Comparative Study of Various Procedures for Extracting Doxorubicin from Animal Tissue Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Chromatographic Conditions
2.3. Standard Solutions
2.4. Preparation of Tissue Standards
2.5. Sample Preparation
2.5.1. Deproteinizing and LLE Procedures
2.5.2. SPE Procedure
2.6. Validation of Analytical Methods
2.7. Application of Method in Rat Tissue Samples
3. Results and Discussion
3.1. Optimization of Sample Preparation
3.2. Validation of SPE-LC-FL Method
3.2.1. Selectivity
3.2.2. Linearity
3.2.3. Limit of Detection (LOD) and Limit of Quantification (LOQ)
3.2.4. Precision and Accuracy
3.2.5. Stability Study
3.3. Application of the Developed Method in Rat Tissue Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cortés-Funes, H.; Coronado, C. Role of anthracyclines in the era of targeted therapy. Cardiovasc. Toxicol. 2007, 7, 56–60. [Google Scholar] [CrossRef]
- Carvalho, C.; Santos, R.X.; Cardoso, S.; Correia, S.; Oliveira, P.J.; Santos, M.S.; Moreira, P.I. Doxorubicin: The Good, the Bad and the Ugly Effect. Curr. Med. Chem. 2009, 16, 3267–3285. [Google Scholar] [CrossRef]
- Pedrycz, A.; Kramkowska, A. Adriamycin—efficacy and possible adverse effects. Curr. Probl. Psychiatry 2016, 17, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229. [Google Scholar] [CrossRef] [Green Version]
- Staples, B.J.; Pitt, W.G.; Roeder, B.L.; Husseini, G.A.; Rajeev, D.; Schaalje, G.B. Distribution of Doxorubicin in Rats Undergoing Ultrasonic Drug Delivery. J. Pharm. Sci. 2010, 99, 3122–3131. [Google Scholar] [CrossRef] [Green Version]
- Schaupp, C.M.; White, C.C.; Merrill, G.F.; Kavanagh, T.J. Metabolism of doxorubicin to the cardiotoxic metabolite doxorubicinol is increased in a mouse model of chronic glutathione deficiency: A potential role for carbonyl reductase 3. Chem. Interactions 2014, 234, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Reis-Mendes, A.F.; Sousa, E.; de Lourdes Bastos, M.; Costa, V.M. The Role of the Metabolism of Anticancer Drugs in Their Induced-Cardiotoxicity. Curr. Drug Metab. 2015, 17, 75–90. [Google Scholar] [CrossRef]
- Al-Malky, H.S.; Al Harthi, S.E.; Osman, A.-M.M. Major obstacles to doxorubicin therapy: Cardiotoxicity and drug resistance. J. Oncol. Pharm. Pract. 2020, 26, 434–444. [Google Scholar] [CrossRef]
- Renu, K.; Abilash, V.G.; Tirupathi Pichiah, P.B.; Arunachalam, S. Molecular mechanism of doxorubicin-induced cardiomyopathy–An update. Eur. J. Pharmacol. 2018, 818, 241–253. [Google Scholar] [CrossRef]
- Pugazhendhi, A.; Edison, T.N.J.I.; Velmurugan, B.K.; Jacob, J.A.; Karuppusamy, I. Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci. 2018, 200, 26–30. [Google Scholar] [CrossRef]
- Anders, C.K.; Adamo, B.; Karginova, O.; Deal, A.M.; Rawal, S.; Darr, D.; Schorzman, A.; Santos, C.; Bash, R.; Kafri, T.; et al. Pharmacokinetics and Efficacy of PEGylated Liposomal Doxorubicin in an Intracranial Model of Breast Cancer. PLoS ONE 2013, 8, e61359. [Google Scholar] [CrossRef] [Green Version]
- Massing, U.; Fuxius, S. Liposomal formulations of anticancer drugs: Selectivity and effectiveness. Drug Resist. Updat. 2000, 3, 171–177. [Google Scholar] [CrossRef]
- Zorić, L.; Drinković, N.; Micek, V.; Frkanec, L.; Türeli, A.E.; Günday-Türeli, N.; Vrček, I.V.; Frkanec, R. High-Throughput Method for the Simultaneous Determination of Doxorubicin Metabolites in Rat Urine after Treatment with Different Drug Nanoformulations. Molecules 2022, 27, 1177. [Google Scholar] [CrossRef]
- Niu, H.; Xu, M.; Li, S.; Chen, J.; Luo, J.; Zhao, X.; Gao, C.; Li, X. High-Performance Liquid Chromatography (HPLC) Quantification of Liposome-Delivered Doxorubicin in Arthritic Joints of Collagen-Induced Arthritis Rats. Med Sci. Monit. Basic Res. 2017, 23, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Alhareth, K.; Vauthier, C.; Gueutin, C.; Ponchel, G.; Moussa, F. HPLC quantification of doxorubicin in plasma and tissues of rats treated with doxorubicin loaded poly(alkylcyanoacrylate) nanoparticles. J. Chromatogr. B 2012, 887–888, 128–132. [Google Scholar] [CrossRef]
