g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Protonated g-C3N4 (pCN)
2.3. Preparation of D149/pCN
2.4. Characterization
2.5. Photocatalytic Activity
3. Results
3.1. Regular Characterization
3.2. Photocatalytic Performance
3.3. Reasons for Enhanced Activity
3.4. Photocatalytic Reaction Mechanism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, M.R.; Martin, S.T.; Choi, W.Y.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Pan, C.S.; Domen, K. Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci. Technol. Adv. Mater. 2015, 16, 033506. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.T.; Xue, W.H.; Hu, X.Y.; Fan, J.; Liu, E.Z. Z-scheme CdSe/ZnSe heterojunction for efficient photocatalytic hydrogen evolution. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126633. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Erfan, N.A.; Mohammed, A.A.; Mohamed, S.E.I. Ag-decorated TiO2 nanofibers as Arrhenius equation-incompatible and effective photocatalyst for water splitting under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 604, 125307. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Xie, W.Y.; Deng, Z.B.; Wang, G.; Cao, A.H.; Chen, H.M.; Yang, B.; Wang, Z.; Su, X.T.; Yang, C. Salt templated synthesis of NiO/TiO2 supported carbon nanosheets for photocatalytic hydrogen production. Colloids Surf. A Physicochem. Eng. Asp. 2020, 587, 124365. [Google Scholar] [CrossRef]
- Xu, D.F.; Hai, Y.; Zhang, X.C.; Zhang, S.Y.; He, R.A. Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2. Appl. Surf. Sci. 2017, 400, 530–536. [Google Scholar] [CrossRef]
- Zhuge, K.X.; Chen, Z.J.; Yang, Y.Q.; Wang, J.; Shi, Y.Y.; Li, Z.Q. In-suit photodeposition of MoS2 onto CdS quantum dots for efficient photocatalytic H2 evolution. Appl. Surf. Sci. 2021, 539, 148234. [Google Scholar] [CrossRef]
- Rameshbabu, R.; Ravi, P.; Pecchi, G.; Delgado, E.J.; Mangalaraja, R.V.; Sathish, M. Black trumpet mushroom-like ZnS incorporated with Cu3P: Noble metal free photocatalyst for superior photocatalytic H2 production. J. Colloid Interface Sci. 2021, 590, 82–93. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.H.; Zhang, J.H.; Li, L.F.; Gu, H.J.; Dai, W.L. Hierarchical fabrication of hollow Co2P nanocages coated with ZnIn2S4 thin layer: Highly efficient noble-metal-free photocatalyst for hydrogen evolution. J. Colloid Interface Sci. 2021, 590, 632–640. [Google Scholar] [CrossRef]
- Chachvalvutikul, A.; Luangwanta, T.; Pattisson, S.; Hutchings, G.J.; Kaowphong, S. Enhanced photocatalytic degradation of organic pollutants and hydrogen production by a visible light-responsive Bi2WO6/ZnIn2S4 heterojunction. Appl. Surf. Sci. 2021, 544, 148885. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, Y.; Hisatomi, T.; Vequizo, J.J.M.; Suzuki, S.; Chen, S.S.; Nakabayashi, M.; Lin, L.H.; Pan, Z.H.; Kariya, N.; et al. Sequential cocatalyst decoration on BaTaO2N towards highly-active Z-scheme water splitting. Nat. Commun. 2021, 12, 1005. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Fu, J.W.; Yu, J.G.; Jiang, C.J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Sudhaik, A.; Raizada, P.; Shandilya, P.; Jeong, D.-Y.; Lim, J.-H.; Singh, P. Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J. Ind. Eng. Chem. 2018, 67, 28–51. [Google Scholar] [CrossRef]
