Application of a Small Protein-Coated Column to Trap, Extract and Enrich Carbamazepine Directly from Human Serum for Direct Chromatographic Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instruments
2.3. Mobile Phase
2.4. BF-DSI-BA-HPLC-UV
2.5. Calibration Standards and Quality Control Samples
2.6. Recovery, Precision, and Accuracy
3. Results
3.1. Chromatographic Conditions
3.2. Switching Valve Timing
3.3. Back-Flush Elution Mode
3.4. Breakthrough Study and Loading Capacity of PC-ODS-Pre-Column
3.5. PC-ODS-Pre-Column Lifetime
3.6. Method Validation
3.6.1. Linearity, Detection and Quantification Limits
3.6.2. Recovery, Precision, and Accuracy
3.6.3. Selectivity and Specificity
3.7. Stability Studies
3.8. Robustness
3.9. Features of the PC-ODS-Pre-Column and BF-DSI-BA-HPLC-UV Methodology Regarding Their Performance, Economic Perspective and Green Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olling, M.; Mensinga, T.T.; Barends, D.M.; Groen, C.; Lake, O.A.; Meulenbent, J. Bioavailability of Carbamazepine from Four Different Products and the Occurrence of Side Effects. Biopharm. Drug Dispos. 1999, 20, 19–28. [Google Scholar] [CrossRef]
- Prakash, S.; Rathore, C.; Rana, K.; Patel, H. Antiepileptic Drugs and Serotonin Syndrome- A Systematic Review of Case Series and Case Reports. Seizure 2021, 91, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Datar, P.A. Quantitative Bioanalytical and Analytical Method Development of Dibenzazepine Derivative, Carbamazepine: A Review. J. Pharm. Anal. 2015, 5, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.E.C.; Carrilho, E.; Carvalho, D.; Lanças, F.M. Comparison of High-Resolution Gas Chromatography and High-Performance Liquid Chromatography for Simultaneous Determination of Lamotrigine and Carbamazepine in Plasma. Chromatographia 2001, 53, 485–489. [Google Scholar] [CrossRef]
- Yoshida, T.; Imai, K.; Motohashi, S.; Hamano, S.I.; Sato, M. Simultaneous Determination of Zonisamide, Carbamazepine and Carbamazepine-10,11-Epoxide in Infant Serum by High-Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 2006, 41, 1386–1390. [Google Scholar] [CrossRef]
- Fedorova, G.A.; Baram, G.I.; Grachev, M.A.; Aleksandrov, Y.A.; Tyuleneva, G.N.; Starodubtsev, A.V. Application of Micro-Column HPLC to the Determination of Phenobarbital and Carbamazepine in Human Blood Serum. Chromatographia 2001, 53, 495–497. [Google Scholar] [CrossRef]
- Ezzeldin, E.; Shahat, A.A.; Basudan, O.A. Development and Validation of an HPLC Method for the Determination of Carbamazepine in Human Plasma. Life Sci. J. 2013, 10, 2159–2163. [Google Scholar]
- Levert, H.; Odou, P.; Robert, H. Simultaneous Determination of Four Antiepileptic Drugs in Serum by High-Performance Liquid Chromatography. Biomed. Chromatogr. 2002, 24, 19–24. [Google Scholar] [CrossRef]
- Tuchila, C.; Baconi, D.L.; Pirvu, C.D.; Balalau, D.O.; Vlasceanu, A.M.; Stan, M.; Balalau, C. Therapeutic Drug Monitoring and Methods of Quantitation for Carbamazepine. J. Mind Med. Sci. 2017, 4, 101–114. [Google Scholar] [CrossRef]
