Recent Advances in the Effects of Biochar on Constructed Wetlands: Treatment Performance and Microorganisms
Abstract
:1. Introduction
2. Improving the Performance of Constructed Wetlands Using Biochar
2.1. Performance Enhancement with Biochar and Immobilized Microorganisms
2.2. Combined Enhancement with Biochar and the Oxygen Supply
2.3. Performance Enhancement with Biochar Electrochemical Coupling
2.4. Performance Enhancement with Biochar Modification
3. Effects of Biochar on Microbial Communities in Constructed Wetlands
3.1. Effects of Biochar on the Composition and Structure of EPSs
3.2. Effect of Biochar on Enzyme Activity
3.3. Effects of Biochar on Functional Genes
3.4. Effects of Biochar on Microbial Alpha Diversity
3.5. Effects of Biochar on Microbial Community Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ji, B.; Chen, J.; Mei, J.; Chang, J.; Li, X.; Jia, W.; Qu, Y. Roles of biochar media and oxygen supply strategies in treatment performance, greenhouse gas emissions, and bacterial community features of subsurface-flow constructed wetlands. Bioresour. Technol. 2020, 302, 122890. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Dong, L.; Han, C.; Li, M.; Wu, H. Effects of biochar dosage on treatment performance, enzyme activity and microbial community in aerated constructed wetlands for treating low C/N domestic sewage. Environ. Technol. Innov. 2021, 24, 101919. [Google Scholar] [CrossRef]
- Parde, D.; Patwa, A.; Shukla, A.; Vijay, R.; Killedar, D.J.; Kumar, R. A review of constructed wetland on type, treatment and technology of wastewater. Environ. Technol. Innov. 2021, 21, 101261. [Google Scholar] [CrossRef]
- Feng, L.K.; Wang, R.G.; Jia, L.X.; Wu, H.M. Can biochar application improve nitrogen removal in constructed wetlands for treating anaerobically-digested swine wastewater? Chem. Eng. J. 2020, 379, 122273. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, S.; He, F.; Liang, W.; Wu, Z. Effects of Cd2+ and Pb2+ on the substrate bioflms in the integrated vertical-flow constructed wetland. J. Environ. Sci. 2008, 20, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Langenhoff, A.; Bruning, H.; Rijnaarts, H. Sorption of micropollutants on selected constructed wetland support matrices. Chemosphere 2021, 275, 130050. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, R.; Liu, H.; Wu, S.; Wu, H. Nitrogen removal responses to biochar addition in intermittent-aerated subsurface flow constructed wetland microcosms: Enhancing role and mechanism. Ecol. Eng. 2019, 128, 57–65. [Google Scholar] [CrossRef]
- Deng, C.; Huang, L.; Liang, Y.; Xiang, H.; Jiang, J.; Wang, Q.; Hou, J.; Chen, Y. Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands: Microbial community structure and metabolite characteristics. Sci. Total Environ. 2019, 694, 133687. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Yang, Z.; Xiao, L. Synergetic effects of biochars and denitrifier on nitrate removal. Bioresour. Technol. 2021, 335, 125245. [Google Scholar] [CrossRef]
- Zhong, L.; Yang, S.-S.; Ding, J.; Wang, G.-Y.; Chen, C.-X.; Xie, G.-J.; Xu, W.; Yuan, F.; Ren, N.-Q. Enhanced nitrogen removal in an electrochemically coupled biochar-amended constructed wetland microcosms: The interactive effects of biochar and electrochemistry. Sci. Total Environ. 2021, 789, 147761. [Google Scholar] [CrossRef]
- Li, J.; Fan, J.; Zhang, J.; Hu, Z.; Liang, S. Preparation and evaluation of wetland plant-based biochar for nitrogen removal enhancement in surface flow constructed wetlands. Environ. Sci. Pollut. Res. 2018, 25, 13929–13937. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.-L.; Li, M.; Li, Y.; Zhang, L.; Xu, X.; Wu, H.; Liang, S.; Su, C.; Zhang, J. The performance and mechanism of biochar-enhanced constructed wetland for wastewater treatment. J. Water Process Eng. 2022, 45, 102522. [Google Scholar] [CrossRef]
