Rational Fabrication of Benzene-Linked Porous Polymers for Selective CO2 Capture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Characterization
2.3. Adsorption Tests
3. Results and Discussion
3.1. Characterization
3.2. Gas Adsorption Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, K.S.; Fritz, P.W.; Coskun, A. Porous organic polymers for CO2 capture, separation and conversion. Chem. Soc. Rev. 2022, 51, 9831–9852. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, M.; Nayak, S.P.; Ruiz, A.D.; Jiang, W. Current status and pillars of direct air capture technologies. iScience 2022, 25, 103990. [Google Scholar] [CrossRef] [PubMed]
- De Kleijne, K.; Hanssen, S.V.; van Dinteren, L.; Huijbregts, M.A.J.; van Zelm, R.; de Coninck, H. Limits to Paris compatibility of CO2 capture and utilization. One Earth 2022, 5, 168–185. [Google Scholar] [CrossRef]
- Xie, F.; Sun, W.; Pinacho, P.; Schnell, M. CO2 aggregation on monoethanolamine: Observations from rotational spectroscopy. Angew. Chem. Int. Ed. 2023, 62, e202218539. [Google Scholar] [CrossRef] [PubMed]
- Jørsboe, J.K.; Vinjarapu, S.H.B.; Neerup, R.; Møller, A.C.; Jensen, S.; Abildskov, J.; Fosbøl, P. Mobile pilot plant for CO2 capture in biogas upgrading using 30 wt% MEA. Fuel 2023, 350, 128702–128713. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Wang, Y.; Zhao, Q.; Sun, H. Progress in the separation and purification of carbon hydrocarbon compounds using MOFs and molecular sieves. Separations 2023, 10, 543. [Google Scholar] [CrossRef]
- Ghalib, L.; Abdulkareem, A.; Ali, B.S.; Mazari, S.A. Modeling the rate of corrosion of carbon steel using activated diethanolamine solutions for CO2 absorption. Chin. J. Chem. Eng. 2020, 28, 2099–2110. [Google Scholar] [CrossRef]
- Rashidi, H.; Sahraie, S. Enhancing carbon dioxide absorption performance using the hybrid solvent: Diethanolamine-methanol. Energy 2021, 221, 119799. [Google Scholar] [CrossRef]
- Choi, B.-K.; Kim, S.-M.; Kim, K.-M.; Lee, U.; Choi, J.H.; Lee, J.-S.; Baek, I.H.; Nam, S.C.; Moon, J.-H. Amine blending optimization for maximizing CO2 absorption capacity in a diisopropanolamine–methyldiethanolamine-H2O system using the electrolyte UNIQUAC model. Chem. Eng. J. 2021, 419, 129517. [Google Scholar] [CrossRef]
- Haghtalab, A.; Gholami, V. Carbon dioxide solubility in the aqueous mixtures of diisopropanolamine + l-arginine and diethanolamine + l-arginine at high pressures. J. Mol. Liq. 2019, 288, 111064. [Google Scholar] [CrossRef]
- Seah, G.L.; Wang, L.; Tan, L.F.; Tipjanrawee, C.; Sasangka, W.A.; Usadi, A.K.; McConnachie, J.M.; Tan, K.W. Ordered mesoporous alumina with tunable morphologies and pore sizes for CO2 capture and dye separation. ACS Appl. Mater. Interfaces 2021, 13, 36117–36129. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Yang, H.; Yu, Y.; Choi, Y.; Kim, N.; Kim, G.H.; Ko, K.C.; Na, K. A sustainable carbon-consuming cycle based on sequential activation of CO2 and CH4 using metal oxides. Appl. Catal. B Environ. 2023, 339, 123120. [Google Scholar] [CrossRef]
- Mat, N.; Timmiati, S.N.; Teh, L.P. Recent development in metal oxide-based core-shell material for CO2 capture and utilisation. Appl. Nanosci. 2022, 13, 3797–3817. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Saliy, O.; Hu, W.; Wang, J. Robust amino-functionalized mesoporous silica hollow spheres templated by CO2 bubbles. Molecules 2021, 27, 53. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, L.; Li, S.; Liu, C.; He, H. The capture and catalytic conversion of CO2 by dendritic mesoporous silica-based nanoparticles. Energy Environ. Mater. 2023, 6, e12593. [Google Scholar] [CrossRef]
