The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review
Abstract
:1. Introduction
2. General Aspects of SFE Process
3. Use of SFE Technology for Aquatic By-Products
3.1. Current Status of Consumption of Aquatic Products and Utilization of the By-Products
3.2. Main Biologically Active Ingredients in Aquatic By-Products
3.3. Application of SFE in Extraction of Aquatic By-Products
4. Use of SFE Technology for Fruits and Vegetables By-Products
4.1. Current Status of Consumption of Fruits and Vegetables and Utilization of the By-Products
4.2. Main Biologically Active Ingredients in Fruit and Vegetable By-Products
4.3. Application of SFE in Fruit By-Products
4.4. Application of SFE in Vegetables By-Products
5. Use of SFE Technology for Nuts and Other Plant By-Products Industries
6. Conclusions and Some Technical Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gullón, P.; Gullón, B.; Romaní, A.; Rocchetti, G.; Lorenzo, J.M. Smart advanced solvents for bioactive compounds recovery from agri-food by-products: A review. Trends Food Sci. Technol. 2020, 101, 182–197. [Google Scholar] [CrossRef]
- Rico, X.; Gullón, B.; Alonso, J.L.; Yáñez, R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Res. Int. 2020, 132, 109086. [Google Scholar] [CrossRef] [PubMed]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durante, M.; Montefusco, A.; Marrese, P.P.; Soccio, M.; Pastore, D.; Piro, G.; Mita, G.; Lenucci, M.S. Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. J. Food Compos. Anal. 2017, 63, 65–72. [Google Scholar] [CrossRef]
- Baldino, L.; Della Porta, G.; Reverchon, E. Supercritical CO2 processing strategies for pyrethrins selective extraction. J. CO2 Util. 2017, 20, 14–19. [Google Scholar] [CrossRef]
- Kuvendziev, S.; Lisichkov, K.; Zekovi, Z.; Marinkovski, M.; Musliu, Z.H. Supercritical fluid extraction of fish oil from common carp (Cyprinus carpio L.) tissues. J. Supercrit. Fluids 2018, 133, 528–534. [Google Scholar] [CrossRef]
- Matrices, V.W. Supercritical fluid extraction of carotenoids from vegetable waste matrices. Molecules 2019, 24, 466. [Google Scholar] [CrossRef] [Green Version]
- Abrahamsson, V.; Cunico, L.P.; Andersson, N.; Nilsson, B.; Turner, C. Multicomponent inverse modeling of supercritical fluid extraction of carotenoids, chlorophyll A, ergosterol and lipids from microalgae. J. Supercrit. Fluids 2018, 139, 53–61. [Google Scholar] [CrossRef]
- Kelly, N.P.; Kelly, A.L.; O’Mahony, J.A. Strategies for enrichment and purification of polyphenols from fruit-based materials. Trends Food Sci. Technol. 2019, 83, 248–258. [Google Scholar] [CrossRef]
- Misra, N.N.; Koubaa, M.; Roohinejad, S.; Juliano, P.; Alpas, H.; Inàcio, R.S.; Saraiva, J.A.; Barba, F.J. Landmarks in the historical development of twenty first century food processing technologies. Food Res. Int. 2017, 97, 318–339. [Google Scholar] [CrossRef] [PubMed]
- Fabrowska, J.; Ibañez, E.; Herrero, M. Supercritical fluid extraction as a tool to valorize underexploited freshwater green algae. Algal Res. 2016, 19, 237–245. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J. Supercrit. Fluids 2019, 147, 213–221. [Google Scholar] [CrossRef]
- Melgosa, R.; Sanz, M.T.; Benito-román, Ó.; Illera, A.E.; Beltrán, S. Supercritical CO2 assisted synthesis and concentration of monoacylglycerides rich in omega-3 polyunsaturated fatty acids. J. CO2 Util. 2019, 31, 65–74. [Google Scholar] [CrossRef]
- Gallego, R.; Bueno, M.; Herrero, M. Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update. TrAC Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Pereira, C.G.; Meireles, M.A.A. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food Bioprocess Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Wrona, O.; Rafińska, K.; Możeński, C.; Buszewski, B. Supercritical fluid extraction of bioactive compounds from plant materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. TrAC Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Cifuentes, A.; Ibañez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae-A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Tita, G.J.; Navarrete, A.; Martín, Á.; Cocero, M.J. Model assisted supercritical fluid extraction and fractionation of added-value products from tobacco scrap. J. Supercrit. Fluids 2021, 167. [Google Scholar] [CrossRef]
- Casas, L.; Mantell, C.; Rodríguez, M.; De Ossa, E.J.M.; Roldán, A.; De Ory, I.; Caro, I.; Blandino, A. Extraction of resveratrol from the pomace of Palomino fino grapes by supercritical carbon dioxide. J. Food Eng. 2010, 96, 304–308. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Supercritical fluid extraction of polyphenols from grape seed (Vitis vinifera): Study on process variables and kinetics. J. Supercrit. Fluids 2017, 130, 239–245. [Google Scholar] [CrossRef]
- Trabelsi, D.; Aydi, A.; Wüst, A.; Della, G.; Scognamiglio, M.; Cricchio, V.; Langa, E.; Abderrabba, M.; Mainar, A.M. Supercritical extraction from Citrus aurantium amara peels using CO2 with ethanol as co-solvent. J. Supercrit. Fluids 2016, 117, 33–39. [Google Scholar] [CrossRef]
- Kehili, M.; Kammlott, M.; Choura, S.; Zammel, A.; Zetzl, C.; Smirnova, I.; Allouche, N.; Sayadi, S. Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Bioprod. Process. 2017, 102, 340–349. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Kokkali, M.; Martí-Quijal, F.J.; Taroncher, M.; Ruiz, M.J.; Kousoulaki, K.; Barba, F.J. Improved extraction efficiency of antioxidant bioactive compounds from Tetraselmis chuii and Phaedoactylum tricornutum using pulsed electric fields. Molecules 2020, 25, 3921. [Google Scholar] [CrossRef] [PubMed]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative green technologies of intensification for valorization of seafood and their by-products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef] [Green Version]