- Hu, S.Z.; Ma, L.; You, J.G.; Li, F.Y.; Fan, Z.P.; Lu, G.; Liu, D.; Gui, J.Z. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl. Surf. Sci. 2014, 311, 164–171. [Google Scholar] [CrossRef]
- Lei, L.; Wang, W.J.; Wang, C.; Zhang, M.C.; Zhong, Q.; Fan, H.Q. In situ growth of boron doped g-C3N4 on carbon fiber cloth as a recycled flexible film-photocatalyst. Ceram. Int. 2021, 47, 1258–1267. [Google Scholar] [CrossRef]
- Wang, D.B.; Huang, X.Q.; Huang, Y.; Yu, X.; Lei, Y.; Dong, X.Y.; Su, Z.L. Self-assembly synthesis of petal-like Cl-doped g-C3N4 nanosheets with tunable band structure for enhanced photocatalytic activity. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125780. [Google Scholar] [CrossRef]
- Mohtasham, H.; Gholipour, B.; Rostamnia, S.; Ghiasi-Moaser, A.; Farajzadeh, M.; Nouruzi, N.; Jang, H.W.; Varma, R.S.; Shokouhimehr, M. Hydrothermally exfoliated P-doped g-C3N4 decorated with gold nanorods for highly efficient reduction of 4-nitrophenol. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126187. [Google Scholar] [CrossRef]
- Ai, C.L.; Wu, S.C.; Li, L.Y.; Lei, Y.J.; Shao, X.W. Novel magnetically separable γ-Fe2O3/Ag/AgCl/g-C3N4 composite for enhanced disinfection under visible light. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123981. [Google Scholar] [CrossRef]
- Sun, X.Y.; Zhang, F.J.; Kong, C. Porous g-C3N4/WO3 photocatalyst prepared by simple calcination for efficient hydrogen generation under visible light. Colloids Surf. A Physicochem. Eng. Asp. 2020, 594, 124653. [Google Scholar] [CrossRef]
- Bi, X.J.; Yu, S.R.; Liu, E.Y.; Liu, L.; Zhang, K.; Zang, J.; Zhao, Y. Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125193. [Google Scholar] [CrossRef]
- Jiang, K.; Iqbal, W.; Yang, B.; Rauf, M.; Ali, I.; Lu, X.Y.; Mao, Y.P. Noble metal-free NiCo2S4/CN sheet-on-sheet heterostructure for highly efficient visible-light-driven photocatalytic hydrogen evolution. J. Alloys Compd. 2021, 853, 157284. [Google Scholar] [CrossRef]
- Li, D.G.; Huang, J.X.; Li, R.B.; Chen, P.; Chen, D.N.; Cai, M.X.; Liu, H.J.; Feng, Y.P.; Lv, W.Y.; Liu, G.G. Synthesis of a carbon dots modified g-C3N4/SnO2 Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation. J. Harzard. Mater. 2021, 401, 123257. [Google Scholar] [CrossRef]
- Liu, Y.F.; Ma, Z. TiOF2/g-C3N4 composite for visible-light driven photocatalysis. Colloids Surf. A Physicochem. Eng. Asp. 2021, 681, 126471. [Google Scholar] [CrossRef]
- Wang, P.; Guan, Z.J.; Li, Q.Y.; Yang, J.J. Efficient visible-light-driven photocatalytic hydrogen production from water by using Eosin Y-sensitized novel g-C3N4/Pt/GO composites. J. Mater. Sci. 2018, 53, 774–786. [Google Scholar] [CrossRef]
- Yang, Y.J.; Sun, B.W.; Qian, D.J.; Chen, M. Fabrication of multiporphyrin@g-C3N4 nanocomposites via Pd(II)-directed layer-by-layer assembly for enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2019, 478, 1027–1036. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.D.; Liu, X.L.; Xu, S.A. D-π-A-type triphenylamine dye covalent-functionalized g-C3N4 for highly efficient photocatalytic hydrogen evolution. Catal. Sci. Technol. 2020, 10, 1609–1618. [Google Scholar] [CrossRef]