- Ateş, Z.; Özden, T.; Özilhan, S.; Toptan, S. Simultaneous Determination of Carbamazepine and its Active Metabolite Carbamazepine-10,11-Epoxide in Human Plasma by UPLC. Chromatographia 2007, 66, 123–127. [Google Scholar] [CrossRef]
- Behbahani, M.; Najafi, F.; Bagheri, S.; Bojdi, M.; Salarian, M.; Bagheri, A. Application of Surfactant Assisted Dispersive Liquid–Liquid Microextraction as an Efficient Sample Treatment Technique for Preconcentration and Trace Detection of Zonisamide and Carbamazepine in Urine and Plasma Samples. J. Chromatogr. A 2013, 1308, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Greiner-sosanko, E.; Lower, D.R.; Virji, M.A.; Krasowski, M.D. Simultaneous Determination of Lamotrigine, Zonisamide, and Carbamazepine in Human Plasma by High-Performance Liquid Chromatography. Biomed. Chromatogr. 2007, 228, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.K.; Ban, E.; Woo, J.S.; Kim, C. Analysis of Carbamazepine and its Active Metabolite, Carbamazepine-10, 11-Epoxide, in Human Plasma Using High-Performance Liquid Chromatography. Anal. Bioanal. Chem. 2006, 386, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.M.; Bodhankar, S.L. Simultaneous Determination of Lamotrigine, Phenobarbitone, Carbamazepine and Phenytoin in Human Serum by High-Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 2005, 39, 181–186. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, J.-Q. Simultaneous Detection of Sulfamethoxazole, Diclofenac, Carbamazepine, and Bezafibrate by Solid Phase Extraction and High Performance Liquid Chromatography with Diode Array Detection. J. Appl. Spectrosc. 2014, 81, 273–278. [Google Scholar] [CrossRef]
- Shimoyama, R.; Ohkubo, T.; Sugawara, K. Monitoring of Carbamazepine and Carbamazepine 10, 11-Epoxide in Breast Milk and Plasma by High-Performance Liquid Chromatography. Ann. Clin. Biochem. 2000, 37, 210–215. [Google Scholar] [CrossRef]
- Vermeij, T.A.C.; Edelbroek, P.M. Robust Isocratic High Performance Liquid Chromatographic Method for Simultaneous Determination of Seven Antiepileptic Drugs Including Lamotrigine, Oxcarbazepine and Zonisamide in Serum after Solid-Phase Extraction. J. Chromatogr. B 2007, 857, 40–46. [Google Scholar] [CrossRef]
- Mandrioli, R.; Albani, F.; Casamenti, G.; Sabbioni, C.; Raggi, M.A. Simultaneous High-Performance Liquid Chromatography Determination of Carbamazepine and Five of its Metabolites in Plasma of Epileptic Patients. J. Chromatogr. B 2001, 762, 109–116. [Google Scholar] [CrossRef]
- Subramanian, M.; Birnbaum, A.K.; Remmel, R.P. High-Speed Simultaneous Determination of Nine Antiepileptic Drugs Using Liquid Chromatography–Mass Spectrometry. Ther. Drug Monit. 2008, 30, 347–356. [Google Scholar] [CrossRef]
- Yin, L.; Wang, T.; Zhang, Y.; Zhao, X.; Yang, Y.; Gu, J. Simultaneous Determination of Ten Antiepileptic Drugs in Human Plasma by Liquid Chromatography and Tandem Mass Spectrometry with Positive/Negative Ion-Switching Electrospray Ionization and its Application in Therapeutic Drug Monitoring. J. Sep. Sci. 2016, 39, 964–972. [Google Scholar] [CrossRef]
- Rodina, T.A.; Mel’nikov, E.S.; Sokolov, A.V.; Prokof’ev, A.B.; Arkhipov, V.V.; Aksenov, A.A.; Pozdnyakov, D.L. Rapid HPLC-MS/MS Determination of Carbamazepine and Carbamazepine-10,11-Epoxide. Pharm. Chem. J. 2016, 50, 419–423. [Google Scholar] [CrossRef]