- Deng, S.; Chen, J.; Chang, J. Application of biochar as an innovative substrate in constructed wetlands/biofilters for wastewater treatment: Performance and ecological benefits. J. Clean. Prod. 2021, 293, 126156. [Google Scholar] [CrossRef]
- Xing, C.; Xu, X.; Xu, Z.; Wang, R.; Xu, L. Study on the Decontamination Effect of Biochar-Constructed Wetland under Different Hydraulic Conditions. Water 2021, 13, 893. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Y.; Zhang, J.; Li, C.; Wu, H. Dynamic variation in nitrogen removal of constructed wetlands modified by biochar for treating secondary livestock effluent under varying oxygen supplying conditions. J. Environ. Manag. 2020, 260, 110152. [Google Scholar] [CrossRef]
- Hamada, M.S.; Ibaid, Z.Z.; Shatat, M. Performance of citrus charcoal and olivepomace charcoal as natural substrates in the treatment of municipal wastewater by vertical flow subsurface constructed wetlands. Bioresour. Technol. Rep. 2021, 15, 100801. [Google Scholar] [CrossRef]
- Zhang, Z.; Solaiman, Z.M.; Meney, K.; Murphy, D.V.; Rengel, Z. Biochars immobilize soil cadmium, but do not improve growth of emergent wetland species Juncus subsecundus in cadmium-contaminated soil. J. Soils Sediments 2013, 13, 140–151. [Google Scholar] [CrossRef]
- Feng, L.; Gao, Z.; Hu, T.; He, S.; Liu, Y.; Jiang, J.; Zhao, Q.; Wei, L. Performance and mechanisms of biochar-based materials additive in constructed wetlands for enhancing wastewater treatment efficiency: A review. Chem. Eng. J. 2023, 471, 144772. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, C.; Wu, H. Sustainable utilization of wetland biomass for activated carbon production: A review on recent advances in modification and activation methods. Sci. Total Environ. 2021, 790, 148214. [Google Scholar] [CrossRef]
- Cui, X.; Hao, H.; Zhang, C.; He, Z.; Yang, X. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Sci. Total Environ. 2016, 539, 566–575. [Google Scholar] [CrossRef]
- Hou, W.; Wang, S.; Li, Y.; Hao, Z.; Zhang, Y.; Kong, F. Influence of modified biochar supported Fe-Cu/polyvinylpyrrolidone on nitrate removal and high selectivity towards nitrogen in constructed wetlands. Environ. Pollut. 2021, 289, 117812. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, H.; Bañuelos, G.; Shutes, B.; Yan, B.; Cheng, R. Biochar reduces nitrous oxide but increases methane emissions in batch wetland mesocosms. Chem. Eng. J. 2020, 392, 124842. [Google Scholar] [CrossRef]
- Guo, X.F.; Cui, X.Y.; Li, H.S. Effects of fillers combined with biosorbents on nutrient and heavy metal removal from biogas slurry in constructed wetlands. Sci. Total Environ. 2020, 703, 134788. [Google Scholar] [CrossRef]
- Bonetti, G.; Trevathan-Tackett, S.M.; Hebert, N.; Carnell, P.E.; Macreadie, P.I. Microbial community dynamics behind major release of methane in constructed wetlands. Appl. Soil Ecol. 2021, 167, 104163. [Google Scholar] [CrossRef]
- Bolton, L.; Joseph, S.; Greenway, M.; Donne, S.; Munroe, P.; Marjo, C.E. Phosphorus adsorption onto an enriched biochar substrate in constructed wetlands treating wastewater. Ecol. Eng. 2019, 142, 100005. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Kirui, W.K.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Ajibade, F.O.; Yin, W.-X.; Guadie, A.; Ajibade, T.F.; Liu, Y.; Kumwimba, M.N.; Liu, W.-Z.; Han, J.-L.; Wang, H.-C.; Wang, A.-J. Impact of biochar amendment on antibiotic removal and ARGs accumulation in constructed wetlands for low C/N wastewater treatment. Chem. Eng. J. 2023, 459, 141541. [Google Scholar] [CrossRef]
- Madadi, R.; Bester, K. Fungi and biochar applications in bioremediation of organic micropollutants from aquatic media. Mar. Pollut. Bull. 2021, 166, 112247. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Hu, S.S.; Vymazal, J.; Chen, Z.B. Arbuscular mycorrhizal symbiosis in constructed wetlands with different substrates: Effects on the phytoremediation of ibuprofen and diclofenac. J. Environ. Manag. 2021, 296, 113217. [Google Scholar] [CrossRef] [PubMed]