- Lu, M.; Sun, Z.; Zhang, Y.Z.; Liang, Q.; Zhou, M.; Xu, S.; Li, Z.Y. Construction of cobalt phthalocyanine sensitized SnIn4S8/g-C3N4 composites with enhanced photocatalytic degradation and hydrogen production performance. Synth. Met. 2020, 268, 116480. [Google Scholar] [CrossRef]
- Chen, Y.H.; Liu, Y.F.; Ma, Z. Graphitic C3N4 modified by Ru(II)-based dyes for photocatalytic H2 evolution. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126119. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.X.; Peng, S.Q.; Lai, H. Progress in visible-light photocatalytic hydrogen production by dye sensitization. Acta Phys.-Chim. Sin. 2015, 31, 612–626. [Google Scholar]
- Kumari, A.; Mondal, I.; Pal, U. A simple carbazole based sensitizer attached to a Nafion-coated-TiO2 photocatalyst: The impact of controlling parameters towards visible light driven H2 production. New J. Chem. 2015, 39, 713–720. [Google Scholar] [CrossRef]
- Shi, J.W.; Guan, X.J.; Zhou, Z.H.; Liu, H.P.; Guo, L.J. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation. J. Nanopart. Res. 2015, 17, 252. [Google Scholar] [CrossRef]
- Huang, J.; Wang, D.D.; Yue, Z.K.; Li, X.; Chu, D.M.; Yang, P. Ruthenium dye N749 covalently functionalized reduced graphene oxide: A novel photocatalyst for visible light H2 evolution. J. Phy. Chem. C 2015, 119, 27892–27899. [Google Scholar] [CrossRef]
- Swetha, T.; Mondal, I.; Bhanuprakash, K.; Pal, U.; Singh, S.P. First study on phosphonite-coordinated ruthenium sensitizers for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2015, 7, 19635–19642. [Google Scholar] [CrossRef]
- Yu, F.T.; Wang, Z.Q.; Zhang, S.C.; Yun, K.; Ye, H.N.; Gong, X.Q.; Hua, J.L.; Tian, H. N-Annulated perylene-based organic dyes sensitized graphitic carbon nitride to form an amide bond for efficient photocatalytic hydrogen production under visible-light irradiation. Appl. Catal. B Environ. 2018, 237, 32–42. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.M.; Zhang, J.; Peng, T.Y.; Li, R.J. Syntheses of asymmetric zinc porphyrins bearing different pseudo-pyridine substituents and their photosensitization for visible-light-driven H2 production activity. Dalton Trans. 2017, 46, 8219–8228. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; He, M.F.; Guo, R.; Fang, Z.R.; Kang, S.F.; Ma, Z.; Dong, M.D.; Wang, W.L.; Cui, L.F. Ultrastable metal-free near-infrared-driven photocatalysts for H2 production based on protonated 2D g-C3N4 sensitized with Chlorin e6. Appl. Catal. B Environ. 2020, 260, 118137. [Google Scholar] [CrossRef]
- Liu, Y.F.; Kang, S.F.; Cui, L.F.; Ma, Z. Boosting near-infrared-driven photocatalytic H2 evolution using protoporphyrin-sensitized g-C3N4. J. Photochem. Photobiol. A 2020, 396, 112517. [Google Scholar] [CrossRef]
- Liu, Y.F.; Ma, Z. g-C3N4 modified by meso-tetrahydroxyphenylchlorin for photocatalytic hydrogen evolution under visible/near-infrared light. Front. Chem. 2020, 8, 605343. [Google Scholar] [CrossRef]
- Liu, Y.F.; Ma, Z. g-C3N4 modified by pyropheophorbide-a for photocatalytic H2 evolution. Colloids Surf. A Physicochem. Eng. Asp. 2021, 615, 126128. [Google Scholar] [CrossRef]
- Falgenhauer, J.; Fiehler, F.; Richter, C.; Rudolph, M.; Schlettwein, D. Consequences of changes in the ZnO trap distribution on the performance of dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2017, 19, 16159–16168. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Heo, Y.U.; Nattestad, A.; Shahabuddin, M.; Yamauchi, Y.; Kim, J.H. N719-and D149-sensitized 3D hierarchical rutile TiO2 solar cells-a comparative study. Phys. Chem. Chem. Phys. 2015, 17, 7208–7213. [Google Scholar] [CrossRef] [PubMed]