- Breton, H.; Cociglio, M.; Bressolle, F.; Peyriere, H.; Blayac, J.P.; Hillaire-Buys, D. Liquid Chromatography–Electrospray Mass Spectrometry Determination of Carbamazepine, Oxcarbazepine and Eight of Their Metabolites in Human Plasma. J. Chromatogr. B 2005, 828, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Taibon, J.; Schmid, R.; Lucha, S.; Pongratz, S.; Tarasov, K.; Seger, C.; Timm, C.; Thiele, R.; Herlan, J.M.; Kobold, U. An LC-MS/MS Based Candidate Reference Method for the Quantification of Carbamazepine in Human Serum. Clin. Chim. Acta 2017, 472, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Lajeunesse, A.; Vernouillet, G.; Eullaffroy, P.; Gagnon, C.; Sauvé, S. Determination of Carbamazepine in Aquatic Organisms by Liquid–Liquid Extraction and Liquid Chromatography-Tandem Mass Spectrometry. J. Environ. Monit. 2009, 11, 723–725. [Google Scholar] [CrossRef]
- Rooyen, G.F.V.; Badenhorst, D.; Swart, K.J.; Hundt, H.K.L.; Scanes, T.; Hundt, A.F. Determination of Carbamazepine and Carbamazepine 10,11-Epoxide in Human Plasma by Tandem Liquid Chromatography–Mass Spectrometry with Electrospray Ionisation. J. Chromatogr. B 2002, 769, 1–7. [Google Scholar] [CrossRef]
- Qu, L.; Fan, Y.; Wang, W.; Ma, K.; Zheng Yin, Z. Development, Validation and Clinical Application of an Online-SPE-LC-HRMS/MS for Simultaneous Quantification of Phenobarbital, Phenytoin, Carbamazepine, and its Active Metabolite Carbamazepine 10,11-Epoxide. Talanta 2016, 158, 77–88. [Google Scholar] [CrossRef]
- Miao, X.; Metcalfe, C.D. Determination of Carbamazepine and its Metabolites in Aqueous Samples Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Anal. Chem. 2003, 75, 3731–3738. [Google Scholar] [CrossRef]
- Martin, P.D.; Jones, G.R.; Stringer, F.; Wilson, I.D. Comparison of Normal and Reversed-Phase Solid Phase Extraction Methods for Extraction of β-Blockers from Plasma Using Molecularly Imprinted Polymers. Analyst 2003, 128, 345–350. [Google Scholar] [CrossRef]
- Liang, Y.; Zhou, I. Recent Advances of Online Coupling of Sample Preparation Techniques with Ultrahigh Performance Liquid Chromatography and Supercritical Fluid Chromatography. J. Sep. Sci. 2019, 42, 226–242. [Google Scholar] [CrossRef]
- Emara, S.; Masujima, T.; Zarad, W.; Kamal, M.; Fouad, M.; El-bagary, R. An Eco-Friendly Direct Injection HPLC Method for Methyldopa Determination in Serum by Mixed-Mode Chromatography Using a Single Protein-Coated Column. J. Chromatogr. Sci. 2015, 53, 1353–1360. [Google Scholar] [CrossRef]
- Emara, S.; Saleh, G.; Fathy, M.; Bakr, M.A. Chromatographic Assay and Pharmacokinetic Studies of Propofol in Human Serum. Biomed. Chromatogr. 1999, 13, 299–303. [Google Scholar] [CrossRef]
- Emara, S.; El-Gindy, A.; Mesbah, M.K.; Hadad, G.M. Direct Injection Liquid Chromatographic Technique for Simultaneous Determination of Two Antihistaminic Drugs and Their Main Metabolites in Serum. J. AOAC Int. 2007, 90, 384–390. [Google Scholar] [CrossRef] [PubMed]
Parameters | Carbamazepine |
---|---|
Calibration range (ng/mL) | 50–10,000 |
LOD (ng/mL) | 12 |
LOQ (ng/mL) | 42 |