- Atef, M.; Ojagh, S.M. Health benefits and food applications of bioactive compounds from fish byproducts: A review. J. Funct. Foods 2017, 35, 673–681. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, X.; Cao, W.; Yang, B.; Mu, Y.; Dong, Y.; Xiu, Z. E-configuration structures of EPA and DHA derived from Euphausia superba and their significant inhibitive effects on growth of human cancer cell lines in vitro. Prostaglandins Leukot. Essent. Fat. Acids 2017, 117, 47–53. [Google Scholar] [CrossRef]
- Bettadahalli, S.; Acharya, P.; Ramaiyan, B. Evidence on oleic acid and EPA + DHA role in retinal antioxidant defense, leukocyte adhesion, and vascular permeability: Insight from hyperlipidemic rat model. J. Funct. Foods 2020, 67, 103864. [Google Scholar] [CrossRef]
- Robertson, R.C.; Seira Oriach, C.; Murphy, K.; Moloney, G.M.; Cryan, J.F.; Dinan, T.G.; Paul Ross, R.; Stanton, C. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain. Behav. Immun. 2017, 59, 21–37. [Google Scholar] [CrossRef]
- Kim, S.; Sandler, D.P.; Galanko, J.; Martin, C.; Sandler, R.S. Intake of polyunsaturated fatty acids and distal large bowel cancer risk in whites and African Americans. Am. J. Epidemiol. 2010, 171, 969–979. [Google Scholar] [CrossRef] [Green Version]
- Balbas, J.; Hamid, N.; Liu, T.; Kantono, K.; Robertson, J.; White, W.L.; Ma, Q.; Lu, J. Comparison of physicochemical characteristics, sensory properties and volatile composition between commercial and New Zealand made wakame from Undaria pinnatifida. Food Chem. 2015, 186, 168–175. [Google Scholar] [CrossRef]
- Watson, H.; Mitra, S.; Croden, F.C.; Taylor, M.; Wood, H.M.; Perry, S.L.; Spencer, J.A.; Quirke, P.; Toogood, G.J.; Lawton, C.L.; et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 2018, 67, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Balfegò, M.; Canivell, S.; Hanzu, F.A.; Sala-Vila, A.; Martínez-Medina, M.; Murillo, S.; Mur, T.; Ruano, E.G.; Linares, F.; Porras, N.; et al. Effects of sardine-enriched diet on metabolic control, inflammation and gut microbiota in drug-naïve patients with type 2 diabetes: A pilot randomized trial. Lipids Health Dis. 2016, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, S.; Imai, T.; Shimazawa, M.; Ishibashi, T.; Hayashi, M.; Hara, H.; Nakamura, S. Protective effects of the astaxanthin derivative, adonixanthin, on brain hemorrhagic injury. Brain Res. 2018, 1698, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, Z.; Sun, P.; Chen, T.; Chen, F. Microalgal carotenoids: Beneficial effects and potential in human health. Food Funct. 2014, 5, 413–425. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Martinez-Correa, H.A.; Paviani, L.C.; Cabral, F.A. Supercritical CO2 extraction of lipids and astaxanthin from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis). J. Supercrit. Fluids 2011. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, J.A.; Meduíña, A.; Durán, A.I.; Nogueira, M.; Fernández-Compás, A.; Pérez-Martín, R.I.; Rodríguez-Amado, I. Production of valuable compounds and bioactive metabolites from by-products of fish discards using chemical processing, enzymatic hydrolysis, and bacterial fermentation. Mar. Drugs 2019, 17, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio-rodríguez, N.; De Diego, S.M.; Beltrán, S.; Jaime, I.; Sanz, M.T.; Rovira, J. Supercritical fluid extraction of the omega-3 rich oil contained in Study of the influence of process parameters on the extraction yield and oil quality. J. Supercrit. Fluids 2008, 47, 215–226. [Google Scholar] [CrossRef]
- Sahena, F.; Zaidul, I.S.M.; Jinap, S.; Jahurul, M.H.A.; Khatib, A.; Norulaini, N.A.N. Extraction of fish oil from the skin of Indian mackerel using supercritical fluids. J. Food Eng. 2010, 99, 63–69. [Google Scholar] [CrossRef]
- Ferdosh, S.; Sarker, Z.I.; Norulaini, N.; Ab, N.; Akand, J.H.; Ghafoor, K.; Awang, M.B.; Omar, M.; Kadir, A. Supercritical carbon dioxide extraction of oil from Thunnus tonggol head by optimization of process parameters using response surface methodology. Korean J. Chem. Eng. 2013, 30, 1466–1472. [Google Scholar] [CrossRef]
- Esqu, M.M.; Bandarra, N.M.; Fontan, I.; Bernardo-gil, M.G.; Batista, I.; Nunes, M.L.; Esqu, M.M. Supercritical carbon dioxide extraction of sardine Sardina pilchardus oil. LWT Food Sci. Technol. 1997, 720, 715–720. [Google Scholar]
- Catchpole, O.J.; Grey, J.B.; Noermark, K.A. Fractionation of fish oils using supercritical CO2 and CO2 + ethanol mixtures. J. Supercrit. Fluids 2000, 19, 25–37. [Google Scholar] [CrossRef]
- Treyvaud, V.; Kramp, K.L.; Mao, J.; Mcrae, C.; Goulah, A.; Kimpe, L.E.; Blais, J.M.; Arnason, J.T. Supercritical carbon dioxide extraction of polyunsaturated fatty acids from Northern shrimp (Pandalus borealis Kreyer) processing by-products. Food Chem. 2012, 130, 853–858. [Google Scholar] [CrossRef]
- Mezzomo, N.; Martínez, J.; Maraschin, M.; Ferreira, S.R.S. Pink shrimp (P. brasiliensis and P. paulensis) residue: Supercritical fluid extraction of carotenoid fraction. J. Supercrit. Fluids 2013, 74, 22–33. [Google Scholar] [CrossRef]