- Ordon, K.; Coste, S.; Noel, O.; El-Ghayoury, A.; Ayadi, A.; Kassiba, A.; Makowska-Janusik, M. Investigations of the charge transfer phenomenon at the hybrid dye/BiVO4 interface under visible radiation. RSC Adv. 2019, 9, 30698–30706. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, C.S.K.; Jayaweera, E.N.; Kumara, G.R.A.; Rajapakse, R.M.G.; Onwona-Agyeman, B.; Perera, A.G.U.; Tennakone, K. Tin oxide based dye-sensitized solid-state solar cells: Surface passivation for suppression of recombination. Mater. Sci. Semicond. Process. 2015, 40, 890–895. [Google Scholar] [CrossRef]
- Tefashe, U.M.; Loewenstein, T.; Miura, H.; Schlettwein, D.; Wittstock, G. Scanning electrochemical microscope studies of dye regeneration in indoline (D149)-sensitized ZnO photoelectrochemical cells. J. Electroanal. Chem. 2010, 650, 24–30. [Google Scholar] [CrossRef]
- Ordon, K.; Merupo, V.I.; Coste, S.; Noel, O.; Errien, N.; Makowska-Janusik, M.; Kassiba, A. Charge-transfer peculiarities in mesoporous BiVO4 surfaces with anchored indoline dyes. Appl. Nanosci. 2018, 8, 1895–1905. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Lu, J.; Meng, F.Y.; Lin, X.Y.; Feng, Y.H.; Yan, Y.S.; Meng, M.J. Rationally constructing of a novel 2D/2D WO3/Pt/g-C3N4 Schottky-Ohmic junction towards efficient visible-light-driven photocatalytic hydrogen evolution and mechanism insight. J. Colloid Interface Sci. 2021, 586, 576–587. [Google Scholar] [CrossRef]
- Zhang, X.D.; Yan, J.; Lee, L.Y.S. Highly promoted hydrogen production enabled by interfacial P-N chemical bonds in copper phosphosulfide Z-scheme composite. Appl. Catal. B Environ. 2021, 283, 119624. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, T.X.; Guo, Y.R.; Zhang, Z.G.; Fang, X.M. Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/OD composites for efficient photocatalytic H2evolution. Appl. Catal. B Environ. 2016, 193, 248–258. [Google Scholar] [CrossRef]
- Ma, J.L.; Jin, D.N.; Li, Y.C.; Xiao, D.Q.; Jiao, G.J.; Liu, Q.; Guo, Y.Z.; Xiao, L.P.; Chen, X.H.; Li, X.Z.; et al. Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride. Appl. Catal. B Environ. 2021, 283, 119520. [Google Scholar] [CrossRef]
- Al-Attafi, K.; Jawdat, F.H.; Qutaish, H.; Hayes, P.; Al-Keisy, A.; Shim, K.; Yamauchi, Y.; Dou, S.X.; Nattestad, A.; Kim, J.H. Cubic aggregates of Zn2SnO4 nanoparticles and their application in dye-sensitized solar cells. Nano Energy 2019, 57, 202–213. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Nguyen Thi, V.N.; Tran, H.H.; Tran Thi, T.P.; Truong, T.T.; Vo, V. A facile synthesis of g-C3N4/BaTiO3 photocatalyst with enhanced activity for degradation of methylene blue under visible light. Bull. Mater. Sci. 2021, 44, 28. [Google Scholar] [CrossRef]
- Shi, H.F.; Zhao, T.T.; Wang, J.B.; Wang, Y.T.; Chen, Z.; Liu, B.L.; Ji, H.F.; Wang, W.D.; Zhang, G.L.; Li, Y.G. Fabrication of g-C3N4/PW12/TiO2 composite with significantly enhanced photocatalytic performance under visible light. J. Alloys Compd. 2021, 860, 157924. [Google Scholar] [CrossRef]