Regression equation (Y) a: | |
Slope (b) | 0.2126 |
Intercept (a) | 4.1773 |
Correlation coefficient (r2) | 0.9992 |
Nominal Concentration (ng/mL) | Recovery (%) a ± SD | RSD (%) | Mean RE (%) | |
---|---|---|---|---|
Intra-assay | 50 | 86.14 ± 6.88 | 7.98 | −13.86 |
500 | 92.53 ± 5.34 | 5.77 | −7.47 | |
5000 | 96.71 ± 3.87 | 4.00 | −3.29 | |
8000 | 97.82 ± 3.25 | 3.32 | −2.18 | |
Inter-assay | 50 | 85.55 ± 7.32 | 8.55 | −14.45 |
500 | 91.95 ± 6.04 | 6.56 | −8.05 | |
4000 | 96.16 ± 4.28 | 4.45 | −3.84 | |
8000 | 97.02 ± 3.86 | 3.97 | −2.98 |
Linearity Range | LOQ | Sample Matrix | Sample Preparation | Method | Reference |
---|---|---|---|---|---|
0.25–20 µg/mL | 0.1 µg/mL | plasma | PPE | HPLC/UV | [4] |
0.5–16 µg/mL | 0.5 µg/mL | serum | PPE | HPLC/UV | [5] |
0.1–200 µg/mL | 0.1 µg/mL | serum | LLE | HPLC/UV | [6] |
0.1–8.0 µg/mL | 0.1 µg/mL | plasma | PPE/LLE | HPLC/UV | [7] |
0.5–100 µg/mL | 0.66 µg/mL | serum | PPE | HPLC/UV | [8] |
0.05–5 µg/mL | 0.05 µg/mL | plasma | PPE | UPLC/UV | [10] |
5–200 µg/mL | 5 μg/mL | plasma | LLE | HPLC/UV | [11] |
2–20 μg/mL | 0.25 μg/mL | serum | LLE | HPLC/UV | [12] |
0.01–10 μg/mL | 0.01 µg/mL | plasma | LLE | HPLC/UV | [13] |
0.5–40 μg/ml | 0.1 μg/ml | serum | PPE | HPLC/UV | [14] |
0.01–6.0 µg/mL | 0.1 μg/ml | milk | SPE | HPLC/UV | [16] |
0.37–14.8 µg/mL | 0.37 µg/mL | serum | SPE | HPLC/UV | [17] |
0.5–15.0 µg/mL | 0.5 µg/mL | plasma | SPE | HPLC/UV | [18] |
0.05–50 μg/ml | 0.05 µg/mL | plasma | PPE | HPLC/MS | [20] |
0.05–20 µg/mL | 0.05 µg/mL | serum | PPE | HPLC/MS | [21] |
0.5–20 µg/mL | 0.5 µg/mL | plasma | PPE | HPLC/MS | [22] |
0.1–22 μg/ml | 0.1 μg/mL | serum | PPEs | HPLC/MS | [23] |
0.83–6693 ng/mL | 0.83 ng/mL | plasma | LLE | HPLC/MS | [25] |
0.0016–0.5 µg/mL | 0.0016 µg/mL | plasma | SPE | HPLC/MS | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonbol, H.; Ebrahim, H.; Malak, M.; Ali, A.; Aboulella, Y.; Hadad, G.; Emara, S.; Shawky, A. Application of a Small Protein-Coated Column to Trap, Extract and Enrich Carbamazepine Directly from Human Serum for Direct Chromatographic Analysis. Separations 2023, 10, 71. https://doi.org/10.3390/separations10020071
Sonbol H, Ebrahim H, Malak M, Ali A, Aboulella Y, Hadad G, Emara S, Shawky A. Application of a Small Protein-Coated Column to Trap, Extract and Enrich Carbamazepine Directly from Human Serum for Direct Chromatographic Analysis. Separations. 2023; 10(2):71. https://doi.org/10.3390/separations10020071
Chicago/Turabian StyleSonbol, Heba, Hager Ebrahim, Monika Malak, Ahmed Ali, Yasmine Aboulella, Ghada Hadad, Samy Emara, and Ahmed Shawky. 2023. "Application of a Small Protein-Coated Column to Trap, Extract and Enrich Carbamazepine Directly from Human Serum for Direct Chromatographic Analysis" Separations 10, no. 2: 71. https://doi.org/10.3390/separations10020071
APA StyleSonbol, H., Ebrahim, H., Malak, M., Ali, A., Aboulella, Y., Hadad, G., Emara, S., & Shawky, A. (2023). Application of a Small Protein-Coated Column to Trap, Extract and Enrich Carbamazepine Directly from Human Serum for Direct Chromatographic Analysis. Separations, 10(2), 71. https://doi.org/10.3390/separations10020071