- De Melo, M.M.R.; Sapatinha, M.; Pinheiro, J.; Lemos, M.F.L.; Bandarra, N.M.; Batista, I.; Paulo, M.C.; Coutinho, J.; Saraiva, J.A.; Silva, C.M. Supercritical CO2 extraction of Aurantiochytrium sp. biomass for the enhanced recovery of omega-3 fatty acids and phenolic compounds. J. CO2 Util. 2020, 38, 24–31. [Google Scholar] [CrossRef]
- Syrpas, M.; Bukauskait, J.; Ba, L. Recovery of lipophilic products from wild cyanobacteria (Aphanizomenon flos-aquae) isolated from the Curonian Lagoon by means of supercritical carbon dioxide extraction. Algal Res. 2018, 35, 10–21. [Google Scholar] [CrossRef]
- Gouveia, L. Food Chemistry Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem. 2007, 101, 717–723. [Google Scholar] [CrossRef]
- Cansell, M.; Subra-paternault, P.; Thongdeng, H.; Gr, A. Extraction of phospholipids from scallop by-product using supercritical CO2 /alcohol mixtures. LWT Food Sci. Technol. 2015, 60, 990–998. [Google Scholar] [CrossRef]
- Lisichkov, K.; Kuvendziev, S.; Zeković, Z.; Marinkovski, M. Influence of operating parameters on the supercritical carbon dioxide extraction of bioactive components from common carp (Cyprinus carpio L.) viscera. Sep. Purif. Technol. 2014, 138, 191–197. [Google Scholar] [CrossRef]
- Rubio-Rodríguez, N.; De Diego, S.M.; Beltrán, S.; Jaime, I.; Sanz, M.T.; Rovira, J. Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. J. Food Eng. 2012, 109, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Taati, M.M.; Shabanpour, B.; Ojagh, M. Extraction of oil from tuna by-product by supercritical fluid extraction (SFE) and comparison with wet reduction method. J. Food Eng. 2017, 10, 1546–1553. [Google Scholar]
- Trung, T.S.; Phuong, P.T.D. Bioactive compounds from by-products of shrimp processing industry in Vietnam. J. Food Drug Anal. 2012, 20, 194–197. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Zhang, W.; Barber, A.R.; Su, P.; He, S. Significant enrichment of polyunsaturated fatty acids (PUFAs) in the lipids extracted by supercritical CO2 from the livers of Australian rock lobsters (Jasus edwardsii). J. Agric. Food Chem. 2015, 63, 4621–4628. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majerska, J.; Michalska, A.; Figiel, A. A review of new directions in managing fruit and vegetable processing by-products. Trends Food Sci. Technol. 2019, 88, 207–219. [Google Scholar] [CrossRef]
- Machmudah, S.; Winardi, S.; Sasaki, M.; Goto, M.; Kusumoto, N. Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J. Food Eng. 2012, 108, 290–296. [Google Scholar] [CrossRef]
- Vági, E.; Simándi, B.; Vásárhelyiné, K.P.; Daood, H.; Kéry, Á.; Doleschall, F.; Nagy, B. Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products. J. Supercrit. Fluids 2007, 40, 218–226. [Google Scholar] [CrossRef]
- Campone, L.; Celano, R.; Lisa, A.; Pagano, I.; Carabetta, S.; Di, R.; Russo, M.; Ibañez, E.; Cifuentes, A.; Rastrelli, L. Response surface methodology to optimize supercritical carbon dioxide / co- solvent extraction of brown onion skin by-product as source of nutraceutical compounds. Food Chem. 2018, 269, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Tucker, J.M.; Townsend, D.M. Alpha-tocopherol: Roles in prevention and therapy of human disease. Biomed. Pharm. 2005, 59, 380–387. [Google Scholar] [CrossRef]
- Hamułka, J.; Górnicka, M.; Sulich, A.; Frąckiewicz, J. Weight loss program is associated with decrease α-tocopherol status in obese adults. Clin. Nutr. 2019, 38, 1861–1870. [Google Scholar] [CrossRef]
- Bartolini, D.; Torquato, P.; Barola, C.; Russo, A.; Rychlicki, C.; Giusepponi, D.; Bellezza, G.; Sidoni, A.; Galarini, R.; Svegliati-Baroni, G.; et al. Nonalcoholic fatty liver disease impairs the cytochrome P-450-dependent metabolism of α-tocopherol (vitamin E). J. Nutr. Biochem. 2017, 47, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Wallert, M.; Ziegler, M.; Wang, X.; Maluenda, A.; Xu, X.; Yap, M.L.; Witt, R.; Giles, C.; Kluge, S.; Hortmann, M.; et al. α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biol. 2019, 26, 101292. [Google Scholar] [CrossRef]
- Kumar, R.; Ferrie, R.P.; Balmert, L.C.; Kienzl, M.; Rifas-Shiman, S.L.; Gold, D.R.; Sordillo, J.E.; Kleinman, K.; Camargo, C.A.; Litonjua, A.A.; et al. Associations of α- and γ-tocopherol during early life with lung function in childhood. J. Allergy Clin. Immunol. 2020, 13–16. [Google Scholar] [CrossRef]
- Morris, M.C.; Schneider, J.A.; Li, H.; Tangney, C.C.; Nag, S.; Bennett, D.A.; Honer, W.G.; Barnes, L.L. Brain tocopherols related to Alzheimer’s disease neuropathology in humans. Alzheimers Dement. 2015, 11, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranard, K.M.; Erdman, J.W. Effects of dietary RRR α-tocopherol vs all-racemic α-tocopherol on health outcomes. Nutr. Rev. 2018, 76, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Isemura, M. Catechin in human health and disease. Molecules 2019, 24, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshatwi, A.A. Catechin hydrate suppresses MCF-7 proliferation through TP53/Caspase-mediated apoptosis. J. Exp. Clin. Cancer Res. 2010, 29, 167. [Google Scholar] [CrossRef] [Green Version]
- Shahid, A.; Ali, R.; Ali, N.; Hasan, S.K.; Bernwal, P.; Afzal, S.M.; Vafa, A.; Sultana, S. Modulatory effects of catechin hydrate against genotoxicity, oxidative stress, inflammation and apoptosis induced by benzo(a)pyrene in mice. Food Chem. Toxicol. 2016, 92, 64–74. [Google Scholar] [CrossRef]
