Synthesis and Physiological Remodeling of CD34 Cells in the Skin following the Reversal of Fibrosis through Intensive Treatment for Lower Limb Lymphedema: A Case Report
Abstract
:1. Introduction
2. Method
2.1. Patient and Setting
2.2. Design
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Ethical Considerations
2.6. Statistical Treatment
2.7. Development
2.8. Treatment
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pellegrini, M.-S.F.; Popescu, L.M. Telocytes. Biomol. Concepts 2011, 2, 481–489. [Google Scholar] [CrossRef]
- Popescu, L.M.; Gherghiceanu, M.; Cretoiu, D.; Radu, E. The connective connection: Interstitial cells of Cajal (ICC) and ICClike cells establish synapses with immunoreactive cells. Electron microscope study in situ. J. Cell Mol. Med. 2005, 9, 714–730. [Google Scholar] [CrossRef]
- Pieri, L.; Vannucchi, M.G.; Faussone-Pellegrini, M.S. Histochemical and ultrastructural characteristics of an interstitial cell type different from ICC and resident in the muscle coat of human gut. J. Cell Mol. Med. 2008, 12, 1944–1955. [Google Scholar] [CrossRef] [Green Version]
- Vannucchi, M.-G.; Bani, D.; Faussone-Pellegrini, M.-S. Telocytes Contribute as Cell Progenitors and Differentiation Inductors in Tissue Regeneration. Curr. Stem Cell Res. Ther. 2016, 11, 383–389. [Google Scholar] [CrossRef]
- Vannucchi, M. The Telocytes: Ten Years after Their Introduction in the Scientific Literature. An Update on Their Morphology, Distribution, and Potential Roles in the Gut. Int. J. Mol. Sci. 2020, 21, 4478. [Google Scholar] [CrossRef]
- Kondo, A.; Kaestner, K.H. Emerging diverse roles of telocytes. Development 2019, 146, dev175018. [Google Scholar] [CrossRef] [Green Version]
- Aoki, R.; Shoshkes-Carmel, M.; Gao, N.; Shin, S.; May, C.L.; Golson, M.L.; Zahm, A.M.; Ray, M.; Wiser, C.L.; Wright, C.V.; et al. Foxl1-Expressing Mesenchymal Cells Constitute the Intestinal Stem Cell Niche. Cell Mol. Gastroenterol. Hepatol. 2016, 2, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Shoshkes-Carmel, M.; Wang, Y.J.; Wangensteen, K.J.; Tóth, B.; Kondo, A.; Massassa, E.E.; Itzkovitz, S.; Kaestner, K.H. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 2018, 557, 242–246. [Google Scholar] [CrossRef]
- Rosa, I.; Marini, M.; Sgambati, E.; Ibba-Manneschi, L.; Manetti, M. Telocytes and lymphatic endothelial cells: Two immunophenotypically distinct and spatially close cell entities. Acta Histochem. 2020, 122, 151530. [Google Scholar] [CrossRef]
- Díaz-Flores, L.; Gutiérrez, R.; García, M.P.; Sáez, F.J.; Díaz-Flores, L., Jr.; Valladares, F.; Madrid, J.F. CD34+ stromal cells/fibroblasts/fibrocytes/telocytes as a tissue reserve and a principal source of mesenchymal cells. Location, morphology, function and role in pathology. Histol. Histopathol. 2014, 29, 831–870. [Google Scholar] [CrossRef]