- Pardakhti, M.; Jafari, T.; Tobin, Z.; Dutta, B.; Moharreri, E.; Shemshaki, N.S.; Suib, S.; Srivastava, R. Trends in solid adsorbent materials development for CO2 capture. ACS Appl. Mater. Interfaces 2019, 11, 34533–34559. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Senkovska, I.; Oschatz, M.; Lohe, M.R.; Borchardt, L.; Heerwig, A.; Liu, Q.; Kaskel, S. Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties. ACS Appl. Mater. Interfaces 2013, 5, 3160–3167. [Google Scholar] [CrossRef]
- Li, P.; Xing, C.; Qu, S.; Li, B.; Shen, W. Carbon dioxide capturing by nitrogen-doping microporous carbon. ACS Sustain. Chem. Eng. 2015, 3, 1434–1442. [Google Scholar] [CrossRef]
- Melke, J.; Schuster, R.; Möbus, S.; Jurzinsky, T.; Elsässer, P.; Heilemann, A.; Fischer, A. Electrochemical stability of silica templated polyaniline derived mesoporous N-doped carbons for the design of Pt based oxygen reduction reaction catalysts. Carbon 2019, 146, 44–59. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Wang, C.; Xu, J.; Ma, S.; Ou, J.; Zhang, J.; Li, G.; Wei, Y.; Ye, M. Atomically precise structure determination of porous organic cage from Ab initio PXRD structure analysis: Its molecular click postfunctionalization and CO2 capture application. ACS Appl. Mater. Interfaces 2020, 12, 17815–17823. [Google Scholar] [CrossRef]
- Hao, G.P.; Li, W.C.; Qian, D.; Lu, A.H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 2010, 22, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zou, R.; Zhao, Y. Covalent organic frameworks for CO2 capture. Adv. Mater. 2016, 28, 2855–2873. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, M.; Canale, V.; Wolicki, R.D.; Pilato, S.; Bruni, P.; Ferrari, S.; Siani, G.; Fontana, A.; Di Profio, P. Enhanced CO2 capture by sorption on electrospun poly (methyl methacrylate). Separations 2023, 10, 505. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.; Wang, S.; Gong, T.; Hua, M.; Qian, J.; Pan, B. Metal-free biomass with abundant carbonyl groups as efficient catalyst for the activation of peroxymonosulfate and degradation of sulfamethoxazole. Chem. Eng. J. 2022, 430, 132767. [Google Scholar] [CrossRef]
- Liebl, M.R.; Senker, J. Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chem. Mater. 2013, 25, 970–980. [Google Scholar] [CrossRef]
- Ashourirad, B.; Sekizkardes, A.K.; Altarawneh, S.; El-Kaderi, H.M. Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers. Chem. Mater. 2015, 27, 1349–1358. [Google Scholar] [CrossRef]
- Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J.M.; et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 2009, 48, 9457–9460. [Google Scholar] [CrossRef]
- Li, G.; Zhang, B.; Yan, J.; Wang, Z. Micro- and mesoporous poly(Schiff-base)s constructed from different building blocks and their adsorption behaviors towards organic vapors and CO2 gas. J. Mater. Chem. A 2014, 2, 18881–18888. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.M.; Ganz, E. Adsorption properties and microscopic mechanism of CO2 capture in 1,1-Dimethyl-1,2-ethylenediamine-grafted metal-organic frameworks. ACS Appl. Mater. Interfaces 2020, 12, 18533–18540. [Google Scholar] [CrossRef]
- Jiang, Y.; Tan, P.; Qi, S.C.; Liu, X.Q.; Yan, J.H.; Fan, F.; Sun, L.B. Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: Efficient adsorbents for tailorable CO2 capture. Angew. Chem. Int. Ed. 2019, 58, 6600–6604. [Google Scholar] [CrossRef]
- Rozaini, M.T.; Grekov, D.I.; Bustam, M.A.; Pré, P. Shaping of HKUST-1 via extrusion for the separation of CO2/CH4 in biogas. Separations 2023, 10, 487. [Google Scholar] [CrossRef]
- Wahono, S.K.; Stalin, J.; Addai-Mensah, J.; Skinner, W.; Vinu, A.; Vasilev, K. Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity. Microporous Mesoporous Mater. 2020, 294, 109871–109880. [Google Scholar] [CrossRef]