- Ejaz Ahmed, M.; Khan, M.M.; Javed, H.; Vaibhav, K.; Khan, A.; Tabassum, R.; Ashafaq, M.; Islam, F.; Safhi, M.M. Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Neurochem. Int. 2013, 62, 492–501. [Google Scholar] [CrossRef]
- Teixeira, M.D.A.; Souza, C.M.; Menezes, A.P.F.; Carmo, M.R.S.; Fonteles, A.A.; Gurgel, J.P.; Lima, F.A.V.; Viana, G.S.B.; Andrade, G.M. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacol. Biochem. Behav. 2013, 110, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Jin, Z.; Zhao, R.; Ren, K.; Deng, C.; Yu, S. Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: Role of Nrf2/ARE pathway. Int. J. Clin. Exp. Med. 2015, 8, 10420–10428. [Google Scholar] [PubMed]
- Guan, P.; Sun, Z.M.; Wang, N.; Zhou, J.; Luo, L.F.; Zhao, Y.S.; Ji, E.S. Resveratrol prevents chronic intermittent hypoxia-induced cardiac hypertrophy by targeting the PI3K/AKT/mTOR pathway. Life Sci. 2019, 233, 116748. [Google Scholar] [CrossRef] [PubMed]
- Mankowski, R.T.; You, L.; Buford, T.W.; Leeuwenburgh, C.; Manini, T.M.; Schneider, S.; Qiu, P.; Anton, S.D. Higher dose of resveratrol elevated cardiovascular disease risk biomarker levels in overweight older adults–A pilot study. Exp. Gerontol. 2020, 131, 110821. [Google Scholar] [CrossRef] [PubMed]
- Gul, K.; Tak, A.; Singh, A.K.; Singh, P.; Yousuf, B.; Wani, A.A. Chemistry, encapsulation, and health benefits of β-carotene-A review. Cogent Food Agric. 2015, 1, 1–12. [Google Scholar] [CrossRef]
- Caseiro, M.; Ascenso, A.; Costa, A.; Creagh-flynn, J.; Johnson, M.; Simões, S. Lycopene in human health. LWT-Food Sci. Technol. 2020, 127, 109323. [Google Scholar] [CrossRef]
- Kelkel, M.; Schumacher, M.; Dicato, M.; Diederich, M. Antioxidant and anti-proliferative properties of lycopene. Free Radic. Res. 2011, 45, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Palozza, P.; Simone, R.E.; Catalano, A.; Mele, M.C. Tomato lycopene and lung cancer prevention: From experimental to human studies. Cancers 2011, 3, 2333–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajizadeh-Sharafabad, F.; Ghoreishi, Z.; Maleki, V.; Tarighat-Esfanjani, A. Mechanistic insights into the effect of lutein on atherosclerosis, vascular dysfunction, and related risk factors: A systematic review of in vivo, ex vivo and in vitro studies. Pharmacol. Res. 2019, 149, 104477. [Google Scholar] [CrossRef] [PubMed]
- Marqués, J.L.; Della Porta, G.; Reverchon, E.; Renuncio, J.A.R.; Mainar, A.M. Supercritical antisolvent extraction of antioxidants from grape seeds after vinification. J. Supercrit. Fluids 2013, 82, 238–243. [Google Scholar] [CrossRef]
- Farías-campomanes, A.M.; Rostagno, M.A.; Meireles, M.A.A. Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. J. Supercrit. Fluids 2013, 77, 70–78. [Google Scholar] [CrossRef]
- Passos, C.P.; Silva, R.M.; Da, F.A.; Coimbra, M.A.; Silva, C.M. Enhancement of the supercritical fluid extraction of grape seed oil by using enzymatically pre-treated seed. J. Supercrit. Fluids 2009, 48, 225–229. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A.; Decorti, D. The combined extraction of polyphenols from grape marc: Ultrasound assisted extraction followed by supercritical CO2 extraction of ultrasound-raffinate. LWT-Food Sci. Technol. 2015, 61, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Benelli, P.; Riehl, C.A.S.; Smânia, A.; Smânia, E.F.A.; Ferreira, S.R.S. Bioactive extracts of orange (Citrus sinensis L. Osbeck) pomace obtained by SFE and low pressure techniques: Mathematical modeling and extract composition. J. Supercrit. Fluids 2010, 55, 132–141. [Google Scholar] [CrossRef]
- Espinosa-pardo, F.A.; Mayumi, V.; Alves, G.; Alves, J.; Martínez, J. Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food Bioprod. Process. 2016, 101, 1–10. [Google Scholar] [CrossRef]
- Ferrentino, G.; Morozova, K.; Mosibo, O.K.; Ramezani, M.; Scampicchio, M. Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. J. Clean. Prod. 2018, 186, 253–261. [Google Scholar] [CrossRef]
- Hatami, T.; Cristina, L.; Leone, G.; Virginia, P.; Pontes, D.A.; Augusto, E.; Batista, C.; Helena, L.; Mei, I.; Martínez, J. Integrated supercritical extraction and supercritical adsorption processes from passion fruit by-product: Experimental and economic analyses. J. Supercrit. Fluids 2020, 162, 162. [Google Scholar] [CrossRef]
- Sánchez-camargo, P.; Gutiérrez, L.; Milena, S.; Martinez-correa, H.A.; Parada-alfonso, F.; Narváez-cuenca, C. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluids 2019, 152, 104574. [Google Scholar] [CrossRef]
- Kitryt, V.; Syrpas, M.; Pukalskas, A. Modeling and optimization of supercritical carbon dioxide extraction for isolation of valuable lipophilic constituents from elderberry (Sambucus nigra L.) pomace. J. CO2 Util. 2020, 35, 225–235. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Augusta, A.; Smânia, A.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef]
- Fiori, L.; Lavelli, V.; Simon, K.; Siva, P.; Sri, C.; Ben, H.; Guella, G. Supercritical CO2 extraction of oil from seeds of six grape cultivars: Modeling of mass transfer kinetics and evaluation of lipid profiles and tocol contents. J. Supercrit. Fluids 2014, 94, 71–80. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A.; Decorti, D. Extraction of proanthocyanidins from grape marc by supercritical fluid extraction using CO2 as solvent and ethanol – water mixture as. J. Supercrit. Fluids 2014, 87, 59–64. [Google Scholar] [CrossRef]