- Teng, Z.Y.; Lv, H.Y.; Wang, C.Y.; Xue, H.G.; Pang, H.; Wang, G.X. Bandgap engineering of ultrathin graphene-like carbon nitride nanosheets with controllable oxygenous functionalization. Carbon 2017, 113, 63–75. [Google Scholar] [CrossRef]
- Zhang, G.G.; Lan, Z.A.; Wang, X.C. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 2017, 8, 5261–5274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.L.; Su, F.Y.; Xie, H.Q.; Wang, R.P.; Ding, C.H.; Huang, J.D.; Xu, Y.X.; Ye, L.Q. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 404, 126498. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Jin, Z.L. Synergistic enhancement of hydrogen production by ZIF-67 (Co) derived Mo–Co–S modified g-C3N4/rGO photocatalyst. Catal. Lett. 2018, 149, 34–48. [Google Scholar] [CrossRef]
- Wang, W.C.; Tao, Y.; Du, L.L.; Wei, Z.; Yan, Z.P.; Chan, W.K.; Lian, Z.C.; Zhu, R.X.; Phillips, D.L.; Li, G.S. Femtosecond time-resolved spectroscopic observation of long-lived charge separation in bimetallic sulfide/g-C3N4 for boosting photocatalytic H2 evolution. Appl. Catal. B Environ. 2021, 282, 119568. [Google Scholar] [CrossRef]
- Cao, S.W.; Jiang, J.; Zhu, B.C.; Yu, J.G. Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst. Phys. Chem. Chem. Phys. 2016, 18, 19457–19463. [Google Scholar] [CrossRef]
- Ou, M.; Wan, S.P.; Zhong, Q.; Zhang, S.L.; Wang, Y.A. Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light. Int. J. Hydrog. Energy 2017, 42, 27043–27054. [Google Scholar] [CrossRef]
- Zhang, D.G.; Liu, W.B.; Wang, R.W.; Zhang, Z.T.; Qiu, S.L. Interface engineering of hierarchical photocatalyst for enhancing photoinduced charge transfers. Appl. Catal. B Environ. 2021, 283, 119632. [Google Scholar] [CrossRef]
- Li, S.S.; Peng, Y.N.; Hu, C.; Chen, Z.H. Self-assembled synthesis of benzene-ring-grafted g-C3N4 nanotubes for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 2020, 279, 119401. [Google Scholar] [CrossRef]
- Zhang, G.G.; Lan, Z.A.; Lin, L.H.; Lin, S.; Wang, X.C. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 2016, 7, 3062–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, S.K.; Gao, J.P.; Zhang, Y.; Yang, J.B.; Wu, Y.L.; Wang, X.X.; Zhao, R.R.; Zhai, X.G.; Hao, C.Y.; Li, R.X.; et al. Enhanced visible light photocatalytic hydrogen evolution over porphyrin hybridized graphitic carbon nitride. J. Colloid Interface Sci. 2017, 506, 58–65. [Google Scholar] [CrossRef]
- Xing, W.N.; Tu, W.G.; Ou, M.; Wu, S.Y.; Yin, S.M.; Wang, H.J.; Chen, G.; Xu, R. Anchoring active Pt2+/Pt0 hybrid nanodots on g-C3N4 nitrogen vacancies for photocatalytic H2 evolution. ChemSusChem 2019, 12, 2029–2034. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.; Mousavi, M.; Ghasemi, J.B.; Le, Q.V.; Delbari, S.A.; Shahedi Asl, M.; Shokouhimehr, M.; Mohammadi, M.; Azizian-Kalandaragh, Y.; Sabahi Namini, A. In situ preparation of g-C3N4 nanosheet/FeOCl: Achievement and promoted photocatalytic nitrogen fixation activity. J. Colloid Interface Sci. 2021, 587, 538–549. [Google Scholar] [CrossRef]
- Li, X.; Jiang, H.P.; Ma, C.C.; Zhu, Z.; Song, X.H.; Wang, H.Q.; Huo, P.W.; Li, X.Y. Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO. Appl. Catal. B Environ. 2021, 283, 119638. [Google Scholar] [CrossRef]
- Zhang, B.; Shi, H.X.; Yan, Y.J.; Liu, C.Q.; Hu, X.Y.; Liu, E.Z.; Fan, J. A novel S-scheme 1D/2D Bi2S3/g-C3N4 heterojunctions with enhanced H2 evolution activity. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125598. [Google Scholar] [CrossRef]
