | ND | 1.55 | ND | ND | C21H38O3 |
Extract | COX-1 | COX-2 | SI |
---|---|---|---|
IC50 µg/mL | IC50 µg/mL | ||
Indomethacin | 1.7 ± 0.09 | 9.7 ± 0.28 | 0.18 |
Celecoxib | 13.9 ± 0.70 a | 0.8 ± 0.02 a | 16.6 |
S. arabica | 18.9 ± 0.95 a | 13.1 ± 0.37 ab | 1.44 |
S. villosa | 45.7 ± 2.32 abc | 4.6 ± 0.13 abc | 10 |
S. cyclophylla | 73.4 ± 3.71 abcd | 20.1 ± 0.57 abcd | 3.66 |
S. imbricata | 10.2 ± 0.52 acde | 87.9 ± 2.5 abcde | 0.12 |
S. inscanescence | 33.3 ± 1.69 abcdef | 35.7 ± 1.01 abcdef | 0.93 |
S. villosa | S. imbricata | ||||
---|---|---|---|---|---|
NO. | Metabolites Name | COX-2 Binding Score kcal/mol | NO. | Metabolites Name | COX-1 Binding Score kcal/mol |
1 | Eucalyptol | −4.817 | 14 | Cinnamaldehyde, α-pentyl- | −6.351 |
11 | 1-hexadecanol | −7.640 | 17 | 12,15-Octadecadiynoic acid, methyl ester | −8.658 |
17 | 12,15-Octadecadiynoic acid, methyl ester | −8.709 | |||
18 | Benzene, (1-butyloctyl)- | −7.055 | 20 | Cinnamaldehyde, α-hexyl- | −6.660 |
19 | Benzene, (1-propylheptadecyl)- | −8.018 | 38 | Hexadecanoic acid, methyl ester (Methyl palmitate) | −6.651 |
21 | Benzene, (1-ethyldecyl)- | −7.107 | |||
24 | 1-nonadecene | −7.610 | 41 | 1-eicosanol | 7.623 |
27 | Benzene, (1-methylundecyl)- | −6.516 | |||
30 | 10,13-octadecadiynoic Acid, methyl ester | −8.966 | 43 | 9,12-octadecadienoic acid (Z,Z) -, methyl ester (Methyl linoleate) | −7.189 |
32 | Methyl octadec-6,9-dien-12-ynoate | −8.166 | |||
33 | Hexahydrofarnesyl acetone | −6.915 | 46 | Methyl 9,12,15-octadecatrienoate | −8.160 |
35 | 4Z,6Z,9Z-1,4,6,9-nonadecatetraene | −8.046 | |||
37 | Eicosane, 2-phenyl | −8.060 | 47 | Phytol | −7.230 |
38 | Hexadecanoic acid, methyl ester (Methyl palmitate) | −7.627 | |||
40 | 6-ethyl-5-hydroxy-2,3,7-trimethoxynaphthoquinone | −7.742 | 53 | 1-docosanol | −7.431 |
41 | 1-eicosanol | −7.441 | |||
43 | 9,12-octadecadienoic acid (Z,Z) -, methyl ester (Methyl linoleate) | −8.562 | 61 | Diisooctyl phthalate | −7.493 |
44 | 9-octadecenoic acid (Z)- methyl ester (Methyl oleate) | −8.357 | |||
47 | Phytol | −7.184 | 64 | 9-Octadecenoic acid, 1,2,3-propanetriyl ester, (E, E, E) | NA |
49 | 13-docosenoic acid; Erucic acid | −8.850 | 66 | (2-phenyl-1,3-dioxolan-4-yl) methyl (9E)-9-octadecenoate | −8.817 |
51 | Oleic acid | −7.756 | |||
61 | Diisooctyl phthalate | −7.735 | 67 | Glycidyl oleate | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elwekeel, A.; Hassan, M.H.A.; Almutairi, E.; AlHammad, M.; Alwhbi, F.; Abdel-Bakky, M.S.; Amin, E.; Mohamed, E.I.A. Anti-Inflammatory, Anti-Oxidant, GC-MS Profiling and Molecular Docking Analyses of Non-Polar Extracts from Five Salsola Species. Separations 2023, 10, 72. https://doi.org/10.3390/separations10020072
Elwekeel A, Hassan MHA, Almutairi E, AlHammad M, Alwhbi F, Abdel-Bakky MS, Amin E, Mohamed EIA. Anti-Inflammatory, Anti-Oxidant, GC-MS Profiling and Molecular Docking Analyses of Non-Polar Extracts from Five Salsola Species. Separations. 2023; 10(2):72. https://doi.org/10.3390/separations10020072
Chicago/Turabian StyleElwekeel, Ahlam, Marwa H. A. Hassan, Ebtihaj Almutairi, Maryam AlHammad, Farah Alwhbi, Mohamed Sadek Abdel-Bakky, Elham Amin, and Enas I. A. Mohamed. 2023. "Anti-Inflammatory, Anti-Oxidant, GC-MS Profiling and Molecular Docking Analyses of Non-Polar Extracts from Five Salsola Species" Separations 10, no. 2: 72. https://doi.org/10.3390/separations10020072
APA StyleElwekeel, A., Hassan, M. H. A., Almutairi, E., AlHammad, M., Alwhbi, F., Abdel-Bakky, M. S., Amin, E., & Mohamed, E. I. A. (2023). Anti-Inflammatory, Anti-Oxidant, GC-MS Profiling and Molecular Docking Analyses of Non-Polar Extracts from Five Salsola Species. Separations, 10(2), 72. https://doi.org/10.3390/separations10020072