- Cristina, L.; Gabrí, R.; De Tarso, P.; Martínez, J. Fluid phase equilibria solubility of passion fruit (Passiflora edulis Sims) seed oil in supercritical CO2. Fluid Phase Equilib. 2019, 493, 174–180. [Google Scholar] [CrossRef]
- Massias, A.; Boisard, S.; Baccaunaud, M.; Leal, F.; Subra-paternault, P. Recovery of phenolics from apple peels using CO2 + ethanol extraction: Kinetics and antioxidant activity of extracts. J. Supercrit. Fluids 2015, 98, 172–182. [Google Scholar] [CrossRef]
- Montañés, F.; Catchpole, O.J.; Tallon, S.; Mitchell, K.A.; Scott, D.; Webby, R.F. Extraction of apple seed oil by supercritical carbon dioxide at pressures up to 1300 bar. J. Supercrit. Fluids 2018, 141, 128–136. [Google Scholar] [CrossRef]
- Meneses, M.A.; Caputo, G.; Scognamiglio, M.; Reverchon, E.; Adami, R. Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction. J. Food Eng. 2015, 163, 45–53. [Google Scholar] [CrossRef]
- Prado, I.M.; Prado, G.H.C.; Prado, J.M.; Meireles, M.A.A. Supercritical CO2 and low-pressure solvent extraction of mango (Mangifera indica) leaves: Global yield, extraction kinetics, chemical composition and cost of manufacturing. Food Bioprod. Process. 2013, 91, 656–664. [Google Scholar] [CrossRef]
- Castro-vargas, H.I.; Rodríguez-varela, L.I.; Parada-alfonso, F. Guava (Psidium guajava L.) seed oil obtained with a homemade supercritical fluid extraction system using supercritical CO2 and co-solvent. J. Supercrit. Fluids 2011, 56, 238–242. [Google Scholar] [CrossRef]
- Dias, J.L.; Mazzutti, S.; De Souza, J.A.L.; Ferreira, S.R.S.; Soares, L.A.L. Extraction of umbu (Spondias tuberosa) seed oil using CO2, ultrasound and conventional methods: Evaluations of composition profiles and antioxidant activities. J. Supercrit. Fluids 2019, 145, 10–18. [Google Scholar] [CrossRef]
- Kraujalien, V. Biorefining of blackcurrant pomace into high value functional ingredients using supercritical CO2, pressurized liquid and enzyme assisted extractions. J. Supercrit. Fluids 2017, 124, 10–19. [Google Scholar] [CrossRef]
- Pezo, L. Supercritical fluid extraction of raspberry seed oil: Experiments and modelling sko Mari c. J. Supercrit. Fluids 2020, 157, 157. [Google Scholar] [CrossRef]
- Kraujalis, P.; Tamkut, L.; Urbonavi, D.; Vi, P.; Venskutonis, P.R. Recovery of bioactive substances from rowanberry pomace by consecutive extraction with supercritical carbon dioxide and pressurized solvents. Ind. Eng. Chem. Res. 2020, 85, 152–160. [Google Scholar] [CrossRef]
- Paes, J.; Dotta, R.; Barbero, G.F.; Martínez, J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J. Supercrit. Fluids 2014, 95, 8–16. [Google Scholar] [CrossRef]
- Luis, J.; Reátegui, P.; Paula, A.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. J. Supercrit. Fluids 2014, 94, 223–233. [Google Scholar] [CrossRef]
- Tamkut, L. Recovery of valuable lipophilic and polyphenolic fractions from cranberry pomace by consecutive supercritical CO2 and pressurized liquid extraction. J. Supercrit. Fluids 2020, 159, 159. [Google Scholar] [CrossRef]
- Gustinelli, G.; Eliasson, L.; Svelander, C.; Alminger, M.; Ahrné, L. Supercritical CO2 extraction of bilberry (Vaccinium myrtillus L.) seed oil: Fatty acid composition and antioxidant activity. J. Supercrit. Fluids 2018, 135, 91–97. [Google Scholar] [CrossRef]
- Devani, B.M.; Jani, B.L.; Balani, P.C.; Akbari, S.H. Optimization of supercritical CO2 extraction process for oleoresin from rotten onion waste. Food Bioprod. Process. 2020, 119, 287–295. [Google Scholar] [CrossRef]
- Scaglia, B.; Incecco, P.D.; Squillace, P.; Dell, M.; De Nisi, P.; Pellegrino, L.; Botto, A.; Cavicchi, C.; Adani, F. Development of a tomato pomace biorefinery based on a CO2 - supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate. J. Clean. Prod. 2020, 243, 118650. [Google Scholar] [CrossRef]
- Derrien, M.; Aghabararnejad, M.; Gosselin, A.; Desjardins, Y.; Angers, P. Optimization of supercritical carbon dioxide extraction of lutein and chlorophyll from spinach by-products using response surface methodology. LWT-Food Sci. Technol. 2018, 93, 79–87. [Google Scholar] [CrossRef]
- Romo-Hualde, A.; Yetano-Cunchillos, A.I.; González-Ferrero, C.; Sáiz-Abajo, M.J.; González-Navarro, C.J. Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L.) by-products. Food Chem. 2012, 133, 1045–1049. [Google Scholar] [CrossRef]
- Shi, X.; Wu, H.; Shi, J.; Jun, S.; Wang, D.; Wang, W.; Cheng, A.; Gong, Z.; Chen, X.; Wang, C. Effect of modifier on the composition and antioxidant activity of carotenoid extracts from pumpkin (Cucurbita maxima) by supercritical CO2. LWT-Food Sci. Technol. 2013, 51, 433–440. [Google Scholar] [CrossRef]
- Fabian, H.; Lasta, B.; Lentz, L.; Mezzomo, N.; Regina, S.; Ferreira, S. Supercritical CO2 to recover extracts enriched in antioxidant compounds from beetroot aerial parts. Biocatal. Agric. Biotechnol. 2019, 19, 101169. [Google Scholar] [CrossRef]
- Lima, M.D.A.; Charalampopoulos, D.; Chatzifragkou, A. Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. J. Supercrit. Fluids 2018, 133, 94–102. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Cabred, S.; Ramirez, C.L.; Fanovich, M.A. Valorization of an agroindustrial soybean residue by supercritical fluid extraction of phytochemical compounds. J. Supercrit. Fluids 2019, 143, 90–96. [Google Scholar] [CrossRef]
- Kao, T.; Chien, J.; Chen, B. Extraction yield of isoflavones from soybean cake as affected by solvent and supercritical carbon dioxide. Food Chem. 2008, 107, 1728–1736. [Google Scholar] [CrossRef]