- Sui, Y.; Liu, J.H.; Zhang, Y.W.; Tian, X.K.; Chen, W. Dispersed conductive polymer nanoparticles on graphitic carbon nitride for enhanced solar-driven hydrogen evolution from pure water. Nanoscale 2013, 5, 9150–9155. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Kofuji, Y.; Kanazawa, S.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light. Chem. Commun. 2014, 50, 15255–15258. [Google Scholar] [CrossRef]
- Chen, X.J.; Wang, J.; Chai, Y.Q.; Zhang, Z.J.; Zhu, Y.F. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-Scheme heterojunction. Adv. Mater. 2021, 33, 2007479. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Bunes, B.R.; Li, Y.X.; Wang, C.Y.; Zang, L. Enhancement of visible-light-driven photocatalytic H2 evolution from water over g-C3N4 through combination with perylene diimide aggregates. Appl. Catal. A Gen. 2015, 498, 63–68. [Google Scholar] [CrossRef]
- Chen, Y.L.; Liu, X.Q.; Hou, L.; Guo, X.R.; Fu, R.W.; Sun, J.M. Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chem. Eng. J. 2020, 383, 123132. [Google Scholar] [CrossRef]
- Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Pisanu, A.; Malavasi, L.; Profumo, A. Improved photocatalytic H2 production assisted by aqueous glucose biomass by oxidized g-C3N4. Int. J. Hydrog. Energy 2018, 43, 14925–14933. [Google Scholar] [CrossRef]
- Su, Z.Z.; Zhang, B.X.; Shi, J.B.; Tan, D.X.; Zhang, F.Y.; Liu, L.F.; Tan, X.N.; Shao, D.; Yang, G.Y.; Zhang, J.L. An NH2-MIL-125 (Ti)/Pt/g-C3N4 catalyst promoting visible-light photocatalytic H2 production. Sustain. Energy Fuels 2019, 3, 1233–1238. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Q.S.; Kong, C.; Wu, Y.Q.; Li, Y.X.; Lu, G.X. Interface charge transfer versus surface proton reduction: Which is more pronounced on photoinduced hydrogen generation over sensitized Pt cocatalyst on RGO? J. Phys. Chem. C 2015, 119, 13561–13568. [Google Scholar] [CrossRef]
- Takanabe, K.; Kamata, K.; Wang, X.; Antonietti, M.; Kubota, J.; Domen, K. Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys. Chem. Chem. Phys. 2010, 12, 13020–13025. [Google Scholar] [CrossRef]
- Wang, Y.B.; Hong, J.D.; Zhang, W.; Xu, R. Carbon nitride nanosheets for photocatalytic hydrogen evolution: Remarkably enhanced activity by dye sensitization. Catal. Sci. Technol. 2013, 3, 1703–1711. [Google Scholar] [CrossRef]
- Min, S.X.; Lu, G.X. Enhanced electron transfer from the excited Eosin Y to mpg-C3N4 for highly efficient hydrogen evolution under 550 nm irradiation. J. Phys. Chem. C 2012, 116, 19644–19652. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, Y.; Ma, Z. g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution. Processes 2021, 9, 1055. https://doi.org/10.3390/pr9061055
Chen Y, Liu Y, Ma Z. g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution. Processes. 2021; 9(6):1055. https://doi.org/10.3390/pr9061055
Chicago/Turabian StyleChen, Yihang, Yanfei Liu, and Zhen Ma. 2021. "g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution" Processes 9, no. 6: 1055. https://doi.org/10.3390/pr9061055
APA StyleChen, Y., Liu, Y., & Ma, Z. (2021). g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution. Processes, 9(6), 1055. https://doi.org/10.3390/pr9061055