- Dabbawala, A.A.; Ismail, I.; Vaithilingam, B.V.; Polychronopoulou, K.; Singaravel, G.; Morin, S.; Berthod, M.; Al Wahedi, Y. Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture. Microporous Mesoporous Mater. 2020, 303, 110261–110272. [Google Scholar] [CrossRef]
- He, X.; Chen, D.R.; Wang, W.N. Bimetallic metal-organic frameworks (MOFs) synthesized using the spray method for tunable CO2 adsorption. Chem. Eng. J. 2020, 382, 122825–122836. [Google Scholar] [CrossRef]
- Niu, J.; Li, H.; Tao, L.; Fan, Q.; Liu, W.; Tan, M.C. Defect engineering of low-coordinated metal-organic frameworks (MOFs) for improved CO2 access and capture. ACS Appl. Mater. Interfaces 2023, 15, 31664–31674. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Huang, N.; Xu, H.; Chen, Q.; Jiang, D. A backbone design principle for covalent organic frameworks: The impact of weakly interacting units on CO2 adsorption. Chem. Commun. 2017, 53, 4242–4245. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Jing, X.F.; Yuan, Y.; Zhu, G.S. Synthesis of porous aromatic framework with Friedel-Crafts alkylation reaction for CO2 separation. Chin. Chem. Lett. 2016, 27, 1479–1484. [Google Scholar] [CrossRef]
- Xu, S.; He, J.; Jin, S.; Tan, B. Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity. J. Colloid Interface Sci. 2018, 509, 457–462. [Google Scholar] [CrossRef]
- Wang, X.; Chen, M.; Du, M. A clear insight into the distinguishing CO2 capture by two isostructural Dy(III)-carboxylate coordination frameworks. Inorg. Chem. 2016, 55, 6352–6354. [Google Scholar] [CrossRef]
- Li, Z.; Gao, W.; Meng, A.; Geng, Z.; Gao, L. Large-scale synthesis and raman and photoluminescence properties of single crystalline β-sic nanowires periodically wrapped by amorphous SiO2 nanospheres 2. J. Phys. Chem. C 2009, 113, 91–96. [Google Scholar] [CrossRef]
- Zhong, B.; Kong, L.; Zhang, B.; Yu, Y.; Xia, L. Fabrication of novel hydrophobic SiC/SiO2 bead-string like core-shell nanochains via a facile catalyst/template-free thermal chemical vapor deposition process. Mater. Chem. Phys. 2018, 217, 111–116. [Google Scholar] [CrossRef]
- Buyukcakir, O.; Seo, Y.; Coskun, A. Thinking outside the cage: Controlling the extrinsic porosity and gas uptake properties of shape-persistent molecular cages in nanoporous polymers. Chem. Mater. 2015, 27, 4149–4155. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, G. Porous aromatic frameworks (PAFs). Chem. Rev. 2020, 120, 8934–8986. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, H.; Wang, S.; Guo, W.; Wang, T.; Suo, X.; Jiang, D.E.; Zhu, X.; Popovs, I.; Dai, S. Transformation strategy for highly crystalline covalent triazine frameworks: From staggered AB to eclipsed AA stacking. J. Am. Chem. Soc. 2020, 142, 6856–6860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, N.; Wei, W. Facile and controllable synthesis of ordered mesoporous carbons with tunable single-crystal morphology for CO2 capture. Carbon 2020, 161, 629–638. [Google Scholar] [CrossRef]
- Shi, X.; Xiao, H.; Azarabadi, H.; Song, J.; Wu, X.; Chen, X.; Lackner, K.S. Sorbents for the direct capture of CO2 from ambient air. Angew. Chem. Int. Ed. 2020, 59, 6984–7006. [Google Scholar] [CrossRef]
- Saning, A.; Dubadi, R.; Chuenchom, L.; Dechtrirat, D.; Jaroniec, M. Microporous carbons obtained via solvent-free mechanochemical processing, carbonization and activation with potassium citrate and zinc chloride for CO2 adsorption. Separations 2023, 10, 304. [Google Scholar] [CrossRef]
- Karka, S.; Kodukula, S.; Nandury, S.V.; Pal, U. Polyethylenimine-modified zeolite 13X for CO2 capture: Adsorption and kinetic studies. ACS Omega 2019, 4, 16441–16449. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhan, Z.; Yang, Y.; Liu, M.; Huang, Q.; Tan, B.; Ke, X.; Wu, C. Amine or azo functionalized hypercrosslinked polymers for highly efficient CO2 capture and selective CO2 capture. Mater. Today Commun. 2021, 27, 102338. [Google Scholar] [CrossRef]