- Fang, T.; Goto, M.; Wang, X.; Ding, X.; Geng, J.; Sasaki, M.; Hirose, T. Separation of natural tocopherols from soybean oil byproduct with supercritical carbon dioxide. J. Supercrit. Fluids 2007, 40, 50–58. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Y.; Qiu, A.; Wang, X. Preparation of isoflavones enriched soy protein isolate from defatted soy hypocotyls by supercritical CO2. LWT Food Sci. Technol. 2007, 40, 800–806. [Google Scholar] [CrossRef]
- Li, X.; Song, L.; Xu, X.; Wen, C.; Ma, Y.; Yu, C.; Du, M. One-step coextraction method for flavouring soybean oil with the dried stipe of Lentinus edodes (Berk.) sing by supercritical CO2 fluid extraction. LWT-Food Sci. Technol. 2020, 120, 108853. [Google Scholar] [CrossRef]
- Shen, X.; Fang, T.; Gao, F.; Guo, M. Effects of ultrasound treatment on physicochemical and emulsifying properties of whey proteins pre- and post-thermal aggregation. Food Hydrocoll. 2017, 63, 668–676. [Google Scholar] [CrossRef]
- Roselló-soto, E.; Barba, F.J.; Lorenzo, J.M.; Munekata, P.E.S.; Gómez, B.; Carlos, J. Phenolic profile of oils obtained from “horchata” by-products assisted by supercritical-CO2 and its relationship with antioxidant and lipid oxidation parameters: Triple TOF-LC-MS-MS characterization. Food Chem. 2019, 274, 865–871. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Barba, F.J.; Lorenzo, J.M.; Dominguez, R.; Pateiro, M.; Mañes, J.; Moltó, J.C. Evaluating the impact of supercritical-CO2 pressure on the recovery and quality of oil from “horchata” by-products: Fatty acid profile, α-tocopherol, phenolic compounds, and lipid oxidation parameters. Food Res. Int. 2019, 120, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Salinas, F.; Vardanega, R.; Espinosa-Álvarez, C.; Jimenéz, D.; Muñoz, W.B.; Ruiz-Domínguez, M.C.; Meireles, M.A.A.; Cerezal- Mezquita, P. Supercritical fluid extraction of chañar (Geoffroea decorticans) almond oil: Global yield, kinetics and oil characterization. J. Supercrit. Fluids 2020, 161. [Google Scholar] [CrossRef]
- Hurtado-Benavides, A.; Dorado A., D.; del Pilar Sánchez-Camargo, A. Study of the fatty acid profile and the aroma composition of oil obtained from roasted Colombian coffee beans by supercritical fluid extraction. J. Supercrit. Fluids 2016, 113, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Mazzutti, S.; Rodrigues, L.G.G.; Mezzomo, N.; Venturi, V.; Ferreira, S.R.S. Integrated green-based processes using supercritical CO2 and pressurized ethanol applied to recover antioxidant compouds from cocoa (Theobroma cacao) bean hulls. J. Supercrit. Fluids 2018, 135, 52–59. [Google Scholar] [CrossRef]
- Cavalcanti, R.N.; Veggi, P.C.; Angela, M.; Meireles, A. Supercritical fluid extraction with a modifier of antioxidant compounds from jabuticaba (Myrciaria cauliflora) by-products: Economic viability. Ital. Oral Surg. 2011, 1, 1672–1678. [Google Scholar] [CrossRef] [Green Version]
- Santos-zea, L.; Gutiérrez-uribe, J.A.; Benedito, J. Effect of ultrasound intensification on the supercritical fluid extraction of phytochemicals from Agave salmiana bagasse. J. Supercrit. Fluids 2019, 144, 98–107. [Google Scholar] [CrossRef]
- Guoliang, L.; Junyou, S.; Yourui, S.; Zhiwei, S.; Lian, X.; Jie, Z.; Jinmao, Y. Supercritical CO2 cell breaking extraction of Lycium barbarum seed oil and determination of its chemical composition by HPLC/APCI/MS and antioxidant activity. LWT Food Sci. Technol. 2011, 44, 1172–1178. [Google Scholar] [CrossRef]
- Garcia-mendoza, P.; Espinosa-pardo, F.A.; Mara, A.; Fernández, G.; Roberto, M.; Junior, M.; Ariel, M.; Martínez, J. Extraction of phenolic compounds and anthocyanins from juc (Euterpe edulis Mart) residues using pressurized liquids and supercritical fluids. J. Supercrit. Fluids 2017, 119, 9–16. [Google Scholar] [CrossRef]
Aquatic By-Products/ Unexploited Resources | Optimal Extract Conditions | Extracts/Effects | Ref. | |
---|---|---|---|---|
Fish | Carp (Cyprinus carpio L.) caviar and viscera | 400 bars, 60 °C | MUFA and PUFA | [6] |
Hake (Merluccius capensis–Merluccius paradoxus) skin with some stuck muscle | 25 MPa, 10 kg CO2/h, 40 °C | 96 wt.% fish oil (6% EPA, 14% DHA) | [40] | |
Indian mackerel skin | 35 MPa and 75 °C | Fish oil 52.3/100 g sample; more PUFA than Soxhlet methods | [41] | |
Thunnus tonggol head | 40 MPa, 65 °C, and 3 mL/min | 41.6% total saturated; 24.7% monounsaturated acids; 26.8% PUFA; 22.3% omega-3 fatty acids | [42] | |
Sardine (Sardina pilchardus) muscle | 18.0 MPa, 321 K and solvent density of 821 kg/m3 | A slight increase in PUFA content | [43] | |
Cod liver | 12% ethanol; 333 K; 300 bars | Increased the oil and squalene content | [44] | |
Shrimp | Northern shrimp (head, shell and tail) | 35 MPa and 40 °C | Deep red oil, rich in ω-3 PUFA; 7.8 ± 0.06% EPA and 8.0 ± 0.07% DHA | [45] |
Pink shrimp (head, carapace, and tail) | 300 bar, 333.15 K and 13.3 g/min CO2 flow rate | high yield of carotenoids, astaxanthin, cryptoxanthin, and valuable flavonoid components | [46] | |
redspotted shrimp waste (head, shell and tail) | 43 °C/370 bars | High astaxanthin extraction yield | [38] | |
Algae | Aurantiochytrium sp. | 40 °C/300 bars | 39.3 wt.% DHA; AOC = 1.4 mg TEAC g−1 extract; TPC = 2.24 mg TEAC g−1 extract | [47] |
Freshwater green algae | 40 °C/300 bars and 11.4% ethanol as co-solvent | Chara fragilis extracts were the richest in total carotenoids and total phenols (24.90 mg fucoxanthin equivalents g−1 extract and 30.20 mg gallic acid equivalents g−1 extract, respectively); Ulva flexuosa possessed the highest antioxidant activity (0.944 mmol Trolox equivalents g−1 extract). | [11] | |