- Ma, W.; Wang, J.; Guo, Q.; Tu, P. Simultaneous determination of doxorubicin and curcumin in rat plasma by LC–MS/MS and its application to pharmacokinetic study. J. Pharm. Biomed. Anal. 2015, 111, 215–221. [Google Scholar] [CrossRef]
- Daeihamed, M.; Haeri, A.; Dadashzadeh, S. A Simple and Sensitive HPLC Method for Fluorescence Quantitation of Doxorubicin in Micro-volume Plasma: Applications to Pharmacokinetic Studies in Rats. Iran. J. Pharm. Res. 2015, 14, 33–42. [Google Scholar] [CrossRef]
- Huq, M.; Tascon, M.; Nazdrajic, E.; Roszkowska, A.; Pawliszyn, J. Measurement of Free Drug Concentration from Biological Tissue by Solid-Phase Microextraction: In Silico and Experimental Study. Anal. Chem. 2019, 91, 7719–7728. [Google Scholar] [CrossRef]
- Sikora, T.; Morawska, K.; Lisowski, W.; Rytel, P.; Dylong, A. Application of Optical Methods for Determination of Concentration of Doxorubicin in Blood and Plasma. Pharmaceuticals 2022, 15, 112. [Google Scholar] [CrossRef]
- Al-Abd, A.; Kim, N.H.; Song, S.-C.; Lee, S.J.; Kuh, H.-J. A simple HPLC method for doxorubicin in plasma and tissues of nude mice. Arch. Pharmacal Res. 2009, 32, 605–611. [Google Scholar] [CrossRef]
- Urva, S.R.; Shin, B.S.; Yang, V.C.; Balthasar, J.P. Sensitive high performance liquid chromatographic assay for assessment of doxorubicin pharmacokinetics in mouse plasma and tissues. J. Chromatogr. B 2009, 877, 837–841. [Google Scholar] [CrossRef]
- Arnold, R.D.; Slack, J.E.; Straubinger, R.M. Quantification of Doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J. Chromatogr. B 2004, 808, 141–152. [Google Scholar] [CrossRef]
- Mazzucchelli, S.; Ravelli, A.; Gigli, F.; Minoli, M.; Corsi, F.; Ciuffreda, P.; Ottria, R. LC-MS/MS method development for quantification of doxorubicin and its metabolite 13-hydroxy doxorubicin in mice biological matrices: Application to a pharmaco-delivery study. Biomed. Chromatogr. 2017, 31, e3863. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Y.; Dong, Y.; Xu, H.; Zhao, L. Quantification of DOX bioavailability in biological samples of mice by sensitive and precise HPLC assay. Pharm. Biol. 2016, 54, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.X.; Chen, K.; Cheng, J.; Lai, P.; Rauth, A.M.; Pang, K.S.; Wu, X.Y. Sample Extraction and Simultaneous Chromatographic Quantitation of Doxorubicin and Mitomycin C Following Drug Combination Delivery in Nanoparticles to Tumor-bearing Mice. J. Vis. Exp. 2017, 128, e56159. [Google Scholar] [CrossRef]
- Ibsen, S.; Su, Y.; Norton, J.; Zahavy, E.; Hayashi, T.; Adams, S.; Wrasidlo, W.; Esener, S. Extraction protocol and mass spectrometry method for quantification of doxorubicin released locally from prodrugs in tumor tissue. Biol. Mass Spectrom. 2013, 48, 768–773. [Google Scholar] [CrossRef]
- Hu, T.; Le, Q.; Wu, Z.; Wu, W. Determination of doxorubicin in rabbit ocular tissues and pharmacokinetics after intravitreal injection of a single dose of doxorubicin-loaded poly-β-hydroxybutyrate microspheres. J. Pharm. Biomed. Anal. 2007, 43, 263–269. [Google Scholar] [CrossRef]
- Roszkowska, A.; Tascon, M.; Bojko, B.; Goryński, K.; dos Santos, P.R.; Cypel, M.; Pawliszyn, J. Equilibrium ex vivo calibration of homogenized tissue for in vivo SPME quantitation of doxorubicin in lung tissue. Talanta 2018, 183, 304–310. [Google Scholar] [CrossRef]
- Kümmerle, A.; Krueger, T.; Dusmet, M.; Vallet, C.; Pan, Y.; Ris, H.; A Decosterd, L. A validated assay for measuring doxorubicin in biological fluids and tissues in an isolated lung perfusion model: Matrix effect and heparin interference strongly influence doxorubicin measurements. J. Pharm. Biomed. Anal. 2003, 33, 475–494. [Google Scholar] [CrossRef]
- Guy, R. International Conference on Harmonisation. Encycl. Toxicol. Third Ed. 2014, 2, 1070–1072. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry. US Dep. Health Hum. Serv. Food Drug Adm. 2018, 1–41. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 25 January 2020).