- Rusu, M.; Mirancea, N.; Mănoiu, V.; Vâlcu, M.; Nicolescu, M.; Păduraru, D. Skin telocytes. Ann. Anat. Anat. Anz. 2012, 194, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.-J.; Chen, T.-Q.; Yang, X.-J. Telocytes in Fibrosis Diseases: From Current Findings to Future Clinical Perspectives. Cell Transplant. 2022, 31, 9636897221105252. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Zhu, Z.; Zheng, Y.; Wan, W.; Manole, C.G.; Zhang, Q. Skin telocytes versus fibroblasts: Two distinct dermal cell populations. J. Cell Mol. Med. 2015, 19, 2530–2539. [Google Scholar] [CrossRef] [PubMed]
- Manetti, M.; Rosa, I.; Messerini, L.; Guiducci, S.; Matucci-Cerinic, M.; Ibba-Manneschi, L. A loss of telocytes accompanies fibrosis of multiple organs in systemic sclerosis. J. Cell Mol. Med. 2014, 18, 253–262. [Google Scholar] [CrossRef]
- Manole, C.; Gherghiceanu, M.; Simionescu, O. Telocyte dynamics in psoriasis. J. Cell Mol. Med. 2015, 19, 1504–1519. [Google Scholar] [CrossRef]
- Manetti, M.; Matucci-Cerinic, M. In search for the ideal anatomical composition of vascularised human skin equivalents for systemic sclerosis translational research: Should we recruit the telocytes? Ann. Rheum. Dis. 2019, 80, e149. [Google Scholar] [CrossRef] [Green Version]
- De Godoy, J.M.P.; Godoy, M.D.F.G.; Barufi, S.; de Godoy, H.J.P. Intensive Treatment of Lower-Limb Lymphedema and Variations in Volume Before and After: A Follow-Up. Cureus 2020, 12, e10756. [Google Scholar] [CrossRef]
- De Godoy, A.P.; de Godoy, J.P.; Godoy, M.G. Primary Congenital Lymphedema with More Than 10 Years of Treatment Using the Godoy Method Through to Adolescence. Pediatr. Rep. 2021, 13, 91–94. [Google Scholar] [CrossRef]
- Pereira de Godoy, H.J.; Pereira de Godoy, A.C.; Lopes Pinto, R.; Baruffi, S.; Pereira de Godoy, J.M.; Guerreiro Godoy, M.F. Mechanical lymphatic therapy to maintain the results of treatment for lymphedema. Acta Phlebol. 2021, 22, 51–54. [Google Scholar] [CrossRef]
- De Godoy, J.M.P.; de Godoy, A.C.P.; Godoy, M.D.F.G. Evolution of Godoy & Godoy Manual Lymph Drainage. Technique with Linear Movements. Clin. Pract. 2017, 7, 1006. [Google Scholar] [CrossRef] [Green Version]
- Barufi, S.; de Godoy, H.J.P.; de Godoy, J.M.P.; Godoy, M.D.F.G. Exercising and Compression Mechanism in the Treatment of Lymphedema. Cureus 2021, 13, e16121. [Google Scholar] [CrossRef] [PubMed]
- Manole, C.G.; Simionescu, O. The Cutaneous Telocytes. In Telocytes. Advances in Experimental Medicine and Biology; Wang, X., Cretoiu, D., Eds.; Springer: Singapore, 2016; Volume 913, pp. 303–323. [Google Scholar] [CrossRef]
- Wang, L.; Song, D.; Wei, C.; Chen, C.; Yang, Y.; Deng, X.; Gu, J. Telocytes inhibited inflammatory factor expression and enhanced cell migration in LPS-induced skin wound healing models in vitro and in vivo. J. Transl. Med. 2020, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Ceafalan, L.; Gherghiceanu, M.; Popescu, L.M.; Simionescu, O. Telocytes in human skin—Are they involved in skin regeneration? J. Cell Mol. Med. 2012, 16, 1405–1420. [Google Scholar] [CrossRef]
- Ibba-Manneschi, L.; Rosa, I.; Manetti, M. Telocytes in Chronic Inflammatory and Fibrotic Diseases. In Telocytes. Advances in Experimental Medicine and Biology; Wang, X., Cretoiu, D., Eds.; Springer: Singapore, 2016; Volume 913, pp. 51–76. [Google Scholar] [CrossRef]