Cyanobacteria | 42.5 MPa, 55 °C and 120 min | α-linolenic acid (27% of total fatty acids) and α-tocopherol (293 μg/g extract) | [48] | |
Microalga Chlorella vulgaris | 40 °C and 300 bars | The pigment recovery rate was 69%, with strong antioxidant capacity and stable properties during storage | [49] | |
Scallop | Pecten maximus | 45 °C | Increased the phospholipids yield | [50] |
Fruit By-Products | Optimal Extract Conditions | Extracts/Effects | Ref. | |
---|---|---|---|---|
Grape | Seeds | 15 MPa and 40 °C | 151 mg (gallic acid), 49 mg (catechin), 53 mg (epicatechin) and 667 mg (resveratrol)/kg of seeds; TPC ranged from 15.60 to 22.56 g GAE/kg seed | [82] |
Seeds | 8 MPa, 6 kg/h carbon dioxide, and 20 w/w% entrainer | The highest extraction efficiency of polyphenol observed (7132 mg GAE/100 g DM) | [21] | |
Pomace | 20 MPa, 40 ºC, 180 min, and supercritical CO2 containing 10% ethanol (w/w) | Syringic acid, vanillic acid, gallic acid, p-hydroxybenzene formic acid, protocatechuic acid, p-coumaric acid, and quercetin obtained. | [83] | |
Pre-treated ground grape seeds | 16–20 MPa, 40 °C, solvent flow rate 1.7 × 10−4 kg s−1 | The maximum extraction yield was 16.5%, which was 44% higher than the 11.5% yield obtained with untreated seeds | [84] | |
Grape marc | Ultrasound (80 °C, 4 min) pretreat grape waste combined with SFE | Polyphenols (3493 mg GAE/100 g DM) and antioxidant activity (7503 mg α-tocopherol/100 g DM) | [85] | |
Pomace of Palomino Fino grapes | 40 MPa, 35 °C, and 5% ethanol | Increased the yield of resveratrol | [20] | |
Grape (Vitis vinifera) pomace | 30 MPa, 50–60 °C | The SFE extracts presented the highest antimicrobial effectiveness compared to the other grape pomace extracts due to the presence of antimicrobial active compounds | [92] | |
Grape seeds | 50 MPa and 50 °C | Oil yields from SFE resulted in the range 10.9–15.0% | [93] | |
Grape marc | 8 MPa, 40 °C, 6 kg/h CO2 flow rate and 10% ethanol–water mixture (57%, v/v) as co-solvent | The highest extraction yields were obtained at 4 kg/h CO2–7.5% EtW flow rate (2600 mg GAE/100 g DM) and 6 kg/h CO2–10% EtW (2527 mg GAE/100 g DM) | [94] | |
Orange | Peels | 17 MPa, 120 min and 2.7 kg/h | Obtained fatty acid esters (FAE), phenols, coumarin derivatives, terpene derivatives (the thickest osthole), isogeijerin, hexadecane, and squalene | [22] |
Ferment orange peel | 15–35 MPa, 40–60 °C, pure ethanol and ethanol:water (9:1 v/v) as co-solvents | The phenolic compounds ranged from 2.01 to 2.62%, and TPC (18–21.8 mg GAE/g dry extract) | [87] | |
Pomace | 10–30 MPa, 40–50 °C | The main extracts were l-limonene, palmitic and oleic acids, n-butyl benzenesulfonamide, and β-sitosterol | [86] | |
Passion fruit | Discarded seeds, pulp | 35 MPa and 40 °C | 19.1 g oil/100 g feed | [89] |
Passiflora edulis Sims seed | 25 MPa and 50 °C | Oil obtained presented an estimation of 30% of the triacylglycerols, | [95] | |
Apples | Peels | 25 MPa and 50 °C using CO2 and ethanol (96%) in 75:25 mol ratio | The highest phenolics yield was 800 mg/100 g dry peels; the antioxidant capacity values up to 5–6 mg equivalent ascorbic acid/g extract | [96] |
Pomace | 30 MPa, 45 °C, 2 h, and ethanol (5%) | A higher antioxidant activity (5.63 ± 0.10 mg TEAC/g of extract) than Soxhlet with ethanol (2.05 ± 0.21 mg TEA/g of extract) and boiling water maceration (1.14 ± 0.01 mg TEA/g of extract) | [88] | |
Seeds | 130 MPa and 63 °C | The maximum solubility achieved was ∼191 g extract/kg CO2 | [97] | |
Mango | Peel | 25.0 MPa, 60 °C, and 15% w/w ethanol | The carotenoids extraction yield was 1.9 mg all-trans-β-carotene equivalent/g dried mango peel | [90] |
Peel | 10 MPa and 40 °C | The extracts with an antioxidant activity of 851.9 mol TE/g and a half inhibition concentration of DPPH radical of 90 g/mL | [98] | |
Leaves | 30 MPa and 50 °C | Alkaloids, flavonoids and terpenoids recovered | [99] | |
Guava | Seed | 30 MPa, 40 °C and 30 min | High content of PUFAs | [100] |
Umbu | Seed | 15–30 MPa and 40 °C | Applying SFE and UAE as a combined process is a promising and useful tool to selectively recover hydrophilic (phenolic-rich fraction) and lipophilic compounds (oil-rich fraction) from umbu seeds | [101] |
Blackcurrant | Pomace | 45 MPa, 60 °C, 120 min | Lipophilic extracts were rich in PUFAs (linoleic 46.89%, γ-linolenic 14.02%) and tocopherols (2468 µg/g oil) | [102] |
Berries | Raspberry seed | 35 MPa, 40 °C, 0.4 kg/h, | The highest initial mass transfer rate was 0.11779 | [103] |
Rowanberry pomace | 45 MPa, 60 °C, and 180 min | The recovery of total carotenoids was up to 49.7% of the amount determined by hexane extraction; linoleic (59%), oleic (27%), and palmitic (9%) fatty acids were dominating in the extracted oil | [104] | |
Blueberry | 40 °C, 20 MPa, and 10 mL/min | The highest antioxidant activities and phenolic contents were found in the extracts obtained with pure ethanol and ethanol + water | [105] | |
Blackberry | 15 MPa, 60 °C, and CO2 flow rate of 2.77 × 10−4 kg/s | 3-O-glucoside, 3-O-rutinoside, 3-O-(6′′-dioxalyl-glucoside), and 3-O-(6′′-malonyl-glucoside) were identified | [106] | |
Cranberry pomace | 42.4 MPa, 53 °C, and 158 min | Linoleic (36.58%), linolenic (32.44%), oleic (21.79%), and palmitic (4.36%) acids were obtained | [107] | |