- El Barkaoui, S.; Mandi, L.; Aziz, F.; Del Bubba, M.; Ouazzani, N. A critical review on using biochar as constructed wetland substrate: Characteristics, feedstock, design and pollutants removal mechanisms. Ecol. Eng. 2023, 190, 106927. [Google Scholar] [CrossRef]
- Lei, Y.; Wagner, T.; Rijnaarts, H.; de Wilde, V.; Langenhoff, A. The removal of micropollutants from treated effluent by batch-operated pilot-scale constructed wetlands. Water Res. 2023, 230, 119494. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Peng, H.; Fu, Y.; Yan, X.; Du, C.; Chen, H. Enhanced nitrogen removal of low C/N wastewater in constructed wetlands with co-immobilizing solid carbon source and denitrifying bacteria. Bioresour. Technol. 2019, 280, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Niu, J.; Zhong, L.; Chen, K.; Wang, G.; Yan, M.; Li, D.; Yao, Z. Biochar raw material selection and application in the food chain: A review. Sci. Total Environ. 2022, 836, 155571. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Yang, Y.C.; Yang, L.Y.; Gao, Y. High-efficient nitrogen removal and its microbiological mechanism of a novel carbon self-sufficient constructed wetland. Sci. Total Environ. 2021, 775, 145901. [Google Scholar] [CrossRef]
- Jia, L.; Wang, R.; Feng, L.; Zhou, X.; Lv, J.; Wu, H. Intensified nitrogen removal in intermittently-aerated vertical flow constructed wetlands with agricultural biomass: Effect of influent C/N ratios. Chem. Eng. J. 2018, 345, 22–30. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.; Zhang, H.; Wu, H. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland. Bioresour. Technol. 2017, 241, 269–275. [Google Scholar] [CrossRef]
- Chand, N.; Suthar, S.; Kumar, K.; Tyagi, V.K. Enhanced removal of nutrients and coliforms from domestic wastewater in cattle dung biochar-packed Colocasia esculenta-based vertical subsurface flow constructed wetland. J. Water Process Eng. 2021, 41, 101994. [Google Scholar] [CrossRef]
- Feng, L.K.; Wu, H.M.; Zhang, J.; Brix, H. Simultaneous elimination of antibiotics resistance genes and dissolved organic matter in treatment wetlands: Characteristics and associated relationship. Chem. Eng. J. 2021, 415, 128966. [Google Scholar] [CrossRef]
- Zhuang, L.-L.; Yang, T.; Zhang, J.; Li, X. The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. Bioresour. Technol. 2019, 293, 122086. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, Z.; Li, Z.; Wu, H. Impacts of aeration and biochar addition on extracellular polymeric substances and microbial communities in constructed wetlands for low C/N wastewater treatment: Implications for clogging. Chem. Eng. J. 2020, 396, 125349. [Google Scholar] [CrossRef]
- Guo, Z.Z.; Kang, Y.; Hu, Z.; Liang, S.; Xie, H.J.; Ngo, H.H.; Zhang, J. Removal pathways of benzofluoranthene in a constructed wetland amended with metallic ions embedded carbon. Bioresour. Technol. 2020, 311, 123481. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Jia, L.; Liang, C.; Feng, L.; Wang, R.; Wu, H. Simultaneous enhancement of nitrogen removal and nitrous oxide reduction by a saturated biochar-based intermittent aeration vertical flow constructed wetland: Effects of influent strength. Chem. Eng. J. 2018, 334, 1842–1850. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, L.; Zhang, H.; Wu, H. Determination of the optimal aeration for nitrogen removal in biochar-amended aerated vertical flow constructed wetlands. Bioresour. Technol. 2018, 261, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Liu, C.; Wang, S.; Wang, W.; Zhao, S.; Zhu, G. Applying constructed wetland-microbial electrochemical system to enhance NH4+ removal at low temperature. Sci. Total Environ. 2020, 724, 138017. [Google Scholar] [CrossRef]
- Prado, A.; Berenguer, R.; Esteve-Núñez, A. Electroactive biochar outperforms highly conductive carbon materials for biodegrading pollutants by enhancing microbial extracellular electron transfer. Carbon 2019, 146, 597–609. [Google Scholar] [CrossRef]