- Pereira de Godoy, J.M.; Guerreiro Godoy, M.F.; Pereira de Godoy, H.J.; De Santi Neto, D. Stimulation of Synthesis and Lysis of Extracellular Matrix Proteins in Fibrosis Associated with Lymphedema. Dermatopathology 2021, 9, 1–10. [Google Scholar] [CrossRef]
- De Godoy, J.M.P.; de Godoy, L.M.P.; Godoy, M.D.F.G.; Neto, D.D.S. Physiological Stimulation of the Synthesis of Preelastic Fibers in the Dermis of a Patient with Fibrosis. Case Rep. Med. 2021, 2021, 2666867. [Google Scholar] [CrossRef]
- Ahmed, A.; Hussein, M. [Artículo traducido] Los telocitos en la biología cutánea: Revaluación. Actas Dermo-Sifiliográficas 2023. ahead of print. [Google Scholar] [CrossRef]
- Manole, C.G.; Gherghiceanu, M.; Ceafalan, L.C.; Hinescu, M.E. Dermal Telocytes: A Different Viewpoint of Skin Repairing and Regeneration. Cells 2022, 11, 3903. [Google Scholar] [CrossRef]
- Rosa, I.; Romano, E.; Fioretto, B.S.; Guasti, D.; Ibba-Manneschi, L.; Matucci-Cerinic, M.; Manetti, M. Scleroderma-like Impairment in the Network of Telocytes/CD34+ Stromal Cells in the Experimental Mouse Model of Bleomycin-Induced Dermal Fibrosis. Int. J. Mol. Sci. 2021, 22, 12407. [Google Scholar] [CrossRef]
- Soliman, S.A. Telocytes are major constituents of the angiogenic apparatus. Sci. Rep. 2021, 11, 5775. [Google Scholar] [CrossRef]
- Díaz-Flores, L.; Gutiérrez, R.; García, M.; González-Gómez, M.; Rodríguez-Rodriguez, R.; Hernández-León, N.; Díaz-Flores, L.; Carrasco, J. Cd34+ Stromal Cells/Telocytes in Normal and Pathological Skin. Int. J. Mol. Sci. 2021, 22, 7342. [Google Scholar] [CrossRef]
Before | After | |
---|---|---|
Morphometry | ||
CD34+ cells—Dermis (%) | 8.30 ± 0.89 b | 21.23 ± 1.64 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira de Godoy, J.M.; Pereira de Godoy, A.C.; Guerreiro Godoy, M.d.F.; de Santi Neto, D. Synthesis and Physiological Remodeling of CD34 Cells in the Skin following the Reversal of Fibrosis through Intensive Treatment for Lower Limb Lymphedema: A Case Report. Dermatopathology 2023, 10, 104-111. https://doi.org/10.3390/dermatopathology10010016
Pereira de Godoy JM, Pereira de Godoy AC, Guerreiro Godoy MdF, de Santi Neto D. Synthesis and Physiological Remodeling of CD34 Cells in the Skin following the Reversal of Fibrosis through Intensive Treatment for Lower Limb Lymphedema: A Case Report. Dermatopathology. 2023; 10(1):104-111. https://doi.org/10.3390/dermatopathology10010016
Chicago/Turabian StylePereira de Godoy, Jose Maria, Ana Carolina Pereira de Godoy, Maria de Fatima Guerreiro Godoy, and Dalisio de Santi Neto. 2023. "Synthesis and Physiological Remodeling of CD34 Cells in the Skin following the Reversal of Fibrosis through Intensive Treatment for Lower Limb Lymphedema: A Case Report" Dermatopathology 10, no. 1: 104-111. https://doi.org/10.3390/dermatopathology10010016
APA StylePereira de Godoy, J. M., Pereira de Godoy, A. C., Guerreiro Godoy, M. d. F., & de Santi Neto, D. (2023). Synthesis and Physiological Remodeling of CD34 Cells in the Skin following the Reversal of Fibrosis through Intensive Treatment for Lower Limb Lymphedema: A Case Report. Dermatopathology, 10(1), 104-111. https://doi.org/10.3390/dermatopathology10010016