Bilberry seed | 20 MPa and 60 °C | The extracted bilberry seed oils exhibited high contents of vitamin E and PUFAs and a low ω6/ω3 ratio | [108] | |
Elderberry pomace | 53 °C, 35 MPa, 45 min | 14.05 g of the lipophilic fraction was recovered from 100 g of pomace, containing health beneficial polyunsaturated linoleic (42.0%) and α-linolenic (34.1%) fatty acids | [91] |
Vegetables/Beans By-Products | Optimal Extract Conditions | Extracts/Effects | Ref. | |
---|---|---|---|---|
Vegetables | Tomato peels | 30–50 MPa, 50–80 °C, and 3–5 g CO2/min. | The final extraction rate of lycopene and carotene was between 32.0–60.9% and 28.4–58.8%, respectively | [23] |
Tomato | 46 MPa and 80 °C | The lycopene content in extracts was 90.1% | [59] | |
Tomato pomace | 77.4 ± 13.7 °C, 37.3 ± 7.0 MPa, 11 ± 2.5 kg CO2/h, and 211 ± 10.3 min | SFE acts as an efficacious system to increase fiber biodegradability (+64%) | [110] | |
Tomato peel | 40 MPa and 90 °C | 56% of lycopene was extracted | [58] | |
Rotten onions | 40 MPa, 80 °C, particle size 0.53 mm, and 60 min | The final onion oleoresin extraction rate was 1.012%, 31 g sulfur/kg oil, and 10.41 μmol pyruvate/g fresh onion | [109] | |
Brown onion peels | 10 MPa, 40 °C | The SFE extracts showed stronger antioxidant capacity than traditional extraction methods | [60] | |
Spinach waste | 39 MPa, 56 °C, 3.6 h, and 10% ethanol | 72% lutein and 50% chlorophyll recovered | [111] | |
Red pepper seeds, skin leftovers and stems | 24 MPa, 60 °C, and 0.2–0.5 mm particle size | High-yield red pepper oil obtained | [112] | |
Pumpkin | 25 MPa and 80 °C | Recovered carotene from pumpkin waste | [113] | |
Beetroot | 25 MPa, 40 °C, 0.5 kg CO2/h, and 4 h | A certain proportion of ethanol/water mixture increased the extraction efficiency of polyphenols | [114] | |
Carrot peel | 30.6 MPa, 58.5 °C, and 14.3% ethanol; 34.9 MPa, 59.0 °C, and 15.5% ethanol | Obtained the maximum mass yield (5.31%) at 58.5 °C, 306 bar, and 14.3% ethanol and the highest carotene extraction rate (86.1%) at 59.0 °C, 349 bar, and 15.5% ethanol | [115] | |
Beans | Soybean residue | 40 MPa and 35 °C | Total phenol content of 10.6 and 16.0 mg GAE/100 g d.m; carotenoid content of 65.0 and 31.3 QE/100 g d.m; DPPH values of 9.7 and 12.0 μmol TE/100 g d.m, respectively | [116] |
Soybean oil by-products | 35 MPa and 60–80 °C | Improved extraction of acetylglucoside and aglycone | [117] | |
Soybean oil | 16 MPa/40–75 °C | Natural tocopherols (>50%) obtained with a high recovery rate (>80%) | [118] | |
Defatted soy hypocotyls | 35 MPa, 45 °C, 2 h, and 5 L/min CO2 | β-glycosides, glycitin, daidzin, and genistin accounted for about 83.7% of the total isoflavones | [119] | |
Lentinus edodes sing stipe | 15–30 MPa, 50 °C and 40 min | The SFE method effectively improved the color quality of the soybean oil | [120] |
Nuts By-Products and other Plants. | Optimal Extract Conditions | Extracts/Effects | Ref. | |
---|---|---|---|---|
Nuts | Horchata by-products | 10–40 MPa, 40 °C, 2 h, and CO2 flow 20 g/min with 30 mL ethanol | The main phenolic compound obtained by SC-CO2 was isohydroxymatairesinol, especially at 30 and 40 MPa | [122] |
10–40 MPa, 40 °C, and 2 h | The content of α-tocopherol after SC-CO2 treatment was significantly higher than that of traditional extraction methods | [123] | ||
Chañar almonds | 40 MPa and 60 °C | High amounts of monounsaturated fatty acids and PUFsA, being 363 ± 4 and 468 ± 13 mg/g oil, respectively | [124] | |
Other plants | Colombian coffee beans waste | 33.1 MPa and 35.9 °C | The optimal oil yield was 8.9%, and the main fatty acids identified were palmitic acid (46.1%), linoleic acid (32.9%), oleic acid (8.0%), stearic acid (6.6%), and arachidic acid (1.9%) | [126] |
Cocoa bean hulls | 20 MPa and 40 °C | Pressurized liquid extraction extracted from SC-CO2 residue had higher total phenol content and antioxidant properties, providing TPC values from 35 to 51 mg GAE/g and EC50 values from 115 to 177 μg/mL, respectively | [125] | |
Jabuticaba (Myrciaria cauliflora) | 20 MPa, 50 °C and using 20% v/v ethanol as a modifier | High amount of antioxidant compounds | [127] | |
Agave salmiana | 15–45 MPa and 40–60 °C | Antioxidant capacity increased from 12.18 ± 1.01 to 20.91 ± 1.66 μmol TE/g; and saponins from 19.05 ± 1.67 to 61.59 ± 1.99 μg/g when used SFE + Ultrasound | [128] | |
Lycium barbarum | 30 MPa, 45 °C, 60 min and CO2 flow 25 kg/h | Extraction more efficient | [129] | |
Euterpe edulis Mart | 10 MPa and 40, 60, and 80 °C | Extract rich in anthocyanins and heat resistant phenolic compounds | [130] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Gullón, B.; Wang, M.; Gullón, P.; Lorenzo, J.M.; Barba, F.J. The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review. Processes 2021, 9, 357. https://doi.org/10.3390/pr9020357
Zhou J, Gullón B, Wang M, Gullón P, Lorenzo JM, Barba FJ. The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review. Processes. 2021; 9(2):357. https://doi.org/10.3390/pr9020357
Chicago/Turabian StyleZhou, Jianjun, Beatriz Gullón, Min Wang, Patricia Gullón, José M. Lorenzo, and Francisco J. Barba. 2021. "The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review" Processes 9, no. 2: 357. https://doi.org/10.3390/pr9020357
APA StyleZhou, J., Gullón, B., Wang, M., Gullón, P., Lorenzo, J. M., & Barba, F. J. (2021). The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review. Processes, 9(2), 357. https://doi.org/10.3390/pr9020357