- Maliszewska, O.; Plenis, A.; Olędzka, I.; Kowalski, P.; Miękus, N.; Bień, E.; Krawczyk, M.A.; Adamkiewicz-Drożynska, E.; Bączek, T. Optimization of LC method for the quantification of doxorubicin in plasma and urine samples in view of pharmacokinetic, biomedical and drug monitoring therapy studies. J. Pharm. Biomed. Anal. 2018, 158, 376–385. [Google Scholar] [CrossRef] [PubMed]
Deproteinizing Method/ Liquid–Liquid Extraction (LLE) | The Mean Absolute Recovery of DOX (%) | The Absolute Recovery of I.S. (%) | |||
---|---|---|---|---|---|
can | 52.8 ± 4.2 | 71.7 ± 3.9 | |||
MeOH | 42.4 ± 4.4 | 61.5 ± 4.4 | |||
ACN:MeOH (1:1, v/v) | 48.6 ± 3.8 | 64.6 ± 4.0 | |||
3%TCA in can | 10.6 ± 1.9 | 14.5 ± 2.2 | |||
DCHM | 2.8 ± 1.0 | 10.5 ± 1.5 | |||
Ethyl acetate | 24.8 ± 2.4 | 38.7 ± 4.8 | |||
CHCl3: MeOH (4:1, v/v) | 49.3 ± 12.0 | 64.6 ± 13.6 | |||
Solid-Phase Extraction (SPE) | |||||
SPE Cartridge | Matrix Modification | Washing Agent | Eluting Solvent | The Absolute Recovery of DOX (%) | The Absolute Recovery of I.S. (%) |
SPE | |||||
HLB (30 mg) | 0.9% NaCl | Water | MeOH | 25.3 ± 1.5 | 40.6 ± 2.3 |
SOLA HRP (10 mg) | 18.7 ± 1.5 | 30.4 ± 2.9 | |||
C18 (40 mg) | 21.7 ± 2.5 | 31.8 ± 3.1 | |||
HLB (30 mg) | 0.9% NaCl:ACN (9:1, v/v) | 38.4 ± 3.3 | 62.2 ± 5.5 | ||
0.1 M HCl | 91.6 ± 5.1 | 95.4 ± 5.5 | |||
0.1 M HCl:ACN (9:1, v/v) | 70.2 ± 5.9 | 76.5 ± 5.8 | |||
0.05 M HCl | 62.7 ± 6.5 | 75.6 ± 5.1 | |||
0.2 M HCl | 69.3 ± 5.7 | 80.5 ± 7.3 | |||
0.1 M H3PO4 | 72.3 ± 7.9 | 83.1 ± 7.8 | |||
0.9% NaCl:ACN (9:1, v/v) | ACN in water (1:9, v/v) | MeOH | 72.2 ± 6.6 | 89.1 ± 7.0 | |
MeOH in water (1:9, v/v) | 72.5 ± 4.9 | 87.3 ± 6.1 | |||
ACN:MeOH in water (0.5:0.5:9, v/v/v) | 73.4 ± 6.4 | 88.9 ± 5.5 | |||
0.01 M HCl | 69.6 ± 6.8 | 85.4 ± 7.9 | |||
Water | ACN | 73.7 ± 5.7 | 85.7 ± 7.1 | ||
MeOH:ACN (1:1, v/v) | 77.9 ± 7.9 | 86.7 ± 5.8 | |||
MeOH to pH 3.5 | 75.3 ± 6.3 | 84.4 ± 4.3 | |||
ACN to pH 3.5 | 67.4 ± 4.9 | 81.7 ± 7.4 | |||
MeOH:ACN (1:1, v/v) to pH 3.5 | 71.6 ± 3.7 | 81.4 ± 5.5 |
Parameters | Animal Tissues |
---|---|
Range of linearity of the method (µg/g) | 0.1–30 |
Equation parameter | |
Slope | 0.0865 (±0.0007) |
Intercept | 0.03 (±0.01) |
Correlation coefficient (R2) | 0.9996 |
LOD (µg/g) | 0.005 |
Concentration (µg/g) | Precision RSD (%) | Accuracy (%) | ||
---|---|---|---|---|
Spiked (µg/g) | Found (Mean ± SD) | |||
Intra-day (n = 6) | ||||
LLOQ | 0.01 | 0.011 ± 0.001 | 9.09 | 110.00 |
LQC | 5 | 5.18 ± 0.40 | 7.65 | 103.66 |
MQC | 10 | 9.92 ± 0.63 | 6.40 | 99.23 |
HQC | 15 | 14.95 ± 0.79 | 5.30 | 99.68 |
Inter-day (n = 6) | ||||
LLOQ | 0.01 | 0.012 ± 0.001 | 8.33 | 120.00 |
LQC | 5 | 4.94 ± 0.26 | 5.31 | 98.86 |
MQC | 10 | 10.11 ± 0.53 | 5.19 | 101.14 |