- Qi, S.C.; Liu, Y.; Peng, A.Z.; Xue, D.M.; Liu, X.; Liu, X.Q.; Sun, L.B. Fabrication of porous carbons from mesitylene for highly efficient CO2 capture: A rational choice improving the carbon loop. Chem. Eng. J. 2019, 361, 945–952. [Google Scholar] [CrossRef]
- Politakos, N.; Barbarin, I.; Cantador, L.S.; Cecilia, J.A.; Mehravar, E.; Tomovska, R. Graphene-based monolithic nanostructures for CO2 capture. Ind. Eng. Chem. Res. 2020, 59, 8612–8621. [Google Scholar] [CrossRef]
- Vieira, R.B.; Moura, P.A.S.; Vilarrasa-García, E.; Azevedo, D.C.S.; Pastore, H.O. Polyamine-grafted magadiite: High CO2 selectivity at capture from CO2/N2 and CO2/CH4 mixtures. J. CO2 Util. 2018, 23, 29–41. [Google Scholar] [CrossRef]
- Liu, S.; Jin, Y.; Bae, J.-S.; Chen, Z.; Dong, P.; Zhao, S.; Li, R. CO2 derived nanoporous carbons for carbon capture. Microporous Mesoporous Mater. 2020, 305, 110356. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, K.; Atkinson, J.D.; Yan, X.; Li, X.; Rood, M.J.; Yan, Z. Sustainable and hierarchical porous enteromorpha prolifera based carbon for CO2 capture. J. Hazard. Mater. 2012, 229–230, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Sheng, M.; Dong, S.; Qiao, Z.; Li, Q.; Wang, Z. Large-scale preparation of multilayer composite membranes for post-combustion CO2 capture. J. Membr. Sci. 2021, 636, 119595. [Google Scholar] [CrossRef]
- Xu, S.; Huang, H.; Guo, X.; Qiao, Z.; Zhong, C. Highly selective gas transport channels in mixed matrix membranes fabricated by using water-stable Cu-BTC. Sep. Purif. Technol. 2021, 257, 117979. [Google Scholar] [CrossRef]
- Dhoke, C.; Zaabout, A.; Cloete, S.; Amini, S. Review on reactor configurations for adsorption-based CO2 capture. Ind. Eng. Chem. Res. 2021, 60, 3779–3798. [Google Scholar] [CrossRef]
- Raganati, F.; Miccio, F.; Ammendola, P. Adsorption of carbon dioxide for post-combustion capture: A review. Energy Fuels 2021, 35, 12845–12868. [Google Scholar] [CrossRef]
Sample | SBET (m2·g−1) | Vtotal (cm3·g−1) | Vmeso (cm3·g−1) | Vmicro (cm3·g−1) |
---|---|---|---|---|
B-PPM-1 | 680 | 0.61 | 0.33 | 0.28 |
B-PPM-2 | 593 | 0.49 | 0.24 | 0.25 |
B-PPM-3 | 405 | 0.34 | 0.20 | 0.14 |
B-PPM-4 | 309 | 0.26 | 0.17 | 0.09 |
Samples | T/K | SBET (m2·g−1) | CO2 Uptake a (cm3·g−1) | Selectivity b CO2/N2 | Ref. |
---|---|---|---|---|---|
B-PPM-2 | 273 | 593 | 67 | 64.5 | This work |
A5 Zeolite | 273 | 179 | 30.2 | NA | [32] |
BoxPOP-2 | 273 | 225 | 34.7 | NA | [38] |
476-MOF | 273 | 898 | 47.6 | 75 | [39] |
CAGE | 298 | 32 | 23 | 40 | [42] |
M90_0.5 | 298 | 328 | 47 | 53 | [51] |
13X-PEI-60 | 273 | 1.3 | 48.2 | NA | [48] |
PEI-100CP-MAG | 348 | NA | 11.2 | 110 | [52] |
P2 | 273 | 242 | 67.6 | 34 | [49] |
TPI-5 | 273 | 201 | 35 | 46 | [25] |
CO2-NPC-800-15 | 273 | 34.9 | 20.2 | NA | [53] |
AHEP | 273 | 418 | 31 | 47 | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Zhai, F.; Sun, Z.; Chen, J.; Xue, D.; Miao, J. Rational Fabrication of Benzene-Linked Porous Polymers for Selective CO2 Capture. Separations 2023, 10, 581. https://doi.org/10.3390/separations10120581
Yan X, Zhai F, Sun Z, Chen J, Xue D, Miao J. Rational Fabrication of Benzene-Linked Porous Polymers for Selective CO2 Capture. Separations. 2023; 10(12):581. https://doi.org/10.3390/separations10120581
Chicago/Turabian StyleYan, Xiaofei, Fuqun Zhai, Zifei Sun, Jingwen Chen, Dingming Xue, and Jie Miao. 2023. "Rational Fabrication of Benzene-Linked Porous Polymers for Selective CO2 Capture" Separations 10, no. 12: 581. https://doi.org/10.3390/separations10120581
APA StyleYan, X., Zhai, F., Sun, Z., Chen, J., Xue, D., & Miao, J. (2023). Rational Fabrication of Benzene-Linked Porous Polymers for Selective CO2 Capture. Separations, 10(12), 581. https://doi.org/10.3390/separations10120581