- Prathiba, S.; Kumar, P.S.; Vo, D.-V.N. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere 2022, 286, 131856. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, P.; Qiu, Y.; Zhang, Z.; Wang, X.; Yu, Y.; Feng, Y. Biosynthetic FeS/BC hybrid particles enhanced the electroactive bacteria enrichment in microbial electrochemical systems. Sci. Total Environ. 2021, 762, 143142. [Google Scholar] [CrossRef]
- Saeed, T.; Miah, M.J.; Khan, T. Intensified constructed wetlands for the treatment of municipal wastewater: Experimental investigation and kinetic modelling. Environ. Sci. Pollut. Res. 2021, 28, 30908–30928. [Google Scholar] [CrossRef]
- Jia, W.; Sun, X.; Gao, Y.; Yang, Y.; Yang, L. Fe-modified biochar enhances microbial nitrogen removal capability of constructed wetland. Sci. Total Environ. 2020, 740, 139534. [Google Scholar] [CrossRef]
- Wu, H.; Ma, W.; Kong, Q.; Liu, H. Spatial-temporal dynamics of organics and nitrogen removal in surface flow constructed wetlands for secondary effluent treatment under cold temperature. Chem. Eng. J. 2018, 350, 445–452. [Google Scholar] [CrossRef]
- Wang, B.; Liu, S.-y.; Li, F.-y.; Fan, Z.-p. Removal of nitrate from constructed wetland in winter in high-latitude areas with modified hydrophyte biochars. Korean J. Chem. Eng. 2017, 34, 717–722. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L. Preparation of straw biochar and application of constructed wetland in China: A review. J. Clean. Prod. 2020, 273, 123131. [Google Scholar] [CrossRef]
- Sha, N.Q.; Wang, G.H.; Li, Y.H.; Bai, S.Y. Removal of abamectin and conventional pollutants in vertical flow constructed wetlands with Fe-modified biochar. Rsc Adv. 2020, 10, 44171–44182. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, J.; Kang, Y.; Liu, H. Rapid and efficient removal of Pb(II) from aqueous solutions using biomass-derived activated carbon with humic acid in-situ modification. Ecotoxicol. Environ. Saf. 2017, 145, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Zhongsheng, Z.; Zhe, L.; Haitao, W. Removal of nitrogen and phosphorus pollutants from water by FeCl3-impregnated biochar. Ecol. Eng. 2020, 149, 105792. [Google Scholar] [CrossRef]
- Kasak, K.; Truu, J.; Ostonen, I.; Sarjas, J.; Oopkaup, K.; Paiste, P.; Koiv-Vainik, M.; Mander, U.; Truu, M. Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Sci. Total Environ. 2018, 639, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, X.; Huang, J.; Huang, M.; Wang, T.; Bao, S.; Tang, W.; Fang, T. The contributions and mechanisms of iron-microbes-biochar in constructed wetlands for nitrate removal from low carbon/nitrogen ratio wastewater. Rsc Adv. 2020, 10, 23212–23220. [Google Scholar] [CrossRef]
- Easton, Z.M.; Rogers, M.; Davis, M.; Wade, J.; Eick, M.; Bock, E. Mitigation of sulfate reduction and nitrous oxide emission in denitrifying environments with amorphous iron oxide and biochar. Ecol. Eng. 2015, 82, 605–613. [Google Scholar] [CrossRef]
- Jia, L.; Wu, W.; Zhang, J.; Wu, H. Insight into heavy metals (Cr and Pb) complexation by dissolved organic matters from biochar: Impact of zero-valent iron. Sci. Total Environ. 2021, 793, 148469. [Google Scholar] [CrossRef]
- Tang, S.; Liao, Y.; Xu, Y.; Dang, Z.; Zhu, X.; Ji, G. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: A review. Bioresour. Technol. 2020, 314, 123759. [Google Scholar] [CrossRef]
- Zhou, Y.; Ji, B.; Jiang, M.; Jin, Y.; Chang, J. Performance and microbial community features of tidal-flow biochar-amended constructed wetlands treating sodium dodecyl sulfate (SDS)-containing greywater. J. Clean. Prod. 2023, 396, 136545. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, J.; Wang, X.; Liu, Y.; Wang, S.; Kong, F. Interactions of chlorpyrifos degradation and Cd removal in iron-carbon-based constructed wetlands for treating synthetic farmland wastewater. J. Environ. Manag. 2021, 299, 113559. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, X.; Gan, L.; He, Z.; Zhu, J.; Zhang, W.; Gao, Y.; Yang, L. Effects of biochar on the growth of Vallisneria natans in surface flow constructed wetland. Environ. Sci. Pollut. Res. 2021, 28, 66158–66170. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.C.; Feng, L.J.; Yin, H.J.; Chen, K.Q.; Hu, G.H.; Yang, G.F.; Zhou, J.H. Assessment of nutrient removal and microbial population dynamics in a non-aerated vertical baffled flow constructed wetland for contaminated water treatment with composite biochar addition. J. Environ. Manag. 2019, 246, 355–361. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, Q.; Huang, L.; Liu, M.; Wang, N.; Chen, Y. Insight into the mechanisms of biochar addition on pollutant removal enhancement and nitrous oxide emission reduction in subsurface flow constructed wetlands: Microbial community structure, functional genes and enzyme activity. Bioresour. Technol. 2020, 307, 123249. [Google Scholar] [CrossRef] [PubMed]
- Gotore, O.; Rameshprabu, R.; Itayama, T. Adsorption performances of corn cob-derived biochar in saturated and semi-saturated vertical-flow constructed wetlands for nutrient removal under erratic oxygen supply. Environ. Chem. Ecotoxicol. 2022, 4, 155–163. [Google Scholar] [CrossRef]
- Peng, Y.; He, S.; Wu, F. Biochemical processes mediated by iron-based materials in water treatement: Enhancing nitrogen and phosphorus removal in low C/N ratio wastewater. Sci. Total Environ. 2021, 775, 145137. [Google Scholar] [CrossRef]
- Jia, L.; Li, C.; Zhang, Y.; Chen, Y.; Li, M.; Wu, S.; Wu, H. Microbial community responses to agricultural biomass addition in aerated constructed wetlands treating low carbon wastewater. J. Environ. Manag. 2020, 270, 110912. [Google Scholar] [CrossRef]
- Shen, X.T.; Zhang, J.; Xie, H.J.; Sun, B.; Liang, S.; Wu, H.M.; Hu, Z.; Ngo, H.H.; Guo, W.S.; Lu, J.X. Electron shuttles enhance phenanthrene removal in constructed wetlands filled with manganese oxides-coated sands. Chem. Eng. J. 2021, 426, 131755. [Google Scholar] [CrossRef]
- Saeed, T.; Haque, I.; Khan, T. Organic matter and nutrients removal in hybrid constructed wetlands: Influence of saturation. Chem. Eng. J. 2019, 371, 154–165. [Google Scholar] [CrossRef]
CW Techniques | Oxygen Supply | Biochar | COD/N | Wastewater Type | Removal Efficiency (%) | N2O Emission Flux (μg⋅m−2⋅h−1) | References | |||
---|---|---|---|---|---|---|---|---|---|---|
Source | COD | NH4+-N | NO3−-N | TN | ||||||
SSFCW | Intermittent aeration | Bamboo | <7 | Synthetic wastewaters | 89–99% | 97–99% | - | 46–98% | [7] | |
VFCW | Intermittent aeration | Oenanthe javanica | low C/N | Synthetic wastewaters | 95–97% | 63–98% | 63–82% | 271–884 μg m−2 h−1 | [45] | |
VFCW | Intermittent aeration | Oenanthe javanica | low C/N | Synthetic wastewaters | 94.90% | 99.10% | 52.70% | 60.54 μg m−2 h−1 | [38] | |
VFCW | Intermittent aeration | low C/N | Synthetic wastewaters | >90% | >99% | >67% | [2] | |||
VFCW | Intermittent aeration | 0.5 | Synthetic wastewaters | 97% | 99% | 96% | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, G.; Huang, J.; Chen, H.; Chen, J.; Ge, S.; Liu, J.; Zhen, D. Recent Advances in the Effects of Biochar on Constructed Wetlands: Treatment Performance and Microorganisms. Separations 2023, 10, 593. https://doi.org/10.3390/separations10120593
Yu G, Huang J, Chen H, Chen J, Ge S, Liu J, Zhen D. Recent Advances in the Effects of Biochar on Constructed Wetlands: Treatment Performance and Microorganisms. Separations. 2023; 10(12):593. https://doi.org/10.3390/separations10120593
Chicago/Turabian StyleYu, Guanlong, Jiajun Huang, Huifang Chen, Jundan Chen, Shiyong Ge, Jiaxin Liu, and Dian Zhen. 2023. "Recent Advances in the Effects of Biochar on Constructed Wetlands: Treatment Performance and Microorganisms" Separations 10, no. 12: 593. https://doi.org/10.3390/separations10120593
APA StyleYu, G., Huang, J., Chen, H., Chen, J., Ge, S., Liu, J., & Zhen, D. (2023). Recent Advances in the Effects of Biochar on Constructed Wetlands: Treatment Performance and Microorganisms. Separations, 10(12), 593. https://doi.org/10.3390/separations10120593