HQC | 15 | 14.94 ± 0.26 | 1.76 | 99.62 |
Storage Conditions | QC | Conc. Added (µg/g) | Found * (µg/g) | Precision RSD (%) | Accuracy (%) |
---|---|---|---|---|---|
Short-term stability (25 °C, 8 h) | LQC | 5 | 5.2 ± 0.2 | 3.8 | 104.0 |
MQC | 10 | 10.3 ± 0.6 | 5.8 | 103.0 | |
HQC | 15 | 14.8 ± 0.7 | 4.7 | 98.7 | |
Long-term stability (−80 °C, 3 months) stability | LQC | 5 | 4.5 ± 0.2 | 4.4 | 90.0 |
MQC | 10 | 9.1 ± 0.8 | 8.8 | 91.0 | |
HQC | 15 | 14.5 ± 0.9 | 6.2 | 96.7 | |
Three freeze-thaw cycles stability | LQC | 5 | 4.8 ± 0.3 | 6.2 | 92.0 |
MQC | 10 | 9.0 ± 0.6 | 6.7 | 90.0 | |
HQC | 15 | 15.2 ± 1.1 | 7.2 | 101.3 | |
Post-preparative storage (4 °C, 24 h) | LQC | 5 | 4.6 ± 0.3 | 6.5 | 92.0 |
MQC | 10 | 9.2 ± 0.5 | 5.4 | 92.0 | |
HQC | 15 | 15.4 ± 0.8 | 5.2 | 102.7 |
Type of Rat Tissue (n = 3) | Spiked (µg/g) | Found * (µg/g) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Liver | 2 | 2.2 ± 0.2 | 110.0 | 9.09 |
10 | 10.3 ± 0.6 | 103.0 | 5.82 | |
20 | 19.8 ± 0.9 | 99.0 | 4.54 | |
2 | 2.1 ± 0.2 | 105.0 | 9.52 | |
Kidney | 10 | 10.4 ± 0.5 | 104.0 | 4.81 |
20 | 20.3 ± 0.8 | 101.5 | 3.94 | |
2 | 2.3 ± 0.2 | 115.0 | 8.69 | |
Stomach | 10 | 9.8 ± 0.5 | 98.0 | 5.10 |
20 | 20.5 ± 1.1 | 102.5 | 5.36 | |
2 | 1.9 ± 0.1 | 95.0 | 5.26 | |
Lung | 10 | 9.8 ± 0.7 | 98.0 | 7.14 |
20 | 21.4 ± 1.0 | 107.0 | 4.67 | |
2 | 2.0 ± 0.2 | 100.0 | 10.0 | |
Heart | 10 | 10.9 ± 0.8 | 109.0 | 7.34 |
20 | 19.5 ± 0.7 | 97.5 | 3.59 | |
2 | 1.8 ± 0.1 | 90.0 | 5.55 | |
Spleen | 10 | 11.0 ± 0.8 | 110.0 | 7.27 |
20 | 19.2 ± 1.1 | 96.0 | 5.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maliszewska, O.; Treder, N.; Roszkowska, A.; Olędzka, I.; Kowalski, P.; Bączek, T.; Plenis, A. Comparative Study of Various Procedures for Extracting Doxorubicin from Animal Tissue Samples. Separations 2023, 10, 6. https://doi.org/10.3390/separations10010006
Maliszewska O, Treder N, Roszkowska A, Olędzka I, Kowalski P, Bączek T, Plenis A. Comparative Study of Various Procedures for Extracting Doxorubicin from Animal Tissue Samples. Separations. 2023; 10(1):6. https://doi.org/10.3390/separations10010006
Chicago/Turabian StyleMaliszewska, Olga, Natalia Treder, Anna Roszkowska, Ilona Olędzka, Piotr Kowalski, Tomasz Bączek, and Alina Plenis. 2023. "Comparative Study of Various Procedures for Extracting Doxorubicin from Animal Tissue Samples" Separations 10, no. 1: 6. https://doi.org/10.3390/separations10010006
APA StyleMaliszewska, O., Treder, N., Roszkowska, A., Olędzka, I., Kowalski, P., Bączek, T., & Plenis, A. (2023). Comparative Study of Various Procedures for Extracting Doxorubicin from Animal Tissue Samples. Separations, 10(1), 6. https://doi.org/10.3390/separations10010006